
A Theory of Marks

I. Preliminaries

A. Review
1. Last time, we introduced ★—a machine alleged to solve the halting problem.
2. Except of course that was false: ★ doesn’t really solve the halting problem. It was a cheat.
3. All ★ did was to meet a series of formal characterisations of the halting problem.
4. In each case, we took the fact that ★ met the formal requirements we had laid out to be

evidence that our characterisations were inadequately formulated—prompting us to revise
them. This led to a succession of increasingly strong versions.

B. Effectively discriminable paths
1. The basic intuition we came to was that any machine that genuinely solved the halting prob-

lem should meet 3 conditions:

C1 Different inputs should lead to the same output, if they represent the same
halting behaviour;

C2 Different inputs should lead to different outputs, if they represent different halt-
ing behaviour; and

C3 Counterfactually, any given input      m     i,     n    i should have led to a different output, had
the (metaphysical, ontological, conceptual, whatever) facts about whether Mi

halts on     n    i  j   been different.1

2. The problem was that ★ met this condition already, if one allows “same” and “different” to
be interpreted as “represents 0” and “represents 1,” respectively.

3. That led us to need to adopt effective version of the constraints (figure 1, on the next page):

P3 One must be able to marshal all the inputs that represent situations where ma-
chines halt (i.e., that represent 0) onto one effective path, and similarly to mar-
shal all the inputs that represent situations where machines do not halt (i.e.,
that represent 1) onto a different effective path.

4. That in turn led to a new formulation of the problem:

                                                
1For a discussion of what it is to say that the output of a methamtically-defined machine “might have been differ-
ent” see footnote #4 on page 8·16 of the notes for lecture 8b.
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H4 Given as input marks      m    and     n    , representing the numbers m and n, respectively,
produce as output marks     0     or     1    , representing 0 or 1, respectively, depending
on whether the Turing machine M modeled by the set of quintuples µ coded by
the number m would or would not halt, if given as input the mark     n'    modeled
by the number n, such that (i) all tokens of     0     lead (immediately?) to a single ef-
fective state or path, (ii) all tokens of     1     lead (immediately) to a single effective
state or path, and (iii) all tokens of     0     are (again, immediately) effectively dis-
criminable from all tokens of     1    .

0. This worked: H4 was strong enough to “catch” ★. That is, ★ does not meet H4.
6. In general, the goal of H4 was to force

the solution to meet the condition that
the following all be effectively done:
a. Differentiate all     0    s from all     1    s;
b. Unify all     0    s; and
c. Unify all     1    s.

7. It is this triple demand—when under-
stood that all three criteria must be met
effectively—that seems to be infeasible.

C. Status
1. Are we done? Is H4 okay?
2. No. There are at least two major problems (which we started talking about last week):

a. Circularity: The most glaring problem is that H4 is defined in terms of the very notion of
“effectiveness” we are supposed to be defining. So if H4 is the right constraint (in terms of
which to specify the conditions on a possible answer), then it appears that we are going
to have to define a notion of effectiveness in a way that is explanatorily prior to its use
in defining Turing machines. That (as we will see) is a very substantial demand.

b. Coding: We got into the issue of ★ by using a non-standard encoding, after a long dis-
cussion of the strong, necessary conditions on the interpretation function ρ (from marks
to numbers).2 But the proposed solution ★, captured in constraint H4, doesn’t men-
tion representation or coding at all. So something strange is going on. In particular: we
haven’t yet answered our driving question: of what the constraints on ρ must be, in or-
der to formulate an adequate Turing-machine theoretic conception of computing.

2. We will pursue both of these issues more in a moment.
3. But first we need to note something crucial: the generality of the problem we have uncovered.

B. Generality
1. Nothing in the conditions manifested in H4 is specific to the halting problem. The same issue

would come up with respect to any problem at all, such as multiplication, addition, etc.

                                                
2We argued that ρ must be more restrictive than the effective computability relation φmathematical; in contrast to the
interpretation function for English, necessary to understand the halting problem as the halting problem, which we
saw had (in at least a certain sense) to be less restrictive than φmathematical.
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2. In order to prevent ★-like “cheats, every “problem” to be solved by Turing machines will
need reformulation in H4-like terms (or whatever better version we end up selecting).

3. Multiplication
a. For example, suppose we were to try to define a machine M* to multiply integers— i.e.,

to compute the multiplication function.
b. As in the case of the halting problem, it is insufficient to define M* purely in terms of

FAVs: i.e., given as input numbers m1 and m2, produce as output that number m such
that m = m1 · m2. What is needed is a definition formulated in terms of marks.

c. As before, the naïve suggestion would be to require that M*, given as input representa-
tions (marks)      m        1    and      m        2    of numbers m1 and m2, respectively, produce as output mark
m      such that      m      represents m1 · m2.

