
Goodman on Digitality
I. Preliminaries

A. Review
1. Overall, we are looking for the answers to three questions:

Q1 What are digital (discrete) systems good for? What are continuous systems
good for? What are the constitutive properties of each?

Q2 What are the consequences of (reasons for? reasons against?) implementing on a
digital substrate?

Q3 What kinds of fixity—and what kinds of fluidity—does digitality confer?

2. Last week, we looked at Haugeland’s characterisation of digitality
a. His basic position is that digitality is a kind of “absolute perfection (in an intrinsi-

cally) messy world”
b. Our bottom-line characterisation is that Haugeland’s analysis is a:

i. Good analysis of what digitality is for; but a (✔)
ii. Bad analysis of what digitality is (✘)

c. Moreover, we noted that, even if one were disposed to agree with Haugeland’s analysis,
several questions would remain:

Q4 What is digitality, such that perfection, in our world, requires it?

Q5 What is the world like, such that digitality is required, to achieve perfection?

B. Plan (for the next couple of sessions): three things
1. Haugeland (I):

a. First, I want to conclude our analysis and critique of Haugeland’s object-level account of
digitality (the account we have been looking at so far).

b. In particular, we will
i. Summarise where we got to, vis-à-vis the (very interesting) discussion about what is

possible in a Newton/Maxwell world. In particular, I want to focus on the epistemo-
logical formulation of “perfection” that we arrived at, at the end of class.

ii. See whether we can extract what is right about that insight from its epistemic for-
mulation, so as to give us more of an ontic condition on perfection.

2. Goodman
a. Second, we will look at chapter 4 (“The Theory of Notation”) of Nelson Goodman’s

Languages of Art
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b. Semantics
i. As we noted last time, H’s analysis is not of (necessarily) semantic or interpreted sys-

tems. It applies equally to uninterpreted systems—such as Lincoln Logs.
ii. In contrast, Goodman’s analysis does (necessarily) apply to interpreted entities, such

as symbols, notations, descriptions, models, etc.
iii. As such, it will dovetail into the intuitions people expressed at the beginning of this

section of the course, having to do with the reals, rationals, decimal notation, etc.
c. It is also (in my view) just about the best analysis there is of the fundamental question

that Haugeland doesn’t answer: of what, ontically, it actually is to be digital (or discrete)1

3. Haugeland (II)
a. Third, either on Thursday, or perhaps next week (i.e., when we are done with Good-

man), we will go back to Haugeland.
b. This time, we will shift up one level: away from his object-level account, to look at his

notion of “higher-order” digitality.
c. The idea, here, will not so much be to understand what digitality is, as to explore the

consequences of the fact that, in most scientific work, the concepts we use are (in a cer-
tain sense, to be explained) discrete.

d. This higher–order notion will be extremely important, to the overall theme of the
course (particular, with the focus on formality).

C. To prepare for all these things, you should read Haugeland’s “Analog & Analog”2 (as well, of
course, as reading Goodman and Haugeland—and perhaps Lewis—on the first-order or object-
level notions of digitality that we are looking at first).

II. Haugeland (conclusion)

A. Review
1. Last Thursday, we focused on the implicit assumption that seems to underlie Haugeland’s

characterisation (of digitality in terms of positive and reliable “read/write” procedures).
a. In particular, we said that his characterisation in terms of perfection didn’t convey any

sense, really at all, of what it is to be digital. So it answers the first of the three questions
in Q1 , but not the other two.

b. Rather, it seems that his characterisation is (or may be) extensionally correct (i.e., may
hold of just those systems that are digital) because of a background assumption:

D1 The only way to be “perfect”—positive and reliable, in Haugeland’s sense—at
least in this world, is to be a digital system.

— I.e., perfect ⇒  digital

                                                
1Though that doesn’t mean that it is adequate! As we will see, it suffers from many of the same infelicities (and cir-
cular assumptions) that plague Haugeland.
2Haugeland, John, “Analog and Analog,” Philosophical Topics (Spring 1981); reprinted in J. I. Biro & Robert W. Sha-
han, (eds), Mind, Brain, and Function: Essays in the Philosophy of Mind, Norman, Oklahoma: Univeristy of Oklahoma
Press (1982), pp. 213–225. This paper is in the class reader.
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2. It might be that D1  is right. And if so, that is an enormously important result to have on the
table (even if it doesn’t explain what digitality is).

