
Part III — Effective Computability

◆ Note: There will be no class this Thursday, February 22, 2001. See I.F.2, below.

I. Preliminaries

A. Introduction
1. Last time we finished our analysis of the first construal: formal symbol manipulation (FSM)
2. FSM came first in several senses

a. Not only was it the first construal; it was also framed in terms of the first dialectic: be-
tween meaning and mechanism.

b. Historically, too, it deserved pride of place, because it represents (essentially is) the in-
tellectual structure of the logical tradition, whose intellectual apparatus still forms the
background skeleton in terms of which present-day theories of computation are framed.

3. Today we start Part III of the course, looking at the second construal: Effective Comput-

ability (EC). It includes within its scope such familiar notions as:
a. Turing machines, computability theory, complexity theory, etc.
b. Programming language semantics (denotational and operational), linear logic
c. The so-called (official) “theory of computation”

4. As a result, will be
a. More familiar to computer scientists (than the first construal was)
b. Less familiar to cognitivists (AI, cognitive science, philosophy of mind)

B. Status
1. Just as it made sense to consider FSM first, for several reasons; EC comes second in more

than one way. Not only was it ranked second in the list of construals; analysing it will force
us to focus, in a concentrated way, on the secondary dialectic: between the abstract and the
concrete.

2. Historically, it also makes sense to consider EC second. In dealing with computability, Turing
machines, recursion theory, etc.—it represents the theoretical approach to computing that
most immediately developed (out of the logical and metamathematical traditions) at the be-
ginning of computer science.

3. Maturity
a. On the face of it (because of the extensive mathematical results), the second construal

also looks more like a mature science
b. Note, too, that this construal doesn’t mention “computing” or “computation” explicitly1

                                                
1Just as physics doesn’t mention “physical”?
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c. Rather, proposes a cluster of notions—effectiveness, “computable,” universal, complex-
ity orders, etc.—in terms of which to analyze practice.

C. Discussion
1. There is a way in which one can view the second construal as continuous with the first.
2. As I pointed out on Thursday, we didn’t have time to get back, in anything like adequate de-

tail, to the conceptual sub-reading of (the negative reading of) formality: the metatheoretic
claim that computation is “formal” just in case one can give an account of how computing
works independent of—i.e., “without reference to”—a semantical account (or, which may
or may not be the same thing, an account of its semantics).
a. As we noted, some people—such as Fodor, perhaps even Haugeland—seem to think

this is true of computing, because semantics is an “addition to” the effective workings.2

b. We did note that even if this were true, that wouldn’t constitute a complete account of
computing (on the first construal), since (almost by hypothesis) it wouldn’t be an ac-
count of its semantics. So it would be something like a “half of a theory of computing.”
I.e., it would still fail what we called the aspect criterion3—that a comprehensive the-
ory be an account of all criterial (essential) aspects of computing, not just some.4

3. In addition, even if the theoretical structure turned out this way—so that the account of
how a system “works” (mechanically) is separable from the account of how it means—the
result would remain almost completely programmatic. In order to have anything count as an
actual theory of computation, one would still need to give such an account of the workings—
i.e., give an account that did not “make reference to” semantics, but that nevertheless did
explain how computers work.

4. Haugeland’s proposal (in “Semantic Engines” and in AI: The Very Idea) that computers are
“automatic digital systems”5 gestures towards such an account. But of course it is very ele-
mentary; if it were the right approach, it would need to be fleshed out in considerable detail.

5. One way to understand the account of computing we will look at now—i.e., the second
construal, the story about effective computability, framed with reference to Turing machines
and the like—is as such a (semantic-free) account.

