
Solving the Halting Problem

I. Preliminaries

A. Review
1. The basic picture of Turing machines that we are working with is given in figure 1.
2. One of the main things we talked about on Tuesday was the notion of a reasonable encoding,

and what the constraints were on the interpretation function (ρ).
3. We tried to see whether we could constrain ρ in terms of effectiveness, on either a me-

chanical/physical or a mathematical reading of that notion (define φ ≡ effective).
4. That failed, for various reasons

a. Defining ρ in terms of φ was circular (and on some readings, a category error)
b. If one pushed through, and tried to use it anyway it still fails:

i. A physical reading of φ (≡ φp) led to a version of ρ that was too strong;
ii. A mathematical reading of φ (≡ φm) led to a version of ρ that was too weak.

5. On the other hand we saw that something (interesting) must constrain ρ
6. In fact, we can see that we have established a series of successively stronger results wrt φm

a. If ρ were completely unconstrained, φm would be empty as well.

b. Interpretation (ρ) must be at least as constrained as effectivemathematical (φm)
i. ρ # φm  (where ρ and φm are taken extensionally, as sets of functions)

c. Moreover, if interpretation were only as constrained as effectivemathematical (i.e., if ρ = φm),
then all computable functions
could be computed by the “do
nothing” machine.1

d. So ρ is strictly stronger than φm

e. I.e., ρ , φm

7. In fact—this is important—the only
work that the machine needs to do
(the only work involved in what we
intuitively call “computing”) is in the
difference between ρ and φm:
a. Informally, that is:

◆ “Computing” e [φm – ρ]

                                                
1Figure 3, on page 8·8 of lecture notes 8a.
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b. We have to figure out what this (pseudo) equation really means2

B. Summary
1. Given these results, we summarised our investigation in terms of two basic questions,

framed in terms of the dimension of the diagram:
a. Horizontal: What’s the origin / nature of the “effectiveness” (“calculable”) constraint?

i. Answer so far: We don’t know. But in order to be coherent, it must be horizontal.
ii. That is, effectiveness must be condition on one (or both?) of the following:

α. Transformations over marks (i.e., upper syntactic or “mechanical” level in fig. 1)
β. Functions over numbers, and perhaps other mathematical entities (i.e., at the

lower “semantic” or “mathematical” level in figure 1).
b. Vertical: What are the vertical (semantical) conditions on interpretation (ρ)?

i. Answer so far: We don’t know.
ii. We do know, however, that the interpretation function ρ must be more constrained

than being “effective” (if  ρ could be any computable function, then any computable
function could be computed by the null machine—the machine that does nothing).

iii. I.e., ρ , φm

2. Essentially the same issues can be pursued in terms of the three questions given in figure 2.
C. Plan

1. Adopt the following strategy, in our search for a coherent notion of effectiveness:
a. Try to analyse effectiveness solely at level of mathematical objects (numbers, functions)
b. If that doesn’t work, relax (move upwards, in terms of the figure), to include conditions

on the interpretation relation ρ.
c. If that doesn’t work, relax (move upwards) a second time, to admit conditions on the

marks and the (mechanical) transformations of them.
2. Another (more detailed) way to understand question Q3b (above, figure 2) is as follows:

                                                
2Note that this “equation” is so vague that it can be read on either the mathematical or physical versions.

Q1. At the (mechanical) level of marks

a. What are the representational conditions on the marks (m  and n)?
b. What is the horizontal effectiveness condition (fp) on their transformation?

Q2. At the level of semantics or interpretation

a. What are the properties of and constraints on the vertical (semantical) interpreta-
tion function ρ?

Q3. At the(mathematical) level of functions

a. What is the horizontal effectiveness condition (φm) on computable functions?
b. More generally, can the discourse of recursion theory be carried on at the level of

mathematical functions (ƒ) defined over numbers (m and n)?

