
Towards a Mathematical Theory of Effectiveness

I. Preliminaries

A. Review
1. This is our final day analysing the second con-

strual (the theory of effective computability)!
2. As we said Tuesday, the basic picture we’re

working with is given in figure 1, but a better
depiction is given in figure 2, reflecting the
double aspect of the change we are recom-
mending:
a. The relation between “marks” (and other

effective structures) and numbers (and
other mathematical entities) has been
turned around, implying that the mathe-
matical entities represent (model) the
marks, rather than the marks represent-
ing (encoding or denoting) the mathe-
matical entities; and

b. The inverted relation is taken to be a relation between the theory and the subject mat-
ter, rather than being subject-matter-internal.

B. Plan
1. So far, we’ve argued that effective-

ness should be understood neither
semantically nor abstractly, but con-
cretely—i.e., as a physical notion

2. What we haven’t done is to see
what would be involved in taking

effectiveness as physical

3. That is: we have recommended a
reconstruction of the theory of
computability (including recom-
mending that it be renamed as a
theory of effectiveness or a theory
of causality, since by our lights it
does not count as a theory of com-
puting), but we haven’t indicated

CSci • B607 Week #11 (b) Mar 29, 2001

Copyright: © 2001 Brian Cantwell Smith Last edited Thursday, March 29, 2001

prprocess orocess or
behabehaviourviour

α
process or
behaviour

α'
model

program

β

programming
language
semantics

process
semantics

(current) concerns of
computer science

(current)
concerns of
philosophy

Figure 1 — Program and process semantics

prprocess orocess or
behabehaviourviourα

process or
behaviour

α' model

program

β

programming
language

semantics process
semantics

θe—that is, a theory
of effectiveness

θs—that is, a (non-effective)
theory of representation

or interpretation

Figure 2 — Theory, program, and subject matter

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 12

what a positive
reconstruction
would look like.

4. Today we’ll indi-
cate what would
be involved in
doing that.

5. We’ll proceed in
two steps or
“transforma-
tions” (in terms of figure 3b):
a. First transformation: strengthen the (vertical) connection between “effectiveness”

and physicality
b. Second transformation: loosen the alleged (horizontal) connection between “effec-

tiveness” and semantics or intentionality (since it doesn’t really deal with it).
6. Note: this transformation will make EC—reconstructed as a theory of effectiveness—more

like a positive reading of FSM (figure 3a)!
7. In doing this, we make sense of the move we made earlier,1 in moving the “positive” reading

of “formal” (in the first construal) to the EC reconstruction was right! (figure 4).
C. Notes

1. Today, we can only gesture towards the kinds of work that would be involved in each of the
two transformations. As we will see, it would take an enormous amount of work to do
them properly.

2. Also, in line with this week being one of summary and distillation, we will be repeating—but
gathering together—a number of remarks that have been made in passing, over the past
several weeks.

II. First transformation

A. Introduction
1. The goal of the first transformation is to

show what it would be to take the subject
matter (of the reconstructed EC theory) to
be concrete, rather than abstract.

2. I.e., just as we denied formality in the recon-
structive phase of the first critique, so too
here we will explore the consequences of
denying formality in the reconstruction of
the second construal.

B. Preliminary arguments
1. As a way of loosening the territory up, one

would want to

1See the discussion associated with figure 1 on page 4·2 of lecture notes 4a (Jan 30).

(a) FSM

)
≈ reductionist (at least

about ½ the story)

effective

physical

semantic(

(b) EC

≈ dualist (or anyway not
evidently naturalistic)

effective

physical

semantic

()

Figure 3 — Conceptual Structure of the Two Construals

Primary (constitutive) ✔

1. Formal symbol manipulation

2. Effective computability
3. Rule following
4. Digital state machines
5. Information processing
6. Physical symbol systems

a. Positive
b. Negative

✘

i. Conceptual
ii. Ontological

Figure 4 — Positive reading of ‘formality’
 (in the first construal)