D. Plan
1. The investigation will, as usual, have three parts:

a. Conceptual phase: to understand what the second construal is saying
b. Empirical phase: to see whether it is true (of computing-in-the-wild)

                                                
2Cf. Haugeland’s claim that computation = an automatic (formal) digital system with an interpretation.
3See the notes for lecture 4a, on January 30, 2001.
4Given the positive (participatory) morals we learned, about internal exemplification of semantically designated
properties (e.g., lengths of lists), it would appear that there are internally-exemplified semantical relations (or at
least we have seen no reason to suppose that there could not be). It follows, therefore, that an account of how
the system works that does not traffic in semantics is liable to fail the level criterion as well. When we get to
criticising the ontological status of computational systems, we will use the functional individuation of internal states
to argue that semantic criteria are employed in identifying data structures, etc.—so this “level” threat turns out to
be true.
5Where “digital” means finitely playable, perfectly repeatable, etc.
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c. Explanatory phase: to figure out how its claims fit into the wider intellectual landscape.
2. As usual, whereas the “foil” or “official strategy” of the investigation will be to determine

the adequacy of the proposed account, our real goal will be to use this as a device to find
out what computing is actually like—by ferreting out our intuitions, seeing what aspects the
official theory deals with and which aspects it does not deal with, etc.

3. Ultimately—i.e., by way of conclusion—I will argue that the theory of effective computabil-
ity, as I will call this construal:
a. Is not a theory of computing at all (it is mislabeled)
b. Is a theory of “general effectiveness” (i.e., a theory of causality).
c. I.e., that a theory of computing isn’t really a theory of mathematical functions defined over

numbers, represented by the marks on the tape.
d. Rather, it is the opposite: a theory of marks on tapes, represented by mathematical func-

tions over numbers.
4. I will argue this conclusion with a dramatic example: machine that solves the halting problem

a. It doesn’t really solve the halting problem, of course
b. Rather, the claim will be that it satisfies the official criteria that have been laid out as

what it would be to solve the halting problem
c. So what it will be used, here, to show is that those formulated criteria aren’t right (or

anyway aren’t complete)
d. It is in fixing them that we will be led to the “nugget” we are going to extract from the

failure of this construal.
5. Because of that strategy (and because we will end up rejecting a great deal of how the sub-

ject is normally understood), we will have to set things up exceedingly carefully.
6. So we will take more than the usual care in approaching the subject.6

E. Today, I want to make a dozen preliminary remarks, of three types:
1. Four methodological
2. Six substantive (easy)
3. Two substantive (harder)

F. Administrivia
1. Problem sets:

a. The first problem set has now been graded. Comments and grades are posted on Anno-
tate.

b. The fourth problem set has been posted. It is due one week today, on February 27.
2. No class on Thursday! There is a conference, held here on campus, starting this Thursday,

that I will be attending and participating in. As a result, there will no class this Thursday, Feb-
ruary 22. Our next class will be one week from today, on Tuesday Feb 27.

3. Readings: some of AOS Volume III is now available for downloading on the class web site:
a. AOS Volume III Chapter 1 (“Turing Machines”)

                                                
6Note: I am presuming that everyone is familiar with Turing machines, effective computability proofs, etc. This
setup is meant as a review, not as an introduction.



  Spring 2001 B607 • Philosophy of Computing • Notes Page 7 • 4  

II. Four Methodological Remarks

A. Formal and informal models
1. Turing machines are normally introduced in two steps

a. Informal: tape, machine, controller, a few examples
b. Formal: mathematical theory (with sets of quintuples, formal results, etc.)

2. It is important to realize that there is no guarantee that these two models will align
a. That is: it’s contingent whether the formal theory adequately captures the informal model
b. This raises the question of which of the two “is right.” There are two possibilities:

i. The informal one—because that is what grounds intuition and captures imagination
ii. The formal one—because that (after all) is what is “formally” or rigorously defined,

in terms of which the enormous subsequent body of mathematical theory is framed.
c. I lean towards the former, but I am not committed to one over the other
d. What will matter, here, is that we keep the two rigorously distinct (since, as I will show,

there are enormous conceptual distinctions between them).
3. Example: the representational status of tape

a. We often understand some simple algorithms in terms of a mark being left to mark the
square at which the controller started (to which it may then return at the end)

b. That square isn’t theorised as such—i.e., isn’t theorised as “a representation of where the
controller started” in any formal model. That is: no mathematical theory that defines an
interpretation function over the marks (or configurations of marks) on the tape ever
maps that mark onto the square where it is written.

c. Does that mean it isn’t a representation? No—not at all! It may be such a representation
(for the controller or machine, even—not just for us). All that we can conclude, from
the fact that it is not treated as a representation by the official theory, is that, if it is a
representation—even if it is essentially a representation—that fact isn’t captured by the
theory we are used to. (Perhaps a better or fuller theory would or should treat it as rep-
resentational)

d. Indeed, this kind of (tape-to-tape) representation may be critical to the device’s com-
puting what it does—or critical to our taking the machine to have computed what we
take it to have computed.

e. Yet it is left out by official theory
4. So that’s the first methodological remark: we must not confuse or conflate:

a. What current theories theorise and
b. The full suite of phenomena that are going on, in the informal model—and that may be

critical (i) to the machines being a computer, and (ii) to our (human) understanding of it
as computing the function that we think that it does.