Figure 2 — Questions about Turing machines
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◆ a. What is the fundamental origin of the computability  constraints?
b. Are they (au fond) properties of:

i. Numbers & mathematical functions? (i.e., in the “mathematical realm”)?
ii. Encodings and representation (i.e., in the “realm of interpretation”)? or
iii. Marks and mechanical configurations (i.e., in the “syntactic realm)?

c. Traditionally, the answer is (i): they are mathematical constraints.
d. We will argue that the right answer is (iii): they are mechanical constraints.

II. The halting problem

A. Introduction
1. We will try to determine the answers to these questions by looking at the (promised) ma-

chine designed to solve the halting problem.
2. To do that, we need to know what the halting problem is.
3. Because of the strategy given above, we will start with a purely mathematical formulation:

H1 Given arbitrary Turing machine M, and input m, compute 0 or 1 depending on
whether or not M would halt on m.

4. But (as will soon be evident), we need to frame it in terms that refer to transformations of
marks, etc., as well. So instead try (see figure 3):

H2 Given as input the marks      m      and     n    , representing the numbers m and n, respec-
tively, produce as output the marks     0   or     1    , representing the numbers 0 or 1,
respectively, depending on whether the Turing machine M modelled by the set
of quadruples µ coded by the number m would or would not halt if given as
input the mark     n'   modelled by the number n.

B. Remarks (in passing)
1. There are three “semantic” relations (functions) in this formulation (see figure 3):

a. The interpretation relation ρ relating marks      m      and     n     to the numbers m and n
b. A “modelling” relation be-

tween the set of quadru-
ples µ and the machine M

c. A “coding” relation, from:
i. The number m to the

set of quadruples µ
ii. The number n to the

mark     n'  

d. At the moment we are
focusing on ρ, but if we
were doing this com-

ρ ρ

m
mechanical
(syntactic)

mathematical
(semantic)

interpretation

Realms

ρ

m

Turing
Machine

★

n

0 or 1m

µquadruple

n'Mark

Turing Machine M

0 or 1

Figure 3 — The Halting Problem



  Spring 2001 B607 • Philosophy of Computing • Notes Page 8 • 14  

pletely, all the others
should be subjected to
similar torture.

2. Instead of requiring that it
produce     0   or     1    , we could
formulate the requirement
(that any machine solving the
halting problem must meet)
in terms of producing two
particular marks—a single or
a double *, say. But that
would be too easy—and unsatisfying
a. As a general model of computing, most problems won’t have that easy a form.

i. Remember how widely we had to read the notion of “symbol” in order to avoid
having the FSM construal fall off the “too narrow” cliff.

b. Sure enough, having it produce one or two *s clearly (obviously? pretheoretically?)
meets the condition of “being a reasonable encoding.” That was never in doubt.

c. What we want to know is: what does that condition of “being reasonable” come to?
d. Simply adopting a particular instance won’t tell us.
e. So we need to stay with the more general (and for now mathematical) formulation.

III. The machine ★

A. Intro
1. Condition H2 is easy to meet

a. Look at machine ★, given in figure 4.
i. For inputs      m      and     n    , it simply produces as output the (composite) mark

if halts-on(     m     ,     n    ) then 0 else 1
ii. I.e., it simply inserts its inputs into the blanks in the following template

if halts-on(__, __) then 0 else 1
b. Which it could do by (as it were) running the following program:
c. begin

read (m-bar)
read (n-bar)
write (“if halts-on(“)
write (m-bar)
write (“,”)
write (n-bar)
write (“) then 0 else 1”)
end

2. Diagnosis (initial)
a. Clearly, ★ is a cheat.
b. The question is why.
c. Call the “answer” (i.e., output)  that the machine produces α (actually there will be

many different αs; call them αm,n)
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d. There is some problem with α
e. Step through various suggestions

3. But note, first, that ★ does in fact meet H2.
a. There is no (metaphysical) problem with the predicate “halts-on”

i. It must be defined, for the halting problem to be coherent
ii. I.e., there must be a metaphysical fact of the matter as to whether M halts on     n'  

iii. If that were not, there would be no justification in saying that there are any func-
tions that cannot be computed

b. There is no (semantical) problem with designating the halts-on predicate
i. We did just that, for example, in stating the problem
ii. And in the immediately-above discussion (III.A.3.a) of its metaphysical security

c. So α is well defined
d. Also, α satisfies all requirements (stated or implied) about what it is to be a     0   or     1    .

i. For a mark     q   to count as a     0    , we only required that it represent 0.
α. I.e. the requirement is that ρ(    q    ) = 0

ii. Similarly, for     q     to be a     1   is just to represent 1 (i.e., so that ρ(    q    ) = 1)
iii. Both these things α does.
iv. If M halts on     n'  , then αm,n designates 0, as required
v. If M does not halt on     n    ', then αm,n similarly designates 1.
vi. So H2’s requirements have all been met.