3. If D1  is right, then of course it remains to explain why it is right. More seriously, though, we
wondered whether D1 actually is right. On reflection—and in spite of its evident superficial
appeal—it wasn’t so clear whether it was as obviously right as initial intuition might suggest.
a. We considered systems in a Newton/Maxwell (continuous & deterministic) world.
b. More specifically, what we imagined were (intuitively) continuous, non–digital systems,

and procedures defined in terms of them, that nevertheless honored D1.
c. If such procedures are indeed possible (and we didn’t find a non-circular way of exclud-

ing them), then it would seem that D1 may not hold in a Newton/Maxwell world.
B. Epistemology

1. These considerations led us to a different suggestion, which we can call D2, which talks
a. Not about perfection as an ontic (ontological) condition,
b. But rather about epistemic perfection: perfect predictability

D2 The only way to be perfectly known (i.e., positively and reliably known, which
is to say, correctly thought to be perfect or reliable, in a something like an in-
formationally-complete way), at least in this world, is to be a digital system.

— I.e., perfectly knowable ⇒  digital

2. If D2 is true, then that would seem to relate digitality intrinsically to epistemology. It also
raises the very demanding question of why D2 is true, if it is. Two possible answers are:
a. Because of considerations due to quantum mechanics (because of an intrinsic uncertainty

or vagueness or indeterminacy in a quantum mechanical world); or
b. Because of considerations of computational complexity (in the sense we talked about in

Part III of the course: i.e., that, because of the limits of causal effectiveness, only by under-
standing systems under a digital abstraction can one get a grip on them that is finite and
“calculable” in a way that allows perfect prediction in finite time3).

3. It looks—if D2 is right—that “being digital” is a (perhaps nevertheless genuine way) of being,
in the world, so as to honour an epistemic demand.

4. Maybe that is so. Maybe, that is:4

                                                
3For example, it might be that one cannot understand the world in a non-abstracted way because the world is
running the optimal algorithm.
4Note: this (D3) may be a stronger thesis than that everything is (in part) epistemic, in the way in which social con-
structivist (such as me) might think. On the other hand, it may not be stronger; it depends on details about the
constructivist metaphysical view. Unfortunately, though this is an extremely interesting issue, we don’t have time
to pursue it here.
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D3 The notion of digitality has intrinsically (essentially) to do with knowledge, pre-
dictability, and abstraction—all of which are essentially epistemic notions—im-
plying that the “theory of digitality” will intrinsically and inevitably be a subject
matter in epistemology, not in (straight) ontology.

— I.e., digitality is essentially epistemic

C. Status
1. If D3 is true, it might be because of the character of the (counterfactual supporting?) corre-

lation that constitute the sorts of relationship that underlie semantics and knowledge.
2. But there is another possibility.

a. It might be that D2 is true, but that even though it is true, the reason why it is true is
not intrinsically epistemic. It might be, that is, that D2 does not imply D3.

b. In particular, maybe epistemic states exemplify a property—call it property P—which
i. Is not itself an intrinsically epistemological property, but
ii. Is the reason for the truth of D2.

c. If that were true, then D2 might be true, without D3’s being true.
3. If that were so, then pursuing this whole line of inquiry might lead us to a non-epistemic

characterisation of P.
4. I am sympathetic to this approach.5 But we are not going to pursue it here, directly.
5. Instead, we will turn to Goodman’s analysis. For my sense is that if we go through Good-

man’s analysis (on which, in part, Haugeland based his own), we will gather enough material
that we might be able (next week) to take a stab at formulating a possible P.

D. So turn to Goodman: in particular, to chap. 4 (“The Theory of Notation”) of his Languages of Art

III. Prefatory Comments (on Goodman)

A. Goodman
1. Goodman is a nominalist

a. He doesn’t believe in abstract objects, essences, etc.
b. So he won’t talk about types and their instances
c. Don’t be distracted by that, in reading him
d. Here, I will translate him into more familiar language

i. In particular, when we might say ‘type’, Goodman is more likely to say ‘character’
ii. Where we would say ‘token’, Goodman would say ‘mark’.
iii. And when we would say “token are an instance of a type”, Goodman would instead

say that “marks belong to the character.”
e. I am not claiming that this is all there it to nominalism! But for our purposes, this much

of a “translation manual” will suffice.
2. Goodman’s project

a. To provide an analysis of representation in the arts

                                                
5Which is not to say I think it is right. See the lecture notes for next week.