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 13

a. Review arguments that have been advanced for taking computation or computability
(i.e., the subject matter of the theory at hand) to be abstract.

b. Suggest informal reasons why it may not be abstract
2. Con-abstraction: arguments about multiple realisability.

a. Based on a confusion on two readings of ‘abstract’
i. Treating things at (different) levels of abstraction
ii. Treating something independent of any material facts of embodiment at all

b. There is no doubt that we want to do (i). But that doesn’t imply (ii).
i. Yes, we can implement an adder out of silicon, Lincoln logs, or by storing the bits in

standing resonance waves in elongated Coke bottles
ii. But one can also build hospitals out of wood, concrete, adobe, and probably Coke

bottles as well.
c. As we have said several times, by now, that doesn’t make hospitals—or computers—

abstract (in a Platonic sense)
d. That is: we should recognise that:

◆ Although any given physical system can be analysed at (many) different levels of
abstraction, to analyse a system at a (higher) level of abstraction doesn’t require
or entail taking it to be an abstract object.

3. Pro-concreteness: Argument that our notion of effectiveness is tied to physical realisability
a. In a way, our entire argument about the machine ★, and the inexorable importance of

marks, is a “pro-concreteness” argument. But one can argue to that effect from other
directions, as well.2

b. Suppose, for example (contrary to all expectation), that we were discover a microphysi-
cal particle that solved the travelling salesman problem in unit time.

c. Whenever this particle—call it a travelon—is within a certain critical distance of a
group of n other particles, it accelerates in such a way that the first n derivatives of its
position, with respect to time, in order, taken as vectors, point towards those particles
in the order of the shortest trip that visited them all.3

d. Assume that problems of measurement and set-up are sufficiently tractable that devices
exploiting the travelon’s behaviour can be marketed at modest cost.

e. If such a particle were discovered, would we want the theory of effective computation
to continue to claim that theoretically optimal solutions of travelling salesman problems
require exponential time?

2The point of ★ was not so much simply to argue for the concreteness of computing, as to show that what mat-
ters about computing lies in the realm of the marks, not in the realm of what the marks denote.
3By assuming that the magnitudes of the travelon’s generalised acceleration vectors, which are not needed for the
“solution,” tend towards zero whenever the neighbouring particles’ respective positions approach a configuration
where the shortest path visiting them all change discontinuously, it is even possible to preserve various forms of
continuity.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 14

f. Surely not. That is: for anything remotely resembling current computer science, the an-
swer is no. On the contrary, conferences would spring up to thrash out the new accounts
of what could now be done in what space-time envelopes.

g. If this is true, computability must not be abstract
C. Project

1. Basic point would be to take computation to be a concrete, occurrent phenomenon
2. One strategy for doing this (we mentioned this in an earlier class) would be to recognise

that when one talks of computations as being abstract, one would recognise that one was
talking about the abstract type of a concrete phenomenon..
a. But since all types are abstract (in that sense), it would be better described in the way

we have described it before: as a concrete type.
b. This would open the way for direct ties between recursion-theoretic tradition and the

foundations of computing and physics.
3. Requirements on such a theory

a. Reconceiving computation in terms of concrete types shouldn’t leave one’s understand-
ing intact. Rather, it should be the first enabling step in a move to open up a whole spate
of other questions, which could then be addressed (and answered).

b. For example, it should allow one to explain why impossible (“non-computable”) be-
haviours are impossible, rather than just stating that they are impossible—perhaps by
showing that they violate conservation laws, or require an infinite amount of energy to
accomplish in finite time, or contradict the laws of quantum mechanics.

c. Or perhaps do not contradict the laws of quantum mechanics.
d. Instead, show that Turing-computability is not only computationally classical, but classical

in its physics as well—raising the possibility that “quantum computers” could outstrip
the traditionally-conceived limits.

e. Or perhaps (see part IV) show that the limits stem from digitality: that a continuous no-
tion of effectiveness can be defined to handle turbulence, basins of attraction, and other
features of non-linear dynamics that outstrips the current computability limits.4

4. General characteristics
a. Get rid of strange predicates (like Searle’s “wall” processor, “grue,” etc.)
b. Make way for temporal properties (real-time, rhythm, etc.) to be taken seriously:

i. Examples:
α. Pure temporal properties: moments, durations, intervals;
β. Units: minutes, seconds, nanoseconds
χ. Relational predicates: before, during, after, simultaneously
δ. Rhythms: cycles, oscillations, ringing, quiescence
ε. Complex measures: operations per second, megaflops
φ. And so on and so forth.