 . But this could be solved by a machine as vacuous as ★—in particular, by one that sim-
ply prints out (as its output) “     m        1       ·         m     2”. Obviously, on a very simple interpretation func-
tion ρ,      m        1       ·         m     2 designates the product of m and n.3

e. Instead, therefore, to “force” m1 · m2 actually to be computed, we need either to specify
a specific (constrained) encoding relation ρ—or in general to say something like:

MULT Given as input marks      m        1    and      m        2   , representing numbers m1 and m2, respec-
tively, produce as output mark      m     , representing m1 · m2 such that, for any
given (product) number m, all tokens of      m      lead (immediately?) to a single
effective path or state.4

f. I.e., as in the previous example, the idea is to “collect” similar outputs into a single effec-
tive path, as in figure 1. But there is a remaining worry: it is not clearly that MULT is
strong enough to count as multiplying. We will get back to that later.

4. Since similar considerations show that all Turing-machine problems are vulnerable to this
kind of manoeuvre. Indeed:

◆ All individuations, discriminations, and typings of Turing machines—distinguish-
ing one state from another, distinguishing one machine from another, etc.—are
subject to the same sorts of (H4-type) arguments we have used against ★.

5. As a result, we should build these H4-like constraints into the very notion of the machine.
C. So that’s our current goal

1. To figure out how to state the constraints in general, in a way that is applicable to all Turing-
machine problems.

2. Once we have done that, we will be able to assess the consequences for the entire Turing-
theoretic conception of computation.

                                                
3Cf. the machine we talked about, which represented numbers with (i.e., used numerals that were) sequences of
binary representations of the number’s prime factors. This machine could multiple simply by concatenation.
4Again, a similar condition would need to be stated for the inputs—in this and all the examples we are considering.
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II. Uninterpreted marks

A. Representation
1. The moral to which all these examples lead—something we already knew—is very general:

P4 No requirement formulated at the level of functions, arguments, and values can
ever force a function to be “computed.”

2. This is because (I claim) computation is not something that happens at the level of FAVs.
3. That is not to say that computation (or its inputs and outputs) is not about FAVs. To that ex-

tent, the mathematical reading can stand.
4. But there is a very general claim being advanced:

P5 Computing a function does not “happen” at the level of FAVs. It happens at the
level at which functions, arguments, and values are represented.

B. Uninterpreted marks
1. There is one more piece to the puzzle (which will allow us finally to discharge the circular

definition of effectiveness that we ended up with).
2. Non-interpretation

a. Note that neither of the outputs specified in H4 any longer have any representational re-
quirements placed on them

b. Literally, the specification claims that they need to be of the form     0    or     1    , representing 0
or 1, respectively. But no work is done by having this requirement.

c. Everything that matters in H4 ended up being specified in the “single effective path” part,
which refers only to the outputs as (uninterpreted) marks.

3. We can thus formulate a revised and final version of the halting problem that gets rid of this
excess representational baggage:

H5 Given as input marks      m    and     n    , representing the numbers m and n, respectively,
produce as output marks β or γ, depending on whether the Turing machine M
modeled by the set of quintuples µ coded by the number m would or would
not halt, if given as input the mark     n'    modeled by the number n, such that (i) all
tokens of β lead (immediately?) to a single effective state or path, (ii) all tokens
of γ lead (immediately) to a single effective state or path, and (iii) all tokens of β
are (again, immediately) effectively discriminable from all tokens of γ.

C. This is the final formulation we will lay out here.
1. Note: there is an open question: about what the right conditions would be on the input side.
2. Rather than examining that issue now, however, we will proceed onto the positive story—

and then, once it is in place, come back and revisit the question of what constitutes a legiti-
mate problem (input) for the halting problem—or, indeed, for any problem that we want to
be “solved” by a Turing machine.
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II. Turning the representation relation upside down

A. Consider the argument so far
1. We started out considering FAVs, but not marks. But that failed: it wasn’t strong enough (to

catch ★).
2. We moved to considering FAVs, marks, and their interpretation ρ (thus answering—in the

negative—question Q3b5). That helped, but ultimately ρ snuck back in, so as to defeat us.
3. So we got rid of ρ, and ended up considering marks alone, not FAVs at all.
4. That is: we started at the bottom (of our “three-storey diagram”), moved upwards, and

when we got to the top, forgot about the bottom.
B. What about ρ?

1. We started out terribly concerned about constraining ρ (we’ve had discussions about that)
2. We also noted that, in practice (“reasonable encodings”), ρ is severely constrained

a. It is much more constrained than general semantic interpretation—and even more con-
strained that the interpretation functions for even simple logical languages

b. Reasonable encodings are typically one-to-one, sustaining neither ambiguity nor corefer-
ence (equality)—a terribly strong and (in general) unrealistic restriction

3. We also noted that semantics in general, and entire issue of what constitutes a reasonable
encoding, is curiously absent from recursion / computability theory as typically formulated.

4. Now—in at least our chosen problem—interpretation has disappeared!
5. I.e., reasonable encodings are

a. Simple
b. Ubiquitous
c. Untheorised (almost invisible—remember the “unitary focus”)
d. Irrelevant in at least our example case

C. What are we to conclude from all that? Here’s a hint:
0. We said that the outputs of the machine we were considering didn’t need to be interpreted

as marks     0    or     1    representing 0 or 1, respectively, but could instead be taken to be arbitrary
(distinct) mark (types) β or γ.

