
The Primary Dialectic in the Five Construals

I. Computing

A. Review
1. Today we will wrap up Part I of the course (Introduction) and start on Part II
2. Formally: we introduced the project (2 promises, 3 formal criteria, 5–6 construals, etc.)
3. Substantively: introduced two fundamental dialectics. The primary dialectic was between:

a. Meaning: associated with “mind”—i.e., the non-effective, oriented/directed, reach of
semantical phenomena across time, space, and possibility, characteristic of symbols, se-
mantics, intentionality, content.

b. Mechanism: associated with “body”—i.e., with effectiveness, with getting things done, the
material, potency aspect of computation or machines

4. The discussion of mechanism, or body, we talked about in terms of potency predicates

(about which we’ll have more to say today), which in turn raised a question about the ap-
propriate level of abstraction.. In particular, it led us to the secondary dialectic: whether
the potency or effective side of computing should be treated as
a. Concrete: in the sense that the applicable notions of effectiveness, computability, “what

can be done,” etc., should ultimately be derived from physics
b. Abstract: a characterisation of computing/computation as essentially mathematical

5. In the AOS book series, there are two more dialectics I will be using, to analyse computing:
a. Between what is static and what is dynamic: e.g., between a static program and the

dynamic process that it engenders.
b. Between the “one” and the “many” (e.g., between a single type and its many instances,

a single file and multiple copies of it, a single program and multiple executions of it, etc.);
6. Both of these pairs of issue will be of concern, throughout the class. But (for simplicity) I

won’t raise them into special named prominence, here.
B. How do these dialectics relate to computing?

1. Mechanism
2. That computing has to do with mechanism (mechanisation) is obvious. Computing is consti-

tutively involved in answering questions like the following:
a. (Leninesque) What can be done?
b. What can be effectively accomplished?

3. This fits with a general intellectual theme (since the Scientific Revolution): that what exists is
what can be constructed out of ordinary physical ingredients

4. Admittedly, as we’ve said (this is what the secondary dialectic deals with), the efficacy or
causal organisation of computers is somewhat abstract
a. Seemingly “above” the pure physical considerations of energy and material

CSci • B607 Week #3 (b) Jan 25, 2001

Copyright: © 2001 Brian Cantwell Smith Last edited Friday, February 2, 2001

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 12

b. Nevertheless, computers are undeniably concrete material objects: “natural” things built
out of physical parts.

5. Scientifically respectable, too—or so it is imagined—in an era in which “science” is equated,
if not solely with matter and materials, then at least with cause and effect.

C. Meaning
1. But there is more to computing than body. That computing has to with meaning is equally

obvious—so long as we construe ‘meaning’ sufficiently widely.
2. That is, computers also traffic in the semantic or–what philosophers call the intentional

a. As we have seen (see figure 5 of the notes from lecture 2a), intentionality is a technical
term used to cover all sorts of phenomena—language, symbols, information, interpreta-
tions, representations, codes, descriptions, models, and the like—that are about, or are
directed towards, something (typically something else).

3. The intentionality of computing is betrayed in the language we use:
a. Programming languages
b. Communication systems
c. Knowledge representation systems
d. Information processing
e. Symbol manipulation
f. Programming language semantics
g. Interpreters
h. Data bases and data structures
i. Names, identifiers, terms, etc.
j. Pointers
k. Call by value, call by reference
l. Referential transparency
m. Computational models
n. Meta-level architectures
o. Specification languages
p. … etc. etc. etc.

4. This ubiquitous language suggests that computing is not only intentional at some level ab-
straction, but intentional at the same level at which it is computational

D. As promised, we will focus on both aspects, in the body of this course.

II. Objections

A. The are two main objections that some people will raise to this bivalent characterisation, in
terms of which we are conducting the investigation

B. Non-semanticity
1. Some (many?) will object, essentially, to the first dialectic.
2. For various reasons, they will be opposed to the idea that a comprehensive theory of com-

puting should include, or rest on, a theory of semantic (intentional) phenomena.
3. In defending that position (not to study semantics or intentionality), they are liable to argue

one or more of the following four distinct positions:

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 13

a. That computation not a semantic phenomenon (and that even if we sometimes interpret
computational processes as semantic, or ascribe semantic significance to computers,
such ascription is neither intrinsic to, nor constitutive of, their being computational)

b. That even if computing does turn out to be semantic, a comprehensive theory of com-
putation should nevertheless be formulable (perhaps reductively) in non-semantical terms
i. This would be a naturalistic or reductionist theory

c. That semantics and computation are orthogonal
i. I.e., that a full theory of intentionality should be expected to consist of two parts

α A theory of semantics
β A non-semantical theory of computing (or—which is perhaps the same thing, but

perhaps not—a theory of non-semantical computing)
ii. So we should identify “computation” with mechanism (“body”)as opposed to mean-

ing (“mind”), rather than as including both.
iii. This is a view that is more common in philosophy than in computing per se.

d. That computer science has shown that semantics can be explained mechanistically—im-
plying that meaning and semantics should be expected to fall within the scope of mecha-
nism, rather than existing in dialectical tension with it

4. Replies
a. Though these positions have merit (as we will see), I still believe that it is impossible to

do justice to use of computing (CITW) unless one realises that people use computers to
model, represent, analyse, simulate, predict, explore hypotheses about, and stand in a myriad
other intentional relations to their task domains.

b. Hence: any theory of computation that meets the first (empirical) criterion must take on
semantical issues directly

c. Note that this commitment (to require a theory of computing to include an explanation
of its semantical or intentional aspect) is for the moment methodological, not substantive.
i. No particular theory of semantics is required
ii. Some objections (e.g., b and d) are (reductive) positions on the topic of semantics
iii. So they meet the condition of providing an account of semantics

d. Moreover, the claim that computing is intentional will not just be a pre-theoretic tenet
of this investigation, it will also be a “post-theoretic” result (as durable a result as any
we come to)

e. Finally—somewhat ironically—I believe we will be able to do better justice to the “non-
semantical” intuitions by understanding computation in intentional terms than if we do
not. In a way, our joint-aspect approach is the “easier” one, allowing each aspect or fea-
ture to have its natural place. That puts us in a better place to be able to understand
how they all fit together (even if they were ultimately to be shown to fit together within
a purely mechanistic framework).

5. Terminology
a. (Note for philosophers) Because of our commitment to this primary dialectic, in this

course we will use ‘computational’ in approximately the way one uses ‘logical’—as en-
compassing both aspects— and not as analogous with ‘syntactic.’

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 14

C. Simplicity
1. The other objection (to a semantical characterisation of computing) is usually be framed in

terms of simplicity, but in reality has to do with the secondary dialectic.
a. Thus someone might say: “Look, this is easy. You are making everything much too diffi-

cult. Consider the following typical story:
b. A computer is a physical device, operating according to standard mechanistic principles,

that is (or can be) semantically interpreted. Like any physical machine, it works in virtue
of its physical constitution. What makes it computational is the fact that there it sustains
a level of description—typically called the syntactic level of description—with 2 distinc-
tive properties:
i. Corresponds to, or is directly reflected in, aspects of the device’s functional organi-

sation, based on its physical constitution, which enables it to work in accord with
ordinary causal laws; and

ii. It is also a level at which the device (or device’s behaviour) can be coherently se-
mantically interpreted.

c. That is (as one says), the concrete causal structure “mirrors” the abstract functional or
“computational” structure.

d. For example, consider a simple adding machine. The syntactic level of description is
formulated in terms of the binary numerals (not numbers!) 0 and 1, along with the stan-
dard syntactic rules for binary addition. The 0s and 1s are implemented by functional
properties, reflected in the device’s physical structure (signals of 0.0 and 3.2 volts, say).
The device is so constructed that, in virtue of this mapping of syntactic properties (via
function) onto physical properties, it obeys the aforementioned rules. This means, in
turn, that if we interpret the numerals as standing for the numbers zero and one, in the
ordinary way, then we can interpret the machine as performing addition.”