4This is of course already being done. But note that it is described using traditional language (e.g., that a continuous
or turbulent computer can “compute more or different functions”). On second transformation (below) this lan-
guage will have to change.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 15

ii. Such notions should be part of a physicalised theory
iii. I.e., we would want to develop a proper temporal theory of process
iv. Cf. real-time languages
v. Also: deal explicitly with performance
vi. Would “doing the same thing” be maintainable across such a change?

c. 3-D packing: part of the theory of parallel systems
d. Explain various intellectual ties:

i. Between information and quantum mechanics (Landauer, Dallas conferences, “phys-
ics and computation” communities, ties between information loss and heat, etc.)

ii. With dynamical systems, SFI, etc.
e. Take software to be concrete

5. In a way, all these steps, which I am characterising here as the “simplest” consequences of
reconceiving of computing as concrete, are starting to happen. But they are just the tip of
the iceberg.

D. Universality (example of adopting this “concrete” viewpoint)
1. For tougher consequences, consider the fundamental notion of (computational) universality.
2. I.e., Consider what happens when one proves that a universal machine U can “do the same

thing” as some other machine M. Such equivalences are shown in the usual way: one writes
a program pM to implement M in U, so that, given some input α on which M would output
β, the pair {pM, α}, if submitted to U, would—though probably a long time later—yield β.

3. Question: what’s equivalent to M? Classically: U. But what makes that a reasonable answer?
4. If U is taken to be the controller, then the claim is false (even on coarse-grained non-

temporal metrics).
5. Rather, what is equivalent to M—the only thing that can reasonably be considered to mani-

fest M-like behaviour—is the combination of controller U and program pM.
6. So why do we say that U is “as powerful as M”? Because of classical distinction between

hardware and software (or state of memory).
7. What is really going on is this:

a. Given program pm, understood by prior agreement to be a configured arrangement of
the physical world; and controller U, also understood to be a configured arrangement of
the physical world; and

b. And recognising that
i. Program pm is not the slightest bit general or “universal-like”, but on the contrary is

very specifically targeted at M;
ii. The complexity profile of the combined system will in all likelihood be on the order

of 99% pm, 1% U; and
iii. The governing metric of equivalence is very abstract—setting aside, among other

things, all real-time temporal conditions on M’s behaviour
c. Then two conclusions emerge:

i. It is odd to attribute the universality to what is by far the smaller part of the combination.
ii. It is not the same machine that “compute the same function,” after all; it is a larger

machine—potentially much larger.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 16

iii. It no longer seems to be so impressive that one can construct such a configuration,
given that there are virtually no constraints on pM.

d. In fact the overall result seems to lessen to the following:

◆ Universality (I): Certain arrangements of the physical world α (universal con-
trollers) have the property that, when conjoined in appropriate ways with arbi-
trarily large, complex other configurations of the physical world β, yield systems
which can simulate the behaviour of any configuration of the physical world γ,
with respect to an arbitrarily abstract isomorphism between the inputs and out-
puts of one (γ) and the inputs and outputs of the other (α+β), so long as one ig-
nores the temporal dimension of both machines.

e. Admittedly, normally this difference: only α is a source of energy or anima; the program
(β) is taken to be static or at least passive.

f. I.e., the universal machine is the motor.
g. Leads to another restatement:

◆ Universality (II): Given (a) an erector set (or equivalent stock of composition-
ally-assemblable parts, and (b) a motor, it is possible to build a device—of po-
tentially Rube-Goldberg complexity (no matter)—whose surface behaviour is
isomorphic to that of any other device you can build, so long as one ignores the
fact that the simulating device is liable to run arbitrarily slowly.