B. Equivalence
1. As mentioned in passing in earlier lectures, a very famous notion of “equivalence” under-

writes a great deal of the official theory of computation, including the theory we will be
looking at here, defined (in terms of the formal theory) can “compute the same function(s)”

2. For example, proofs may claim that a machine α has been shown equivalent to some other
machine β when it has been demonstrated that α can compute the same function as β.
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3. This equivalence then used in other forums (e.g., in the Church-Turing thesis)
4. What’s crucial to understand is that this is a theory-relative equivalence metric
5. On a different view of computing, two architectures that are equivalent under the Turing-

theoretic view may not be equivalent, under the new one!
6. For example: a view that distinguishes being and implementing a virtual architecture. Or (per-

haps) a view that is not semantically blind
7. That is: the notion of equivalence used in these analyses is essentially blind to the “crosses

implementation boundary” issues that were explored in the second problem set.
8. For now (this is the second methodological remark): we need to be careful in using any no-

tion of equivalence, to recognize that this is theory-laden talk—laden, in fact (this is why this
is so important) by a theory that I will soon argue is not a theory of computing after all.

9. Such differences are a source of potential distraction
a. Turing machines as imagined (informally) may possess a variety of characteristics that are

genuinely true of computers
b. If we assume that the (formal) theory of Turing machines does justice to these (informal)

intuitions, we may (uncritically) assume that the theory of Turing machines is right or in-
tuitively complete

c. But no such conclusion follows!
10. In sum: the (formal) theory of Turing machines may fail in either (or both) of the two ways

(i.e., first, as well as second, is a possibility):
a. As a theory of (informal) Turing machines
b. As a theory of computing more generally.

11. This is complicated by spate of facts:
a. Few concrete Turing machines actually exist (they’re “often imagined, but seldom seen”)
b. It is easy to “implement” or “simulate” a Turing machine on an ordinary computer
c. Notion of a universal machine blurs the boundary between being and simulating a ma-

chine ⇐  this is absolutely critical
d. Because of the famous equivalence proofs, many people call all computers Turing ma-

chines, because they are “equivalent in power”
12. In sum

a. For purposes of a comprehensive and conceptually adequate account of computing, it is
essential to distinguish
i. One (virtual) machine, from
ii. Another that is implemented on top of it, or another on which it is implemented

b. Even if familiar notions of equivalence blur the distinction between them.
c. Keeping such machines apart need not blind us to the fact that one way to get one ma-

chine (α) to do something is to implement another machine (β) on top of it.
d. That is: maintaining a clear distinction between such virtual machines need not obscure

the tremendous power of (the notion of) implementing one machine in another.
C. Indirect classification

1. As said before (in Part I), the model-theoretic approach to logic make a distinction between:
a. Direct analysis: in terms of actual (concrete?) things being studied: sentences, semantic
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subject domains, (in-
tended) interpreta-
tion, etc. (figure 1)

b. Indirect analysis:

analysis framed in
terms of (typically
mathematical) mod-
els of at least the
subject matter, with
correspondingly refigured interpretation relations (figure 2)

2. In this critique we will be focusing on the notion of effectiveness
a. Cf. potency: shape, cause, syntax, etc.

3. In doing this, we need to distinguish between
a. Properties (including efficacy) of the primary subject matter
b. Properties (including efficacy) of the mathematical models of that subject matter

4. Example: 17,000 mph
a. Velocity may be an effec-

tive property
b. The number 17,000 is

not effective, even if we
use it to classify a prop-
erty that is.

