
Effective Computability — Summary

I. Introduction

A. Preliminaries
1. This is the final week of Part III, on the effective computability construal.
2. Next week we will start on Part IV, and look at the notion of digitality.
3. This week

a. We can’t really complete a full reconstructive analysis of the EC construal: that would
take months (or perhaps years, in order to complete a great deal of further research).

b. Instead, we will (i) summarize what we’ve seen so far, and (ii) tie up some loose ends.
B. Review

1. In a sense, we can summarise what we have discovered, in analysing this construal, in terms
of three main results.

2. Ultimately, our target, in looking at this second construal, has been the notion of (pure) ef-

fectiveness. But we couldn’t start there, since we didn’t know that that was “what the
construal was ultimately about.” So instead (with some malice aforethought), we looked at
the (surprisingly unanalysed) notion of a reasonable encoding.

3. After some tortuous analysis of the halting problem, we ended up reconstructing the notion
of a reasonable encoding in two ways (together, these constitute the first major result):
a. We turned it “upside down”: claiming that the numbers represented the marks (instead

of what is normally assumed: that the marks represent the numbers).
b. We moved it “up”:

i. From being an (object-level) relationship located within the primary subject matter
ii. To being a (meta-level) relationship between the theory and the subject matter, es-

tablished for purposes of theoretical modeling.
4. This first result—the analysis and reconstruction of the notion of encoding—is extremely

important, on its own. But in terms of our overall project, it is only a partial result. What it
allowed us to do—i.e., what we were able to achieve, once we had cleared up those issues
—was to tease apart the two words (’effective’ & ‘computing) that constitute the EC label.

5. In particular, we discovered that the “theory of effective computation” or “theory of effec-
tive computability” is not a theory of computation at all, but instead a mathematical theory

of effectiveness, pure and simple. This is the second major result.
6. The third result had to do with the nature of effectiveness, that that theory is a theory of.
7. In particular, what we saw was that, contrary to the way in which the theory is framed, the

notion of effectiveness is:
a. Not abstract—in the sense in which one might think it is, given how the theory is often

CSci • B607 Week #11 (a) Mar 27, 2001

Copyright: © 2001 Brian Cantwell Smith Last edited Tuesday, March 27, 2001

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 2

expressed purely mathematically;
b. Not semantic—as you would be led to believe, if you think about it having to do with

represented functions, arguments, and values (FAVs)
c. But instead genuinely concrete.

8. That is, it has to do with the concrete, physical constraints that govern the rearrangements of
physical configurations of concrete, physical systems and machines.

C. Summary
1. In sum, is effectiveness:

a. Abstract? No (✘)
b. Semantic? No (✘)
c. Concrete? Yes (✔)

2. When all these results are put together, they lead to what we are taking as the summary of
this whole part of the course.

3. The so-called “theory of computation” = a mathematical theory of causality.
D. Plan

1. Today, I want to touch on three topics, in terms of this overall picture
a. Programs: we started to look at programs last week; I want to say a few more things

about this (admittedly messy) topic, to try to bring it to some kind of closure.
b. Effectiveness & physicality: some remarks on what it is to take effectiveness to be a

physical notion;
c. Formality: how our analysis, in this third part of the course, touches on the general

them of formality, which we focused on with such concentration in Part II (in the first
critique)

2. Thursday, we will conclude the EC analysis by looking forward at work yet to be done: what
it would (or will) be actually to pull off the reconstruction being suggested here: of recasting
the theory of effective computability as a (mathematical) theory of physical (causal) efficacy.

II. Programs

A. Intro
1. The first loose end we need to look at is at

the notion of a program.
2. What we saw, last week, is that programs

are extremely complex entities, which fit in
very complex ways into the overall (emerg-
ing) picture.

3. That complexity, I believe, is intrinsic to
them; it doesn’t reflect a simple failure on
our part to analyse them properly.

B. Structure
1. The simplest picture of programs we used

last week is given in Figure 1.
2. Two relationships are of special interest

prprocess orocess or
behabehaviourviour

α
process or
behaviour

α'
model

program

β

programming
language
semantics

process
semantics

(current) concerns of
computer science

(current)
concerns of
philosophy

Figure 1 — Program and process semantics

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 3

a. α—program to process (behaviour)
b. β—process (behaviour) to task domain

3. The two are subject to almost diametrically opposed conditions:
a. The program–process relation α, from program to process or behaviour (or α’, the ver-

sion that maps programs onto mathematical models of processes or behaviours) must be
effective.
i. That’s why we’ve indicated it horizontally, with a single-tailed arrow (‘→‘)

b. The process-world relation β, according to what we extracted from the first (FSM) cri-
tique, is at least sometimes, and perhaps always, non-effective.
i. That’s why we’ve indicated it vertically, with a double-tailed arrow (‘⇒ ‘)

4. Ironically, however—in spite of these differences—both relations are called “semantic” in their
respective traditions. Because of this, I sometimes call them:
a. Program semantics—for the program–process relation α; and
b. Process semantics—for the process–world relation β.