This ⇒
may not
be true
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b. E.g., to analyse notions of (musical) scores, paintings, etc.
i. For example, the locus of identity of a painting is the concrete instance
ii. But the score (a more “abstract” thing, one might thing) is the locus of identity of a

piece of music
c. We need to keep those interests in mind (partly because they are interesting, but

also—and for present purposes more importantly—because they affect his analysis)
d. Overall, though, we need to keep our eye on a notion of digitality that we can use to

analyse computation (which is an interpreted or intentional phenomenon)
3. Semantics

a. Because of his interest in scores, languages, etc., Goodman does what Haugeland does
not do: analyse digitality in the context of representation

b. So he will talk about both  syntactic and semantic aspects of digitality.
c. More specifically, we will spell out the six requirements that Goodman specifies on what

it is to be (what he calls) a “notational system”
4. Assessment

a. I will have criticisms of Goodman’s view
b. But as I say, I think it is the best characterisation of

digitality that there is.
B. Digitality

1. Remember our basic intuition: that digitality is reminis-
cent of a square wave (cf. figure 1)

2. Three characteristic properties
a. Flat top: everything inside it is identical (for the relevant purposes)
b. Vertical sides: the boundaries of a digital notion are sharp
c. Flat external space: digital values are separated

3. We should keep an eye on all three properties, in Goodman’s analysis
C. Semantics

1. When we began Part IV of the course, people raised a number of examples of digital sys-
tems (notational schemes for the rationals, etc.). All of these examples, as we noted at the
time, were intentional: they involved one set of structures denoting or naming or signifying
another.

2. As mentioned, one virtue of Goodman’s account is that it deals with such cases. So we can
use it, somewhat in passing, take a look at those examples people had.

3. Strictly speaking, they don’t have to do (at least not in any simple or obvious way) with what
it is to be discrete, per se. But it is still useful to be able to characterise those intuitive cases.

IV. Syntactic properties

A. Goodman identifies three criterial properties that a (syntactic) digital system must have:
1. SYN·I: Character indifference

a. Note that Goodman states, but does not “number,” this requirement
b. Basic idea: any token (instance) of syntactic type is (semantically) equivalent to any other

i. Note that this is defined wrt semantics (i.e., wrt a given purpose or function)

Figure 1 — Digitality
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ii. This is one of the places where one might want to argue that digitality is fundamen-
tally an intentional notion (which, as I’ve mentioned, many people seem to think)

c. This corresponds (in my analogy) to the “flat top” of the square wave
2. SYN·2: (Syntactic) Disjointness

a. No two syntactic types have overlapping extensions (members in common)
b. This corresponds to a requirement of his notational interests: he wants to have unique-

ness for a certain class of digital entities (for example, that for any given piece of music
there will be a unique score).

c. Cf. letters (in an alphabet): you can see why you would want not to have any overlap.
But this doesn’t seem as if it is intrinsic to being digital or discrete; it seems to be a
property more designed for other parts of his project (the analysis of notation).

3. SYN·3: (Syntactic) Finite Differentiation

a. For any token (or instance), there must no more than one type such that one cannot tell

whether the token is of that type.
i. Ruled out: marks of length <1”, marks of length ≥1”. They could be too close
ii. Okay: marks of length <1”, marks of length >2”.

b. This negative formulation is very clever—it ducks various questions:
i. How one decides whether a token is of a type
ii. What to do about (inevitable) boundary cases (as in a.ii, above)

B. Remarks
1. Finite differentiation is not the same as finite number of types

a. +finite differentiation, –finite types: arabic numeral fractions
b. –finite differentiation, +finite types: marks of length ≤1”, marks of >1”

2. Disjointness is not the same as finite differentiation
a. +disjoint, –finite differentiation: marks of length ≤1”, marks of >1”
b. –disjoint, +finite differentiation: union of (written) English and French

C. Goodman defines some additional notions
1. Density: if a scheme is ordered, then it is dense if, for any two types, there is a third type

between them
2. He also distinguishes atomic and compound types

D. Criticism (cf. Haugeland)
1. The characterisation of finite differentiation (at least as Goodman formulates it) makes ref-

erence to whether one can tell something. “Telling” is an epistemic notion. So it looks as if
we are back to many of the same worries that permeated our analysis of Haugeland.