8. Somehow this doesn’t seem so surprising anymore. Is that all there is to it?
9. Question

a. Is there anything that these caricatures are missing?
b. If so, what is it?
c. If not, shouldn’t we start describing the universality results in this way?
d. If so, then does it mean all the hoopla over the ‘universal computing’ results last cen-

tury was distraction—merely a symptom of the state of conceptual confusion?

III. Second transformation

A. Status
1. This last discussion of universality has already started on the second transformation: ridding

the vocabulary of the theory (of effectiveness) of intentional vocabulary.
2. Remainder of today: a glimpse of the sorts of reformulation that would be implied
3. Some relatively straightforward:

a. Cf. Kolmogorov information: rename ⇒ something like order or orderliness
b. Cf. decidability of logic: can no longer call a problem “decidable,” since system isn’t de-

ciding anything (decision is semantic, interpreted notion). Instead: canonicalise?
4. Look at four somewhat more complicated examples
5. Admit at the outset:

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 17

a. I really don’t know the answers to these questions
b. So everything from here on (rest of Part III) has the status of wonder and speculation.

B. Halting problem
1. Would have to be reformulated, again without semantic vocabulary
2. Cf. discussions of why certain problems are unsolvable, normally phrased in terms of self-

reference (self-representation), etc. This is not a diagnosis we can say, anymore; since refer-
ence and representation are verboten. Replace with something like “structural similarity”?

3. Possible suggestion (merest hint):
a. Maybe what is going on is that any device of finite size can be “swamped” by an input

whose complexity drowns its own—so that it can no longer keep track of what is hap-
pening. If this is so, then what must matter, in the proof of the unsolvability of the
problem, has something to do with the similarity of the effective structure of the input and
the effective structure of the device’s internal states. Or if not similarity, then vulnerability of
the device’s internal states to a particular form of input.

b. For example, imagine the following game.
i. One person is supposed to come up with a machine, H, such that, given a pair of in-

puts, { m , n }, H should halt just in case the machine “effectively isomorphic” to m
would halt if given n as input.

ii. Your job, given a candidate H, is to “fool” it, by coming up with two pairs of inputs,
{ m 1 , n 1 } and { m 2 , n 2 }, such that the machine that is “effectively isomorphic”5 to m 1
halts on n 1 , and the machine that is isomorphic to m 2 does not halt on n 2 , but such
that H cannot tell the difference (i.e., H will either halt on both, or fail to halt on
both, thereby failing to meet its initial mandate).

c. Note that on these formulations—both of the machine H, and of the pair of inputs that
“fool” it—there is no worry about representation or semantic interpretation.

d. Rather, your strategy would be to devise inputs { m 1 , n 1 } and { m 2 , n 2 } that would “break”
H, in the sense of driving it to overwrite its memory, or forget where it was coming
from, or otherwise confuse it, so that it cannot maintain the differences between them.

e. I.e., you would arrange to have the effective path that H follows, when { m 1 , n 1 } is the in-
put, merge with the effective path it follows when { m 2 , n 2 } is the input. Once they
merged, H would never be able to pull them apart again.

f. Doing this would have to do with the relationship between the effective structure of the
inputs and the effective or causal pathways inside H. Interpretation would be irrelevant.

g. The structure of a successful strategy would be interesting. Would it rely on sheer
complexity, for example, as implied by the metaphor of “drowning”? Or is a more spe-
cific style of self-similarity necessary to defeat any candidate? Suppose you had an archi-
tectural diagram of the effective structure e of a device, and wanted to generate two
sets of inputs { m 1 , n 1 } and { m 2 , n 2 } that would defeat it. Can anything interesting be said
about the function ƒ from e to {{ m 1 , n 1 }, { m 2 , n 2 }}? These are the sorts of question to
which the proposed reconception should be held accountable.

C. Computing functions

5Rather than “denoted or modeled by”!