2. The choice of those names β and γ was of course arbitrary.
3. So why didn’t we follow standard convention for classifying binary oppositions, and simply

associate the two groups with the numbers 0 and 1?
4. This suggestion opens the door to the final, crucial insight.

P5 The marks     0     and     1     do not represent the numbers 0 and 1, after all. Rather, the
number 0 and 1 represent (at least model) the marks     0     and     1    !

D. Status
1. Conclusion P5 is incredibly consequential—as we will be seeing, over the coming weeks.
2. Once we’ve opened the door, we’re have to take down the frame and remove the hinges!

                                                
5See Figure 2 on page 8·12 of lecture notes 8b.
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III. A theory of marks

A. Conclusion
1. We have arrived at the situation indicated in figure 2.
0. What is needed is to recognise a shift: the representation relation ρ runs the other way around!
3. The “real” situation is revealed to be entirely analogous to what we saw in classical physics!
4. This explains a myriad things

a. Why ρ had to be extremely simple, usually
one-to-one (and why it must be massively
simpler than general human interpretation).
i. In a way, the answer is simple: it’s be-

cause what really needs to be true of ρ is
that it be able to be inverted!

ii. Thus consider co-reference (i.e., equality), an absolutely ubiquitous semantical rela-
tionship. Why must it be prohibited, in reasonable encodings (figure 3a)?

iii. Answer: if, as we’re claiming, the real representation relation runs the other way
around, co-reference would be ambiguity—which is obviously something you don’t
want, in your theoretical model (figure
3b).

b. Why ρ is never theorized.
i. It is never theorized because it is not part

of the subject matter.
ii. Rather, it is part of the theorist’s analytic

or explanatory equipment (just as math-
ematics is part of the theoretic or explanatory equipment of any modern science).

iii. What is required, in such a case, is just what happens, in practice: people need to
agree on ρ (as part of their theoretic practice), without needing to construct a the-
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ory of ρ (and more than scientists are in general required to deliver theories of the
meta-language in which the results of their theories are presented).

c. It explains why recursion and complexity theory have a unitary subject matter.
i. In discussing the differences between logic and recursion/computability theory, we

said that in logic one focuses on two things—syntactic relations (such as derivability)
and semantic relations (such as entailment), as well as on the relations between
them—whereas in recursion/computability theory one focuses on only one thing.

ii. If (as we’re claiming) the interpretation of the marks is part of the theoretical mod-
eling, not part of the subject matter, it becomes obvious why this is: it is because
there really is only a single, unified subject matter (mathematically modeled).

2. These things are all explained because computability theory is in the end like any other
mathematical theory. For any number of ordinary theoretical purposes, it turns out to be
useful to indirectly classify one set of (physical) phenomena in terms of various (abstract)
mathematical entities, in the centuries-long tradition of the arithmeticisation of science.

B. Reconstruction
1. What about the real subject matter of the theory of effective computability?
2. Computability theory—complexity theory, the theory of effective computability (maybe

even recursion theory?)—was never interested in representation.
3. Rather, computability theory is a theory of marks.

a. Not of marks in all their concrete or semantical glory, of course (as we’ve seen, marks
can exemplify all sorts of properties, not least including semantic ones, to which the
theory of effective computability is blind).

b. Better: computability theory is a theory of the effective properties of marks.
c. But even that is not quite right, since it is not so much interested in them statically, as it

is in the kinds of (potentially dynamic) processes of effective transformation that can be
defined over them.

d. Moreover, it is not interested them in detail, in their multiplicity of weights, sizes, col-
ours, and shapes.

e. Rather it is interested in them at a higher level of constitutive abstraction.
C. Summary

1. To put it all together, we will say that what is traditionally goes by the name “the theory of
computation”—including complexity theory, the theory of computability, and perhaps re-
cursion theory as well—has nothing to do with representation, semantics, or intentionality.

P6 The “theory of effective computation” is not a theory of computation at all.

2. Remarks
a. NB: there still is computing.
b. It remains an essentially interpreted phenomenon (as we have claimed since the begin-

ning). It is certainly likely (tautologous?) that people “compute” the answers to various
mathematical queries.

c. It is even possible that Turing machines compute—or that (physical) Turing machines
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can be used as an (informal) model of what it is to compute. None of these things is
being denied.

d. All that is being said is that the received theory of effective computability is not a theory
of any of them.

e. Rather, it is a theory of the constraints of effectiveness to which all representational com-
putational—which is to say, all computing—is subject.

3. Put that in a single phrase:

P7 What has been called a theory of “effective computability” is in fact (in spite of
the press) a mathematical theory of the flow of effect.

4. That’s why we said, at the beginning, that the “theory of effective computability” got one
word right, out of two. It’s a theory of the effective.

II. Consequences

A. Admit: P7 is a very strong claim
B. Next time

1. Talk more about why we should believe it
2. Also: what the consequences of believing it would be.

—— end of file ——ðð