2. Replies
a. This isn’t a bad characterisation, on the face of it.
b. For example: it makes explicit reference both to semantics and to “working”—both

principles that we are committed to take seriously
c. But there are several problems with it—or at least issues that it leaves open:

i. There is a question of how the syntactic properties relate to the semantic ones. Ac-
cording to the FSM construal (see below), they are independent. In fact if you add
that independence claim, the above story essentially turns into the FSM story. But as
stated above, the story doesn’t include that constraint—what in philosophy is often
known as the “formality condition.” So there is a question as to exactly what sys-
tems the foregoing story would apply to, without that restriction.

ii. There is also a question as to what properties are syntactic. When different logics
are presented, one is typically given a particular system, with relatively evident syn-
tactic properties. But we are interested in the general case: what is it to be a syntactic
property? That question would have to be answered, in order for the foregoing story
to be a candidate theory.

d. The main thing, though, is that this story is essentially (modulo issues of formality) the
FSM construal. And that is the construal we are going to look at first. So in a way, we
can take this story as leading into the next major substantive part of the course.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 15

III. Plan

A. Three more things need to be talked about briefly, before we take on that first construal.
B. Strategy

1. Our plan is to look at each of the two primary aspects (meaning and mechanism) in each of
the five construals
a. For starters, note that semantic terms figure in several of the construal’s names:

i. Formal symbol manipulation
ii. Information processing
iii. Physical symbol systems
iv. Rule-following
v. Maybe even: effective computing

2. A brief synopsis of how the issues figure, on the surface, is given in figure 1 (above).
3. It’s already clear what we will discover: we are in far better shape on the mechanism or

“body” side of the house than on the semantical / “mind” side.
4. We can’t be complacent about the “body” side, though. We’re not in very good shape there,

either!

Mechanism Meaning

FSM Computers work in virtue of the syntactic (non-
semantic) aspects of the ingredient symbols,
where the notion of “syntax” is constrained to
be effective

Computation is the manipulation of symbols,
whereas symbols (at least arguably!—see the
FSM critique) are intentional or semantically
interpreted (or interpretable) entities.

EC Effective computability—notion of effectiveness
is exactly what we are talking about

Unclear—watch this space!

RF What it is to follow a rule (as opposed to the
rule’s merely holding of something, has to do
with doing something substantive or effective

Unclear—does the “following” require un-
derstanding, or some other form of inten-
tionality? or is it just blind “acting in accord-
ance with”? or “being causally driven by”?
we’ll have to figure out

IP Notion of processing gets directly at the effec-
tive dimension

Information is (again—arguably!) already an
intentional notion. But (as we will see) a
number of theoretical approaches deal only
minimally, if at all, with informational content.

DSM Least clear of the lot. But still there is an effec-
tive, “do-something” assumption in the notion
of a machine (that is: we are not taking DSM to
be an (even) more general “digital system” con-
strual, so as to allow a digital system like set
theory to count as a computer

Doesn’t look semantic at all

Figure 1 — The Primary Dialectic, in the Five Main Construals

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 16

C. Semantics in computing
1. We need to distinguish programs and processes, to understand how semantics’ is used
2. Ontologically, make a 3-way distinction, among (see figure 2):

a. Program: the static, textual entity (as in an Emacs buffer)
b. Process: dynamic, active behaviour, that happens when the program is run or executed.
c. Task domain: the (typically external) world or subject matter that the program/proc-

ess is about.
3. In terms of this picture, distinguish two semantic relations:

 . Program semantics: α, from program to process
b. Process semantics: β, from process to world

4. To confuse them is essentially an issue of use and mention
5. However, two complexities make dealing with them tricky:

a. We have virtually no ontologically
sound way of treating processes—as
entities in their own right. So proc-
esses (and behaviour) are therefore
usually modelled, mathematically.

b. Identifiers in programs are often
used as if they referred to entities in
the task domain—i.e., as if the proc-
ess ingredients were (semantically)
transparent. This makes separating
out the two relations very difficult.

6. For more details, cf. my “One Hundred
Billion Lines of C++”, available on the
website.

7. In what follows, I’ll try to identify which
relation—α or β—is being talked about,
whenever semantical issues come up.