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 18

1. What would we say about a machine to, say, do multiplication (call it M*).
2. Setup

a. If we take the traditional relation between marks and numbers as one of reverse classifi-
cation, all that is being said about M*, when we describe it as multiplying numbers, is that
it moves from an effective input configuration classifiable with a pair of numbers onto an
effective output configuration classifiable by their product.

b. Nothing has been claimed about whether these configurations are semantically inter-
pretable (though of course nothing precludes their being semantically interpretable).6

c. Take ‘numeral’ to designate whatever representations meet the conditions we are after—so
that we can say that a system multiplies two numbers m and n, if, given as input numer-
als m and n representing m and n, respectively, it produces as output numeral a repre-
senting their product m · n.

d. This is terminologically compact, but so far represents no progress; the question has
simply been deflected on one of what counts as a numeral.

3. What distinguishes the “appropriate” choice of notations?
4. Some candidates (what distinguishes these choices?)

a. Traditional notations: using familiar positional notations (binary, decimal, etc.), so that to
multiply fourteen by fifteen is to take in ‘14’ and ‘15’ and produce ‘210’, or to take in
‘1110’ and ‘1111’ and produce ‘11010010’.

b. Two notations that are outside the normal scheme.7

i. The base-π notation discussed earlier (so that 3 + 1 = 10.220122…, π2 = 100, etc.)8

ii. A notation system that represents numbers by an ascending series of their prime
factors, where those factors are in turn represented in unary. Thus fourteen and fif-
teen would be represented by ‘11·1111111’ and ‘111·11111’, respectively; their prod-
uct, by ‘11·111·11111·1111111’.

c. Roman numerals. They share with the second scheme the property that larger numbers
are sometimes represented by shorter codes

d. The simplest scheme of all: unary.

6As usual, just because (the new version of) the story does not describe M* as multiplying, that does not imply
that M* is not in fact multiplying.
7The complexity profiles of standard operations on these last two coding schemes would be non-standard. E.g., on
the first scheme the circumference of a circle of diameter d could be “calculated” with complete accuracy simply
by shifting d left one place, whereas integer addition could take an indefinite amount of time, depending on the
accuracy demanded, and in general could never be performed perfectly. On the second scheme, similarly, prime
factorisation, which on standard schemes is so difficult as to be used as the foundation for all modern encryption
schemes, would be trivial; multiplication would be almost as easy (linear in the length of the codes); but addition
would again be excruciating slow.
8Four digits would suffice—‘0’, ‘1’, ‘2’, and ‘3’, though numerals would not be unique (10 = 3.01102111…). On the
other hand numerals are not unique in decimal notation either; every finite numeral denotes the same number as
the infinite number of other numerals that are alike except with one or more preceding 0s—as well as the (single)
infinite numeral that is identical to the original except that its last non-zero digit d is replaced by d-1 followed by an
infinite string of 9s.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 19

5. Some intuitions:
a. The prime factorisation scheme somehow seems furthest from counting as a numeral, at

least in the ways in which we ordinarily deal with numbers.
b. The problems with integer addition in the π-based and prime factorisation schemes

seems severe—a fact that should count heavily against them.
c. It nonetheless seems that the π-based scheme, though not in general very useful, might

be an appropriate representational system for dealing with geometry, especially with the
area of circles. (I.e., though it is a little hard to imagine, it seems plausible that in an es-
pecially curvaceous universe, among a race of creatures who did not count much, but
for whom areas of circles and volumes of spheres were an important currency of inter-
action—and thus of intuitive mathematical practice—the π-based system might serve
well, perhaps even better than our normal one.)

d. Unary seems crucial. It is not a trivial fact that unary almost invariably serves as the
ground floor case of arithmetic representation: not only for Turing machines, but also
for Peano arithmetic and λ-calculus numerals (both of the latter, in the standard no-
tations, use n instances of a syntactic structure to represent the number n).