5. However, as we also said last time, figure 1 is misleading, in that it doesn’t indicate the rela-
tionship between the phenomenon of program–process relations and the theory of those
program–process relations (of the sort that we have claimed that the theory of effective
computability is a theory of).

6. So a better depiction is
given in figure 2.
a. θe is a theory of effec-

tiveness: that is, a
theory of the way in
which a program en-
genders behaviour.

b. θs is a theory of se-
mantics: that is, a
theory of how the
process (behaviour)
that the program
engenders relates to
its target subject
matter/task domain.

7. What is tricky is to keep
the θe–α relation and
the program–process relation itself (α) distinct, in spite of the fact that they bear certain sa-
lient similarities (i.e., things true in both cases):
a. Both need to be “informationally complete” in some appropriate sense
b. Remember that the “target” of the program-process relation α is the effective behavior—

not the interpretation!—of the (desired or represented) machine or behavior.
C. Discussion

1. This analysis (i.e., the picture given in figure 2) explains something was indicated, at the be-
ginning of the course, to need explanation: why the word ‘semantics’ is used in computer

prprocess orocess or
behabehaviourviourα

process or
behaviour

α' model

program

β

programming
language

semantics
process

semantics

θe—that is, a theory
of effectiveness

θs—that is, a (non-effective)
theory of representation
or interpretation

Figure 2 — Theory, program, and subject matter

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 4

science to designate something that, to a mathematical logician, looks more like proof theory
or inference than like model theory or semantics.
a. E.g., if you ask a Lisp programmer for the semantics of the ‘(QUOTE …)’ construct, they

are likely to reply that “the QUOTE is stripped off and the CADR returned.” (which to an
outsider seems like a bizarre characterisation of quotation).

b. This is because of “semantic ascent” implicit in notion of a program: when viewed se-
mantically, a program is at one level of semantic remove from process it engenders.

c. On the other hand, there is a fundamental contradiction in Lisp-like languages that are
imagined to return program-like structures (such as s-expressions). Cf. the semantical
reconstruction in 2-lisp.

2. Similarly, can explain things about (the practice of) programming language semantics:
a. Remember: we (as a scientific community) have no uniform, ontologically secure way of

describing processes or behavior.
b. So we model processes or behavior in terms of other things—functions computed, mes-

sages passed, transaction files, etc.
c. This is what generates the difference between denotational and operational semantics:

they both analyse the same (program–process) relation, but use different models (classi-
fications) of the thereby engendered behaviors or processes.

d. Explains why operational and denotational account are considered proved equivalent.
e. One wouldn’t normally have such an equivalence if one were talking about reasoning

(representation) and reference or description.
3. Similarly, this analysis explains the use of constructive mathematics (and intuitionistic type

theories):
a. Those are constraints from the effective role showing up on the semantic side.
b. NB: such effectiveness constraints will not apply to semantic relations in general (such as

the process-world relations we called “process semantics”)
4. Similarly, the analysis also explains the popularity of Girard’s linear logic:

a. That is, it explains why linear logic
i. Licenses

α. P ∧ (Q ∨ ¬Q) ⇒ P ✔

ii. But does not license
α. P ⇒ P ∧ P ✘

iii. But (on the other hand) does license:
α. % P ⇒ P ∧ P ✔

iv. Except that a cost is associated with the duplication (copying).
b. From a (genuinely) semantical point of view this behaviour is all unimaginably strange!
c. But—to make a contentious claim we’ll come back to—it all makes sense, ultimately,

once one realizes that linear logic is a theory of mechanism, not a theory of meaning.

III. Process semantics

A. Intro
1. There are many questions that the foregoing picture doesn’t answer

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 5

2. For example, it doesn’t address the issue of whether the “program semantics” relation α is
subject to semantic constraints as well as to effectiveness constraints, as identified here.

3. We will not pursue that question here, at least in that bald form. It would be addressed if
we were to turn to the third construal: on “rule-following” (RF).