B. Formality
1. One other issue that we didn’t address: that of method
2. Primary methodological concern of the investigation is with formality

3. Consensus that computation is somehow “formal” is astonishingly widespread
a. Ontologically: computation is formal, involves the manipulation of formal symbols, etc.
b. Methodological: computation is such that it should be studied formally, etc.

4. Won’t say much about it here, except to say that formality
a. Is a major interest of mine
b. Is an extraordinarily serious issue, with implications that will ultimately transform our

understanding of the metaphysical basis of all of science.
5. Keep it in mind, though in the background. We will come back to it from time to time, in

each construal—especially in the last week of the semester.

Task domain
(subject matter)

Program
begin proc Test(n,m)
 if n = o then …
 …
 end

Process

α

β

Figure 2 — Program, Process, World

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 17

Part II — Formal Symbol Manipulation

II. Introduction

A. Introduction
1. Finally! Let’s turn to Part II of the course: Formal Symbol Manipulation (FSM)
2. This construal has “pride of place”

a. Historically: Formal symbol manipulation gets at the intellectual conception, based on
logic, from which computing arose.

b. Substantially: of the five primary construals, FSM addresses the primary dialectic most di-
rectly.

c. Methodologically: it also deals with formality explicitly.
3. All three reasons recommend it for first-place treatment.
4. FSM is the construal of computing most common in logic, cognitive science, philosophy of mind,

and (to a lesser extent) Artificial Intelligence
a. Issues we talk about for the next few weeks will therefore feel more familiar (perhaps

seem more important) to people from these traditions, than to computer scientists.
b. In Part III, on effective computability, Turing machines, etc., the tables will turn.
c. That part of the course will be more familiar to computer scientists, but less so to cog-

nitive scientists and philosophers.
B. Miscellaneous

1. Readings (for Part II)
a. Primary: the first few chapters of AOS Vol. II: are available on the web site

i. Note: AOS Vol. II Chapter 2 (Explanatory Critique) is the most difficult of any of
the AOS chapters (it is very philosophical).

ii. Don’t be disheartened. Subsequent chapters are much easier!
b. Secondary: variety of papers, listed in the syllabus, and included in the class reader.

C. History
1. Formality: old as the Greeks

a. Won’t here tell that story (though a story worth telling)
b. Theme of the 20th century (in art and music, as well as intellectually)

2. Focus in particular on the notion as it comes into computing through logic.
D. Plan

1. I will argue that the construal fails in three ways:
a. Conceptually: independent of its applicability to computation, it turns out to rest on a

mixture of different notions and intuitions, some in tension with each other, some in
outright conflict.

b. Empirically: no one of these readings is sufficient to reconstruct practice—and some
are demonstrably false. In the general case, real-world computer systems can neither be
reduced to, nor explained by, any identifiably formal subspecies of generalised symbol
manipulation.

c. Explanatorily: Even if computation were formal, on any of the different readings of
what formal symbol manipulation may mean, those facts would not achieve for comput-

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 18

ing the theoretical safety or naturalistic cleanliness and palatability that is sometimes
imagined.

2. Quite a lot to have going against it.
3. Yet based on a penetrating insight into the nature of intentionality (applicable to both people

and machines)
a. Alone of the six construals to get at this
b. Absolutely necessary to hang onto, in constructing a new account

4. Aim of the investigation: dig that positive moral out, and free it from its “formal” clutches.
E. Method

1. Two predicates under investigation in this critique: formal and computational
a. Sometimes confusing which is under analysis
b. Primarily, computing.
c. Will assess readings of ‘formal’ (as with other

proposals for what it is to be computation) wrt
their viability as an account of what computing is like.