5. Why raise these things?
6. Because I will claim that:

a. Missteps about the nature of the classificatory situation …
b. Specifically, about which phenomena are classifiers, and which are classified …
c. Have blocked us from understanding the Turing-machine model …
d. Thereby hindering us from understanding its relevance to genuine computation

D. Formality
1. The fourth methodological remark has to do with formality

2. As I mentioned in Part I, issues of formality are very important to me, and in some ways
(behind the scenes) have structured this entire investigation. That is: asking whether com-
puting was formal was one of the first questions I had, with respect to the whole subject
matter. As it turned out, though, there isn’t any one reading of formality that makes that a
possible theoretical entrée into the subject matter.

3. Review
a. In analysing the first construal, we encountered two basic meaning of formality:

i. A positive one, having to do with syntax, effectiveness, and other potency predicates
ii. A negative one, meaning “independent of semantics”

b. In our analysis of the second construal, issues of formality will once again come to the
fore.

c. Since we will be concentrating on efficacy, in the notion effective computation (or effec-

realm·of·
syntax

realm·of·
semantics

realm·of·
interpretation ρ ρ

D D'
#

s's1, s2, … sk

Figure 1—Logic, studied directly
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Figure 2 — Logic, studied indirectly (via models)
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tive computability), you might reasonably expect the first of these to be the relevant
one—i.e., to be on center stage

d. You especially might think this given that we redirected the positive reading of formality
to our analysis of this second construal.7

4. In fact, however, although we will study efficacy here, and use the results of this analysis as
constituting our understanding of the positive reading of formality mentioned above, when
the term ’formal’ is used, in this context of these theories, that is not what the term is used
to refer to.

5. Rather—as suggested in the distinction between “formal” and “informal” models of Turing
machines, mentioned above (§II.A.1, above)—“formal,” in these contexts, is usually taken
to mean mathematical.

6. So this is our third major understanding of the term formal.
7. Why the term “formal” has such apparently disparate readings—how it happened, histori-

cally, whether there is anything in common among them, whether any underlying unifying
principle unites them—is a question that will be receive its answer in a major ultimate result
of the entire investigation, which we will get to at the very end of the course, at the conclu-
sion of Part IV (on digitality).

E. Summary: So those are the four methodological remarks:
1. Keep formal (mathematical) and informal (intuitive, concrete) models of Turing machines

apart
2. Distinguish one virtual machine from another that is implemented on top of it, or in terms

of which it is implemented.
3. Distinguish (i) the actual subject matter of a theory from (ii) a mathematical model of that

subject matter. (The former can be got at with what we are calling a direct analysis; the lat-
ter, with an indirect or model-theoretic analysis or account.)

4. Keep an eye on the reading of ‘formal’ as “mathematical,” while at the same time recognising
that the notion of efficacy or effectiveness to be studied in analysis this second construal is
meant to do double duty, not only to explain the official mathematical theory of comput-
ability, but also to reconstruct the “positive” reading of formality we encountered in analys-
ing the first construal (formal symbol manipulation).

F. Given those methodological preliminaries, turn next to six relatively simple substantive remarks
about Turing machines.

III. Turing machines I: Six (simple) introductory remarks

A. Machines, controllers, and systems

1. There is a small semantic ambiguity about what the term “Turing machine” refers to (fig. 3)
2. Has in part to do with how Turing machines are individuated
3. Is the Turing machine the controller? or is it the controller plus the tape?

a. If “plus tape,” is it with specific configuration of marks on the tape?
b. Or with a tape “in general”?

4. In this class: I will take the Turing machine to be the controller
                                                
7E.g., see figure 1 on page 2 of the notes for lecture 4a (of January 30, 2001).
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a. Ask, e.g., whether
Turing machine M
will or will not, given
a certain input

b. Use the term sys-

tem to refer to the
amalgam of controller
(Turing machine)
plus tape

5. But as we saw in the
first critique, issues of what is inside, and what is outside, can strongly influence analysis. So
will need to keep an eye on this distinction.