6. What is the moral? A suggestion:
a. To count as a numeral, a representation should enable simple effective access to an exem-

plification of the represented cardinality.
b. This ties straight back to lessons learned from counting, in the first critique. It also ex-

plains why unary numerals are central: because they exemplify the cardinality they repre-
sent (for unary it is a short effective route from numeral to number). Finally, though we
neither use unary numerals in practice, nor go on using them in theory for very long,
because the relation between number and numeral is too close for practicality, we do
not let the relation stray very far, either.

c. Presumably the procedure for moving from n entities to the numeral n must be ap-
proximately linear; that for moving from n to n·m require no more than approximately
m steps (including the specific case of 1 step when m is 1), etc.9

d. Note two (non-incidental) facts
i. This would be an operation of the sort that in the first critique we identified as

crossing a semantic boundary.
ii. The proposal makes sense of an intuition that surfaced, quite a while ago, when we

were trying to tie down the halting problem: namely, that the relation between
marks and their referents itself be effective.10

9I say “approximately” because of the obvious fact that adding 1 to 999,999 takes 7 steps, not 1, but I believe that
the underlying idea about effective participatory access is still sound. «reference analogous problems with CD play-
ers?»
10At that point we claimed that this intuition was incoherent; have we changed our mind? No, for two reasons.
First, we were then looking for a notion of effectiveness, and claimed that it could not be defined, within the
framework of Turing machine calculation, with reference to the mark–number relation. By now we are no longer
asking for a definition of effectiveness; that has been deferred to the underlying physics. Second, it remains true
that the relation between marks and numbers in the Turing-theoretic conception is an inverse one of methodo-

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 20

D. Complexity
1. What are we to make of complexity theory?
2. It is about the complexity of transforming one effective configuration of the world into another.

a. I.e., given a device effectively arranged in one way, how many steps or adjustments in
structure will it have to go through in order to end up in some other configuration?

b. In and of itself, the answer to this has nothing to say about (nor is it vulnerable to what
anyone else might say about) how or even whether that structure is interpreted.

E. Compositionality
1. It is often pointed out that one of the most characteristic features of semantical accounts is

their compositionality: the fact that the “semantic value” of a complex structure is a function
of the “semantic value” of its parts.

2. How much of that intuition is genuinely semantical?
3. The new theory of effectiveness or mechanism should apply as readily to motors and Mec-

cano as it does to programs and Pascal. Do they have compositional structure?
4. In a way, yes. It is a commonplace of engineering, after all, that the behaviour of a complex

whole (especially of complex artifacts) is a function of the behaviour of its parts, too.
a. E.g., consider a Meccano set, consisting of girders, wheels, plates, axles, pulleys, etc.
b. These can be combined in a variety of ways: a continuous number of ways, given the fas-

tening technology, but no matter.
c. It would presumably be straightforward to define a mathematical model for each piece

type, and mathematical operators corresponding to ways of fastening them together, so
that the structure of behaviour of a complex artefact made out of the pieces was
mathematically derivable.11

d. I.e., a denotational semantics for Meccano.
5. Cf. MEMS: this is a positive result, since microminiaturisation is quickly making silicon wafers

into as hospitable environments for motors as for logic gates.

IV. Conclusion

A. Carrying out these two transformations would be an enormous amount of work
B. I believe, though, that what we have already seen suggests that the work would be worthwhile
C. Two primary benefits: the positive reconstruction should:

1. Lead to a deeper understanding of things that are genuinely physical / material
2. Open the way for a theory that really deals with the other half of our fundamental dialect:

semantics. (◆)
—— end of file ——ðð

logical classification. The isomorphism between that situation and the one described here explains why that situa-
tion is so often (though incorrectly) viewed as description of multiplication. Isomorphism is not identity (as usual it
is context-dependence that tears the two apart).
11It is especially easy to imagine for statics: the model of each piece might simply be the volume of 3-space it oc-
cupied, plus perhaps some indication of its structural strength. But with a little imagination the same could be done
for dynamics, so that the extensional behaviour of a pressure gauge could be derived an analysis of the (exten-
sional) behaviour of each of its pieces, given an account of how they were assembled.