4. Remark #1 (important)
a. It is evident that our human interpretation relation (i.e., the “ρ” leading from our heads

to Plato’s heaven) is sufficiently powerful to designate the “halts-on” predicate.
b. This shows what should be evident: that in general (e.g., for human thought) semantic

relations are more powerful (a larger class) than what is effectively computable (φ)
c. But that raises an odd question. In trying to understand what constraints hold of ρ in the

Turing machine case, we said that that ρ had to be strictly weaker (more constrained)
than φ.

d. So we have the following small—but nevertheless telling—result (let FAVs be functions,
arguments, and values):

P1 It is intrinsic to the coherence of the halting problem—and to the notion of
effective computability more generally—that if: (i) ρ is the (class of reasonable)
interpretation functions from marks on tapes to FAVs; (ii) φm is the class of ef-
fectively computable functions; and (iii) ρ’ is the human interpretation function,
from thoughts to FAVs; then:

ρ , φm , ρ’

e. This (tremendously important) result should be kept in mind throughout (◆)
5. Remark #2:

a. What we have shown is that the “halts-on” function (i.e., specific values for specific ar-
guments) can be designated. Unfortunately, no one doubted that.
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b. What has not happened is for it to be computed
c. That in turn implies that computing cannot be something that happens at the level of

FAVs.
d. That is, from the fact that ★ satisfies H2, it follows that the answer to Q3b3 is no.

P2 The theory of effectively computable functions cannot be fully expressed at the
(mathematical) level of functions, arguments, and values.

e. Note: we still don’t know the answer to Q3a.
B. Attempted solution #1: different answers

1. It seems as if ★ always produces the same answer, independent of whether M halts on     n'   .
2. So try:     0     and     1     should be different (whereas it seems as if the αm,n are all the same).
3. But in fact (by design!) all the answers αm,n are different (since no information is lost)

C. Attempted solution #2: different types of answer
1. Try again, but this time require that there be two types of answer: one that it produces

when the input machine (i.e., the one modelled by the number m designated by      m     ) halts,
another when it does not.

2. More specifically, it seems as if there are three distinct criteria that should be met, two fac-
tual, one counterfactual (see figure 5, on the next page):

C1 Different inputs should lead to the same output, if they represent the same
halting behaviour;

C2 Different inputs should lead to different outputs, if they represent different halt-
ing behaviour; and

C3 Counterfactually, any given input      m     i,     n    i should have led to a different output, had
the (metaphysical, ontological, conceptual, whatever) facts about whether Mi

halts on     n    i  j   been different.

3. These three criteria all deal with ranges of variation, requiring that the effective mapping be
many-to-two:
a. C1 and C2 deal with ranges of actual inputs

i. Cf. the solid lines on the right side of figure 5.
b. C3 deals with potential variation4

                                                
3See figure 2, above, on page 8·12.
4Some may object to the counterfactual case (C3) on the grounds that whether a machine M halts on a given input
n'   is a mathematical fact, immune to revision, and thus identical in all possible worlds. To them, talk of a situation
in which the output “would have been different” makes as much sense as saying that 2+2 might have equaled 5.