B. Process semantics
1. There is another important question, which would need to be addressed, if we had time to

probe deeper into the nature of programs.
2. In particular, what can we say about what we called “process semantics:” the semantic rela-

tion (β) between processes and their embedding task domains?
a. In general—as I have said many times—it need not be effective.
b. However, the two relations (program–process and process–world) can be conflated un-

der very special circumstances: when the model of the process is isomorphic to the do-
main, or there is a homomorphism from domain to model
i. This most often happens when the computation is itself context-independent

ii. Cf. initial and final models in algebraic semantics (e.g., Goguen and Meseguer)
c. When do such assumptions fail?
d. When the process is context-dependent!
e. Context-dependence implies that the process-world relation is one-to-many, which in

turn implies that a model of process cannot be used as a model of domain.
C. Open questions1

1. How should we go about studying process semantics (process–world relation)?
a. This is a huge topic, which we don’t have time to address here
b. Among other things, it will involve expanding our (i.e., computer science’s2) conception

of semantics to deal with:
i. Partial information
ii. Error and misrepresentation
iii. Non-effective relations
iv. Perception and recognition
v. I.e., general semantics

c. One question this raises: will anything specifically computational be left?
2. What about semantics of particular programs, as opposed to semantics of languages?

a. This is how programmers always use identifiers, in their programs (i.e., “move elevator
to third floor,” “remove employee’s building authorization,” etc.

b. Cf. Mike Dixon’s “Amala” project
c. “Open” semantics: user specifies interpretations of inputs, outputs, and identifiers
d. Changes things: cf. factorial being a claim, not a definition
e. Have to move from correctness (of implementation) ⇒ soundness

3. Etc. A million other issues

1Note: the notes in this section are very telegraphic. I may spend time in class spelling out what is intended, here.
2In philosophy, logic, natural language, semantics, etc., the ultimate need for semantics to address these sorts of
issue is well recognised.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 6

IV. Effectiveness and physicality

A. Status
1. Rather than focus more on programs, let’s turn back to the notion of effectiveness.
2. As we said at the outset, we will spend some time, on Thursday, looking at what it would

take, given the results we have come to, to redo or convert the theory of effective comput-
ability into a general mathematical theory of effectiveness.

3. We can start
on that pro-
ject today by
saying a few
words about
why doing
this would be
a good idea
a. Because

effectiveness is a fundamental metaphysical category
b. Because it cuts deepest of all (twelve) “potency” properties identified in first critique
c. Because it brings us closer to an integrated theory of nature (by showing how to tie

computer science to physics, without foundering on the shoals of ‘causation’)
d. Because (it turns out) it stands the test of time as a reconstruction of one leg of inten-

tionality’s essential dialectic.
4. In sum: releasing recursion theory and the theory of computability from the demands of

dealing with intentionality—i.e., from the demands of being a theory of computing—is a lib-
erating result. It will make it much easier, when the time comes, to incorporate the insights
of this tradition into a full comprehensive theory of computation.

5. Allows it to be something that intellectual history has been wanting: a general theory of

mechanism.
a. Cf. the original characterisation of EC: “what can be done by a mere machine”

B. Physicality and semantics
1. To understand what “effectiveness” would come to, on such a reconstruction, consider it in

relation to two classically familiar realms
a. Physical: concrete, occurrent, material stuff
b. Semantics: the realm of meaning, reference, truth, etc.

2. The way we have understood EC is indicated in part (a) of figure 3
3. To reduce 50 years of history to a sentence: recursion and computability theory take effec-

tiveness to be strongly related to semantics, but relatively isolated from physics.
a. As we said at the beginning of Part III of the course, the (relative) independence from

physics is thought to be one of the great achievements of the 20th century: success in
“lifting” the account of computability away from the details of physical realization

b. Connection with semantics: this is necessary, remember, in order to say of it that it is a
theory of computing
i. Cf. “computing a function,” “deciding a problem,” etc.

physical

semanticeffective

)((a) As traditionally
understood physical

semanticeffective)(
(b) Reconstructed

as a theory of
effectiveness

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 7

ii. These are all interpreted notions.
4. The way I am recommending reinterpreting things is as indicated in part (b) of the figure 3.

a. Strengthen the connection with physicality
b. Weaken the connection with semantics

5. I.e., I want to make the following claim:

◆ The self-positioning of the theory of effective computability (second construal)
is wrong on two counts. The issue it actually “theorises” (i.e., provides us with a
theoretical understanding of) is:

(i) More physical than it admits, but
(ii) Less semantical than it claims.

V. Formality

A. Introduction
1. This raises a question about formality

2. Background
a. I said at the beginning that I wanted to use “formality” as a general methodological tool,

with which to get underneath all the various construals.
b. In the first critique, we saw a particular reading of formality: the claim that computation

was independent of semantics. But that reading was ultimately shown to be false.
c. That is: FSM claimed to be independent of semantics, but wasn’t.
d. On the other hand, whereas that claim was negative, FSM also made a positive claim—

one of its prime motivations. In particular (in Haugeland’s phrase) it was claimed that it
made the world safe for semantics.

e. How so? Because of its efforts to provide a naturalistic grounding for the notion of “syn-
tax” or “shape” or “form.”

f. That is: in its positive formulation, the FSM construal put a direct focus on the effective:
on “shape”, syntax, etc.—what in general we called “potency”

g. Didn’t have a theory of such properties (that’s why we directed it to this 2nd account)
h. Nevertheless, potent properties (syntax, grammar, shape, etc.) are widely recognized to

be physical properties. Everyone in philosophy takes “syntactic” properties to be a
(proper) subset of the physical properties.