B. Marks, alphabets, and languages

1. Squares can be marked or blank, in the usual way
2. Strictly speaking, controller can only deal with a single square at a time
3. But for most purposes, it is connected (adjacent) sequences of marks that are important

a. I.e., in terms of what “problem” the machine solves, sequences play the critical role
b. Units of semantical interpretation

4. Here, therefore, I will use (underlined) variables      m     ,     n     to mean mark sequences

5. I.e., will treat      m     ,     n     as something like formulae in a specified language
6. This enlargement of the subject matter will be relatively harmless (for our purposes here)
7. We just need to be careful that controller isn’t asked to maintain an indefinite amount of in-

ternal state
8. Conceptually, too, down the road (we’ll get to this in a few weeks) there will be a difference

between marks and configurations of marks (“configurations” aren’t as obviously concrete). At
that point, it may be important to distinguish between the two.

C. Sets of inputs

1. Can define a Turing machine to give specific output, given a specific input
2. But that is boring
3. What one always does is to define a (one) machine to work over sets of possible inputs
4. That’s why what a Turing machine (controller) is identified with a function, not simply a sin-

gle pairing of input and output.
D. Vocabulary

1. We need to be careful in how we speak about these machines
2. There are two ways to use the word ‘compute’8

a. Opaquely: Like ‘utter’: to refer to marks (⇐  most computer scientists)
b. Transparently: Like ‘describe’: to refer to numbers (⇐  many logicians, mathematicians)

3. I don’t have a judgment that one is right, one is wrong
4. We just need to be careful
5. N.B.: I will use input and output to signify marks. I.e., will use ‘input’ and ‘output’ opaquely

                                                
8See the sidebar “Two readings of ‘compute’ ” on page III·1·22 and III·1·23 of AOS·III.
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Figure 3 — Turing machines
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E. Representation

1. Take tapes to be representational
2. E.g., unary or binary numerals
3. Cf. morals from first construal

a. Machine is to run in virtue of potent (syntactic, positive, effective) properties of marks
b. Opens up all the standard questions of what properties are effective, potent, etc.
c. Whereas in first critique we couldn’t take them on, here we (finally) will

4. However: there are non-parallels, between the two construals, on issues of interpretation
a. Domain of interpretation

i. Typically mathematical (numbers and functions)
ii. Much more constrained than one normally thinks of, in FSM

b. Potency predicate: effectiveness (efficacy), rather than syntax (why? what about semantics?
is there an independence assumption in the background?)

c. Representational arrangements of marks often called encodings
i. Narrower term than ‘representation’ (especially than ‘description’)
ii. But still: encoding is an intentional (semantic) directedness relation
iii. So keeping an eye on it will be tremendously important

d. General point (◆)
i. Whereas designation and denotation are typically treated (i.e., in traditional formal

models of logic, language, etc.) as strict, non-transitive, and hence as theoretically

opaque (in the sense that it is important to distinguish between something that de-
notes and what it denotes, and between something that designates and what it des-
ignates),

ii. Models or encodings, in contrast, are treated as theoretically transparent (i.e.,
the entities at either end can typically be identified, the modeling relation is gener-
ally taken to be transitive, etc.9)

5. We will want to keep an eye on these things, to see whether
a. They are just gratuitous differences in vocabulary, from the discourse of FSM

b. Or, whether they reflect some deeper as-yet unarticulated difference
6. I will ultimately argue that they do reflect a deeper difference—a difference of enormous

importance for our project.
7. Note (in passing) that we interpret not only marks, but machines themselves (at least associ-

ate them with the mathematical functions that they “compute”). More on this presently.
F. (Negative) role of theory

1. It is often said that you don’t need a theory of computing for positive results: to show that
something is computable. To do that, you simply show how to compute that thing.

2. Rather, the theory is needed (people say) for negative results: to show that something can-
not be computed

3. This may be true, for general theoretical purposes, but it won’t work for a foundational in-
vestigation

                                                
9In the sense that if m1 is a model of m2, and m2 is a model of m3, then m1 is taken to be a model of m3 as well.
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4. Example: function from     n     ⇒  n
a. This may be a compelling function, but it is not entirely clear what it is an example of.
b. On a representational theory of mind, what is most likely is that the function from     n     ⇒

n is transparent. Why?
c. Because:

i. If we represent     n     as ‘    n    ’, and n as ‘n’ (i.e., as     n    ) …
ii. Then understanding     n     ⇒  n simply involves disquotation

α. Which, as we saw in the first critique, is easy
iii. And disquotation, from ‘    n    ’ ⇒  ‘n’, surely is effective (as we also saw in first critique)

d. But it doesn’t follow that the original function,     n     ⇒  n, is effective after all! (In fact it is
not going to be clear what it is to assert—indeed, whether it may not be a category er-
ror— that the function     n     ⇒  n is effective).