2. Does this pack in a digitality assumption (of “determining” whether it is of a type or not)?  It
seems to.

3. Again: in a perfect Newton-Maxwell world, why wouldn’t marks of ≤1”, marks of >1” satisfy
finite-differentiation?

4. Are we no further ahead than we were with Haugeland? Maybe not …
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V. Semantic properties

A. Intro
1. There are also three criterial semantic properties (for Goodman’s notion)
2. Notation: Take ‘°’ to mean represent, for both types and tokens. So:

a. s: σ ° t: τ means that s of type σ represents or denotes t of type τ.
b. σ ° τ means that for any si of type σ, si denotes some ti of type τ.

B. SEM·I: Unambiguity

1. Type: σ ° τ1 and σ ° τ2 implies that τ1 = τ2

2. Token: s ° t1 and s ° t2  implies that t1  = t2

C. SEM·2: (Semantic) Disjointness

1. No semantic types such that an element of semantic domain is an instance of both
2. I.e., t: τ1 and t: τ2 implies that τ1 = τ2

3. This is very strong
a. For example, it disallows “cat” and “animal”—or any other subsumption relation
b. The motivation: so that you can recover the syntax from the semantic item
c. E.g., from musical performance, can write down the score (thereby identify the work)

4. It is unlikely that we will need this strong a notion for computing
D. SEM·3: (Semantic) Finite differentiation

1. For any token (instance) semantic object, there is no more than one syntactic type such that
one cannot tell it is denoted by (a token of) that type.

E. Remarks
1. As before, (semantic) disjointness is not the same as finite differentiation
2. Again, he defines some other properties:

a. If compound syntactic item σ designates a compound semantic item δ, such that δ is put
together in the “ordinary” way out of the entities designated by the parts of σ, then σ is
said to be composite; else, if δ exists, it is prime; else it is vacant.

b. Redundancy: for one semantic type τ, there are two syntactic types σ1 and σ2 such that
if σ1 ° τ and σ2 ° τ then σ1 = σ2 (plus the associated token version)

3. As said above, Goodman calls a system that meets all six conditions a notational system

VI. Remarks

A. Grain
1. What is good about Goodman’s typology is that it opens up a space of possibilities
2. Rather than just “defining” (claiming) that this or that is what digitality or discreteness is, in-

stead he offers a richer, more fine-grained way of understanding things
3. Even setting aside character indifference (which Goodman assumes, but doesn’t single out as

a numbered criterion), you are left with five binary distinctions, which generates a space of
32 (=25) possible types of system

B. Some examples from this space are given in figure 2, on the next page.
C. Analysis

1. It is absolutely common (e.g., in AI, in debates about visual representation) for people to
make broad, coarse-grained distinctions about kinds of representation.
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2. For example, one of the most common is between “images” and “propositions”
3. Goodman’s scheme, though far from perfect, is a better start at characterising representa-

tion systems than these traditional untutored distinctions.
4. Cf. Vinod Goel’s Sketches of Thought. He argues that most computer drawing systems (CAD

systems, illustration systems, etc.) are notational, and hence bad for sketching (e.g. of the
sort that architects do, especially initially, in formulating designs)

5. The basic point is that, in many ways, the sorts of distinction that Goodman makes seem to
cut deeper—to have more to do with what is really going on—than whether the system is
“pictorial” or “sentential”.

D. Critique
1. But let’s get back to our main project: to understand digitality, in a way that will allow us to

understand whether computing is digital.
2. What do we make of Goodman’s characterisation—with respect to these demands? There

are several things to say.
3. Turn to those on Thursday.

—— end of file ——ðð

Syntax Semantics

Disjoint Fin. Diff. Unambig Disjoint Fin. Diff.

Integer numerals ✔ ✔ ✔ ✔ ✔

Rationals (arabic numeral fractions) ✔ ✔ ✔ ✔ ✘

Carpenter’s scribe marks ✔ ✘ ✔ ✔ ✘

Written (ASCII) English (maybe?) ✘ ✔ ✘ ✘ ✘

Spoken English (maybe?) ✘ ✘ ✘ ✘ ✘

Macromedia Freehand (with “snap-to-grid”) ✔ ✔ ✘ ✔ ✔

The differential calculus ✔ ✔ ✔ ✘ ✘

Figure 2 — Different kinds of digital system