3. In sum: FSM

a. Distances itself from semantics

i. This was its formality claim
b. But it aligns itself with physical embodiment (at least with respect to syntax)

4. But now look at the second construal (EC). It:
a. Aligns itself with semantics, in the sense of claiming to be a theory of computing (cf. its

adjacency to logic, deduction, etc.)
b. But distances itself from embodiment

i. This is its formality claim!

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 8

5. I.e., there is an ironically symmetrical situation: with two independence claims:

Construal Independence claim Reading of formality

1 Formal symbol manipulation (FSM) Independent of semantics Syntactic (antisemantical)

2 Recursion-theoretic theory of ef-
fective computability (EC)

Independent of embodiment Abstract

a. Corresponding claims
i. FSM: get semantics out of the way, and everything will be fine (take care of itself)
ii. EC: get em-

bodiment out
of the way; &
everything
will similarly
be fine

b. Corresponding
metaphysical bi-
ases:3

i. FSM: while
setting semantics aside (though recognizing it to be present), it pushed towards a
reductionist account of how things work

ii. EC: contrapuntally, set embodiment aside, doesn’t worry about the ontological
status of numbers, functions, semantics, etc. This is much more dualist (at least not
evidently naturalistic).

c. Corresponding fears kept at bay

3In fact the situation is more complex (and even more ironic) than this (admittedly glib) caricature suggests. For it
turns out that both formulations (FSM and EC) can support both metaphysical commitments at the same time.

a. The physicalist or reductionist can take ‘syntax’ to refer to the physically effective, and ‘semantics’ to refer
to the behavioural (causal) consequences of that physically effective (in the “programming language seman-
tics” sense), and thus adopt the terminological structure of the entire FSM, logical, and recursion-theoretic
tradition in a way that is wholly compatible with their underlying metaphysical biases.

b. By the same token, the abstract dualist—who, it should be said, stakes a better historical claim to the use of
the vocabulary—can employ the very same terminology, taking ‘effectiveness’ to be an abstract (grammatical)
property, and similarly taking ‘semantics’ to refer to something genuinely transcendent of the “merely mate-
rial,” and thereby leave their metaphysical biases intact as well.

So there is a facade of agreement—without any deeper consonance on what is being said.
As it happens, it will be a condition of the form of theory to which I am headed that there will be no room for

such metaphysical variation in interpretation (by different theorists). Part of the job of a theory of computing—or of
general significance, as it will by then be—is to take a stand on such issues. Because computation is inherently in-
tentional, that is, theories of computation cannot be metaphysically neutral. Radical theories cannot be liberal.

(a) FSM

)
≈ reductionist (at least

about ½ the story)

effective

physical

semantic(

(b) EC

≈ dualist (or anyway not
evidently naturalistic)

effective

physical

semantic

()

Figure 4 — Metaphysical biases of the first two construals

 Spring 2001 B607 • Philosophy of Computing • Notes Page 11 • 9

i. FSM: Reductionists, looking at computing through their antisemantical glasses, be-
lieve that the (potentially mysterious) threat of the potentially non-effective seman-
tics has been banished, and thus feel reassured that the formal tradition has cap-
tured what matters to them about physicalism.

ii. EC: Dualists, by the same token, interpreting the same tradition through abstract
glasses, can believe that the distractions of the body have been kept appropriately
out of view, and feel assured, for their part, that the formal tradition captures the
essence of what is right about a metaphysical orientation of disembodiment.

d. These alignments are indicated in figure 4.
6. Critique

a. In both cases, the analysis is much the same: the formality assumption won’t fly.
b. First critique: we showed that its formality claim—the claim that behaviour was inde-

pendent of semantics—was false.
i. Computing is much more interdependent with semantics than FSM admits.

c. Second critique: we have claimed that the independence (of embodiment) claim is false.
i. Computing is much more dependent on physical realization than EC admits.

d. Ultimately, I will argue that this is no coincidence: that the two interpretations of the
two construals are far more similar (in terms of underlying metaphysics) than it looks.
i. Hint: it is not just that their common allegiance (but dual readings) of formality be-

trays what they have in common: formality is what they have in common.
ii. But this is an extraordinarily abstract sense of “formality”
iii. We will get to unpack this more at the end of the fifth construal (on digitality).
iv. Indeed, that is why we will be turning to digitality next. Of all of the construals,

there is a sense in which it cuts the deepest.

—— end of file ——ðð

