
Programs (cont’d)

I. Preliminaries

A. Status
1. We are running out of time. This is the fourth week (8th lecture) on the second construal:

effective computability (EC). So according to the syllabus we should finish this critique today.
2. We need to move on to Part IV of the course—on the fifth construal: digitality. But we

won’t get to it next Tuesday. In fact it is more likely that we won’t start on digitality until
one week late, on Tuesday April 3.

B. Plan
1. Today I want to summarise what we did last time—lift our eyes a bit, to put it into context.

The analysis on Tuesday was very detailed and complicated (and gets even more so, when
one presses on details).

2. Instead of going into detail, I want to:
a. Review (very quickly) what we said about programs
b. Talk (again, quickly) about programming language semantics
c. Sketch what would be involved in developing a (mathematical) theory of the flow of

(physical) effect.
3. Also: summarize where we are on the overall project

II. The Rise of Programs

A. Review: we commented that our overall analysis is trying to make sense of three dialectics
1. Since the beginning, we have been tracking the major or primary dialectic: between

meaning (semantics, mind) and mechanism (effectiveness, body)
2. We have also wrestled with what I called the minor or secondary dialectic (on the

mechanism side): between concrete and abstract characterisations of effectiveness
3. Recently, we’ve encountered another one, which we are calling a fifth dialectic: between

theory and subject matter1

B. Programs
1. Last time, we reviewed the origin of the notion of programming in Turing’s paper—specifi-

cally, in the introduction of the universal machine
2. Specifically saw (historically) how a program p has come to have a dual role:

a. Semantic: it must describe or denote a specific machine, process, or behavior

1We also talked briefly about two others: a fourth, between what is static and what is dynamic; and a fourth, the
ancient Greek issue between the one and the many.

CSci • B607 Week #10 (b) Mar 22, 2001

Copyright: © 2001 Brian Cantwell Smith Last edited Saturday, April 21, 2001

 Spring 2001 B607 • Philosophy of Computing • Notes Page 9 • 8

b. Effective: be a causal precursor of the (represented or desired) machine or behaviour.
That is, it must be an “arrangement of marks”—or other causally efficacious organisa-
tional structure—able to cause or drive an underlying or universal machine to produce
the desired (and denoted) effective behaviour

3. I.e., programs are supposed to bear two relations—one effective, the other semantic—to
the effective aspect of the resulting process. That is:

◆ Programs must be able to cause the behaviors that they (also) specify or denote

4. Hence the characterisation of programs as prescriptions
a. Aside: does that mean that both should be reconstructed under the 3rd RF construal?
b. Perhaps. Leave that for another time.

5. We noted two salient differences between these roles

Nature of relation of program to (de-
sired or engendered) behaviour

Locus or realm of relationship

1) semantic / representational (⇒) realm of the theory / theorist

2) causal / effective (→) realm of subject matter

a. Nature of the program-process relation borne to the (desired) behavior
i. Representational role: a semantic relation (representation, description, etc.)

α. I.e., “vertical” (double-tailed) in our standard picture
ii. Effective role: a causal or effective relation

α. I.e., “horizontal” (single-tailed) in our standard picture
b. Locus or realm

i. Representational: in the realm of the theory
α. I.e., for us, qua theorists and/or observers

ii. Causal/effective: realm of the computational subject matter
α. I.e., within the scope of our theorizing

6. Also saw two salient similarities between roles (i.e., things true in both cases):
a. Needed to be “informationally complete” in some appropriate sense
b. The “target” of the program-process relation (whether semantic or effective) is the ef-

fective behavior—not the interpretation!—of the (desired or represented) machine or
behavior.

7. Put it all together, as we said last time, in a slogan—using the word ‘effective specification’
to imply the combination of semantics, effectiveness, and information completeness:

◆ A program must honour a double effectiveness condition: it must effectively specify
(i.e., in virtue of its effective properties, it must specify) the target machine’s effec-
tive behavior.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 9 • 9

III. Conceptual structure

◆ At this point we diverged
from my prepared notes.
They pick up next time
(lecture 11a). What fol-
lows are some of the dia-
grams that were drawn on
the board during the rest
of this class.

—— end of file ——ðð

prprocess orocess or
behabehaviourviourα

mechanism or
behaviour

α' model

program

These two are
admittedly very

similar, even
though they

are playing
different roles

table of
Turing

machine
states

causal

semantic

realm of
theory

realm of
subject
matter

Figure 1 — Table and Programs

all possible
descriptions

all possible
causes

programs lysurgic
acid

“that behavior
that would win
the Nobel
prize”

Figure 2 — Programs as descriptions + causal

prprocess orocess or
behabehaviourviour

α
process or
behaviour

α'
model

program

β

programming
language
semantics

process
semantics

(current) concerns of
computer science

(current)
concerns of
philosophy

Figure 3 — Two “semantical” projects