2. Given that, as we said a few weeks ago, there are
two ways a proposal can fail (figure 3): too narrow,
or too broad.

III. Conceptual (“what does it say?”)

A. Introduction
1. Three words: ‘formal’, ‘symbol’, and ‘manipulation’
2. Look at them in turn, in this order:

a. Symbol
b. Manipulation
c. Formal

B. Symbol

1. FSM takes computation to be intentional—ineradicably semantic
a. If don’t want an intentional construal of computing, have others to choose from
b. Important, because some people view formal symbol manipulation as non-semantical
c. Will look at what kind of “non-semanticity” in exhaustive and exhausting depth
d. Bottom line:

Formality’s rejection of semantics is like the prohibitionists’ dismissal of alcohol,
not the physicists prohibition of the luminiferous ether. The position’s integrity
requires the existence of that against which it is arrayed.

e. If semantics were absent, then FSM would collapse in vacuity
f. Call such a construal stuff manipulation

2. Restriction
a. Should ‘symbol’ be restricted (as in “non-symbolic” or “anti–symbolic” cog sci)?
b. No. Because if we do restrict it, then we immediately fall off the “too narrow” cliff.
c. For example, can’t restrict it to:

Correct
theory

Computation

too narrow too broad

Figure 3 — Two ways to fail

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 19

i. Conceptual
ii. Explicit
iii. Derivative

α This one is of the wrong kind. Like secondary readings of computing. If comput-
ing does have derivative semantics, that should be shown, not assumed

β General problem of preëmptive analysis.
d. So take ‘symbol’ widely, to include representations, data structures, continuous fields

and von Neumann stores and Lisp heaps and just about anything else you can imagine.
3. A note on people, in passing

a. We are symbol manipulators at least in part (e.g., when doing mathematics)
b. One might wonder whether we always are—i.e., whether that is what it is to think.
c. If one weren’t asking whether the formal symbol manipulation conception is applicable

to computing, one might want to accept some of the above restrictions on the notion of
‘symbol’—and then ask (as in cognitive science) whether people are symbol manipula-
tors, or even whether they are formal symbol manipulators, given such a restricted con-
ception.

d. We won’t pursue that tack here, but for the record, is would be a substantial inquiry.
e. By not restricting the notion of a ‘symbol,’ you might think that our investigation won’t

have much impact on that project.
f. However, there is this relation

i. Given a broadened notion of ‘symbol,’ we will challenge (pretty hard) the idea of
formality.

ii. If one were to ask whether people are symbol manipulators, as just suggested, it
would still remain open whether we are formal symbol manipulators.

iii. It is very likely that the results we arrive at here, in challenging the formality of com-
puting, might apply to the formality of people, even on that restricted conception.

g. In sum, there is more “cross-over” from this analysis to that than might at first appear.
h. Nevertheless, I won’t consider that (human) question further, here.

C. Manipulation

1. For now, just note that this indexes the potency or “effective” aspect of computing
2. That is, the construal

a. Makes a claim that these are not just (abstract, static) symbol systems, enjoying some
kind of Platonic existence

b. Rather, they involve machinery, the doing of something (just as we said in characterising
the main mind/body dialectic)

3. Not a lot else to say yet. But that does not mean that this word is unimportant. Far from it.
4. Will get to more presently.

D. Formal

1. This is the only construal to explicitly use the term ‘formal’
2. Because we haven’t been able to restrict ‘symbol,’ most of the weight of the construal hangs on

this term.
3. That is: it is the word ‘formal,’ in this construal, that “wears the trousers.”

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 20

4. We will take it to be a predicate on manipulation, not on symbols themselves
a. I.e., parse it as: (formal (symbol manipulation))
b. Not as: ((formal symbol) manipulation)
c. I.e., the formal manipulation of (perfectly semantical) symbols, not as the manipulation of

formal symbols
5. The question is what the formality comes to
6. Of the space of possible symbol manipulation, what is it that characterizes the “formal” species?
7. Motivation

a. Before looking at possible definitions, look at something formality is thought to convey
b. A wonderful conceptual cleanliness or safety

i. Cleanliness, naturalistic palatability denied non-formal systems (perhaps including us)
ii. A kind of middle way wrt semantics

c. On the one hand, as we’ve said, FSM assumes that computers are intentional (that’s the
point of the ‘symbol’ manipulation part)

d. On the other, they are thought to be
“rescued from all the really difficult se-
mantical questions—how reference
arises, what establishes the conditions
for semantic success, what normative
dimension of significance comes to, how
truth relates to beauty and goodness
(the sorts of questions that a full theory
of human intentionality would have to
wrestle with).

e. I.e., a middle ground between the natu-
ralistically palatable physical substrate,
and the higher reaches of intentional
mystery

8. As this first critique moves forward, we will
want to keep an eye on various readings of
formality, to see whether it secures, for for-
mal symbol systems, this essential middle
ground, this intermediate position.