5. So we need a foundational reconstruction even to understand the simplest examples
6. This is all “par for the course,” for the foundationalist

G. In sum (six points):
1. Take “Turing machine” to denote the controller, not the whole controller plus tape (and

especially not the controller plus marked tape;
2. Take      m     ,     n    , etc. as (meta-theoretic) variables ranging over mark sequences (configurations of

marks)
3. Define machines (i.e., controllers) to operate over different sets of inputs
4. Distinguish opaque (like “utter”) or transparent (like “describe”) uses of ‘compute.’
5. Take marks or mark sequences (i.e., configurations of marks) as denoting (numbers, usually)
6. Try to discern what the theory says it is to compute something, positively; don’t just rely on

it for negative results (what can’t be computed)
H. Now turn to the two more substantial issues:

1. Representation / encoding (this time)
2. Basic notion of, and intuitions behind, effectiveness (on Thursday)

IV. Representation / Encoding

A. Logic: has a double subject matter
1. Syntax, derivability, etc., very much on the table ⇐  cf. proof theory
2. Semantics, interpretation, etc., also on the table ⇐  cf. model theory
3. Moreover, the bite of a logical system has to do with how the two relate (this is what we

have taken as the primary dialectic underwriting our entire understanding of computing)
B. Recursion theory, computability theory, etc.

1. Seem to deal with only a single subject matter
2. We say, for example, that products of large primes are hard to factor, or that propositional

satisfiability is NP-complete.
C. What happens to the encoding?

1. The coding is universally agreed (and admitted) to be important
2. Everyone says (on page 4): must use a reasonable encoding

3. One question we will focus on will be: what a reasonable encoding is
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4. Examples:
a. Base π arithmetic (cf. AOS·III·1, page III·1·21)
b. What symbols are allowed (e.g., square-root)

5. But rarely (as far as I know) no analysis of what a reasonable encoding is
6. Doesn’t figure as prominently in our understanding of what is going on

D. Some other non-parallels between Turing machines and FSM

1. Domain of interpretation
a. Typically mathematical (numbers and functions)
b. Much more constrained than one normally thinks of, in FSM

i. Especially in our case, because we read ‘symbol’ so widely
c. Also much more uniform: talk in terms of it, directly

2. Potency predicate: effectiveness (≡ efficacy), rather than syntax
3. Representational arrangements of marks often called encodings

a. Narrower term than ‘representation’ (especially than ‘description’)
4. Do these differences mean anything?

E. This whole situation is odd. Think about the structure of the investigation
1. Issues of representation, interpretation, semantics, etc.—i.e., legitimacy of codes, conditions

and constraints on interpretation functions ρ, etc.—are of absolutely central concern;
2. They are also (as is widely admitted) essential to the recursion-theoretic story; and yet (in spite

of both these facts)
3. They do not figure centrally in resulting substantive claims.

F. We should post a very serious flag, to understand what is going on (◆)
G. Specifically, we need to know

1. What a reasonable encoding is
2. Why, in spite of its evident importance, the issue is accorded secondary status, in the way

things are normally presented; and
3. Whether, once we have answered the first two questions, an appropriate response would

be to put the issue of what constitutes a reasonable encoding more squarely on the table, in
full theoretic view.

H. Hint (promise, in fact) of what is to come:
1. Yes, we will figure out what a reasonable encoding is
2. Yes, we will figure out why it has been accorded secondary status
3. No, we won’t argue that it should be on the table, first-class part of the subject matter.
4. Rather, we will say that practice was right (all along) to treat it in a secondary fashion
5. In fact I will recommend moving it even further out of explicit subject matter view (rather than

bringing it more explicitly into view).
6. On the other hand, the cost of this move is high

V. Effectiveness

A. We will turn to the intuitions behind the notion of effectiveness next time (i.e., next Tuesday!).

—— end of file ——ðð