Over almost ten years of teaching this material, however, it has been my repeated experience that many stu-
dents (typically, those with computational rather than mathematical backgrounds) find the counterfactual case to
be the most compelling of the three. For some, in fact, it is the only case that matters. At this stage in the argu-
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4. Formulate a new statement of the halting problem to ensure this (figure 5):

H3 Given as input marks      m      and     n    , representing numbers m and n, respectively,
produce as output marks     0     or     1    , representing 0 or 1, respectively, depending
on whether the Turing machine M modelled by the set of quadruples µ coded
by the number m would or would not halt, if given as input the mark     n'   mod-
elled by the number n, such that all tokens of     0     lead to a single output state or
path, and all tokens of     1     lead to a different, single output state or path.

5. H3 fails
a. ★ already meets this for-

mulation!
b. Problem is with the terms

“same” and “different”
c. Sameness (identity) and

difference always relative to
an appropriate metric of
equivalence.

d. Take the upper path in fig.
4 to be “represents 0”, and
the lower path to be “rep-
resents 1”.

e. If we can classify answers (individuate “paths”) by interpretation, C1–C3 do no work!
f. So H3 = H2.

D. Attempted solution #3: effectively different answers
1. We have still not caught ★. But it is starting to be clear why.
2. The intent of H3 was to shift attention upwards, to predicates on the marks
3. It has always been possible, through sufficiently devious means (and strong ρs) to shift the at-

tention back down to functions and values
4. We might try to modify C1–C3 so that they prohibit reference to any semantical or inter-

pretive properties, but that wouldn’t work
a. It would still be possible to identify other properties that, even if not semantical, are suf-

ficiently remote that (intuitively) no one could tell whether or not the answer was the an-
swer we want it to be

                                                                                                                                                            
ment, I therefore recommend either (i) that C3 be read under a notion of possibility strong enough—call it logical,
metaphysical, conceptual, what you will—to “get under” whatever facts secure the answer’s being the answer that
it is, or (ii) if no such notion is available to you, that you set the third clause aside. As it happens, moreover, the
whole issue will not matter much, in the end, for it turns out that the whole issue is something of a temporary red
herring. On the reconstruction of Turing machines to be arrived at presently, the counterfactual reading will turn
out to make sense after all (vindicating the students who wanted it), because the “fact” about whether a machine
M halts on a given input     n'   will by that point no longer be (understood to be) a mathematical one—but rather a
physical one, mathematically modelled (and therefore requisitely contingent).
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Figure 5 — Channeling answers onto different paths
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b. So the original intuition would not have been captured
5. Better: instead of ruling out what is forbidden, why not rule in what is legitimate?
6. The basic idea (I believe) is the following:

P3 One must be able to marshal all the inputs that represent situations where ma-
chines halt (i.e., that represent 0) onto one effective path, and similarly to mar-
shal all the inputs that represent situations where machines do not halt (i.e.,
that represent 1) onto a different effective path.

7. I don’t yet have an analysis of what a “single effective path” is (we’ll get to that presently),
but the rough idea is that all the answers of the “same effective type” should be able to turn
on a single switch, or end up physically indistinguishable (where the “abstraction” over any
variations among them can be “physically” ignored, somehow).

8. Just how this intuition should be formulated (carefully) is absolutely non-trivial. But (for now)
I hope that the basic underlying intuition is relatively clear.

E. Effectively discriminable paths
1. This last remark leads to a new formulation of the problem.

H4 Given as input marks      m   and     n    , representing the numbers m and n, respec-
tively, produce as output marks     0     or     1    , representing 0 or 1, respectively, de-
pending on whether the Turing machine M modelled by the set of quintuples µ
coded by the number m would or would not halt, if given as input the mark     n'  
modelled by the number n, such that (i) all tokens of     0     lead (immediately?) to a
single effective state or path, (ii) all tokens of     1     lead (immediately) to a single
effective state or path, and (iii) all tokens of     0     are (again, immediately) effec-
tively discriminable from all tokens of     1    .

2. Sure enough, H4 does seem to win the prize: it catches ★!
3. Are we done?
4. No! There is a very serious problem:

◆ H4 (which seems to catch ★) is defined in terms of the notion “effective”—
which is exactly what we were supposed to be defining! So it looks as if H4 may be
true but circular.

F. Next Tuesday, we will talk about how to fix H4—and thereby get to at least the beginnings of a
tenable answer to our original question.

—— end of file ——ðð