IV. Two readings

A. Strategy
1. Remember what we did (in part I) with information processing: broke it down into (four, as

it happens) readings, underneath the main construal.
2. Now do the same for FSM (see figure 4).

B. Two readings
1. Positive

a. Works in virtue of the syntax or shape or form of the ingredient symbols
b. Cf. potency predicates (grammar, syntax, form, shape, physical, causal, effective, etc.)

Computation

A. Primary (constitutive) ✔

B. Secondary (preëmptive) ✘

1. Formal symbol manipulation�

2. Effective computability
3. Rule following
4. Digital state machines
5. Information processing

6. Physical symbol systems

a. Lay
b. Popular
c. Syntactic (Shannon/Weaver)
d. Semantic

1. Demeaning
2. Negative
3. Derivative

… e.g. only mechanisms
… e.g. non-conscious
… e.g. universal

a. Positive
b. Negative

✘

Figure 4—Investigative Structure

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 21

c. The FSM construal puts the emphasis squarely on one of them.
2. Negative

a. Works independent of the symbol’s semantics
b. Example: in logic, say, an inference about Socrates’ mortality. Inference (in a formal sys-

tem) would have not to depend on: Socrates, his mortality, the relation between the
symbols that that person, etc.

c. It is this negative characterisation that is thought to convey on the whole situation the
wonderful conceptual cleanliness cited earlier (no irreducible mystery, no naturalistic
unpalatability).

C. Schematise it as follows
1. Identify three classes of predicates (cf. AOS pages II·1·23 and II·2·24)

a. Syntactic: those properties involved in what might be called a system’s grammatical
regularities;

b. Effective: those properties in terms of which the mechanical operation of the system is
defined—i.e., that play a causal role in engendering behaviour; and

c. Semantic: such properties as truth, reference, meaning, etc.
2. In terms of this division, the positive reading of the formal symbol manipulation claim can

then be taken as claiming that the syntactic properties are the effective ones:

Positive: SYNTACTIC = EFFECTIVE

3. The negative reading, in contrast, can be understood as a claim that the effective and seman-
tic classes do not overlap:

Negative: EFFECTIVE ∩ SEMANTIC = ∅ .

4. Assumption that the two readings, positive and negative, come to the same thing, in any or
all instances, depends in part on what is perhaps the most universal and unquestioned claim in
the vicinity: that a formal symbol systems’ syntactic and semantic properties are disjoint:

Disjointness: SYNTACTIC ∩ SEMANTICS = ∅

D. Fodor, reigning apologist of formality in cog. sci, recognises this strange conceptual structure:
1. “What makes syntactic operations a species of formal operations is that being syntactic is a

way of not being semantic. Formal operations are the ones that are specified without refer-
ence to such semantic properties of representations as, for example, truth, reference, and
meaning. Since we don’t know how to complete this list (since, that is, we don’t know what
semantic properties there are), I see no responsible way of saying what, in general, formality
amounts to. The notion of formality will thus have to remain intuitive and metaphoric, at
least for present purposes: formal operations apply in terms of the, as it were, shapes of the
objects in their domains.”1

2. I.e., Fodor:
a. Identifies formality negatively
b. Then takes the positive (syntactic) reading to be a species of nonsemanticity, implicitly

relying on the near-universal assumption (“disjointness”), expressed above, that syntac-

1From Methodological Solipsism (emphasis added)

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 22

tic and semantic properties do not
overlap.

c. By the end, equates formality with ef-
fectiveness—which he recognises, in his
hedged reference to “as it were,
shapes”, to be as-yet unreconstructed.

E. Discussion of positive
1. Notion of “work” is effective
2. Not ‘work’ as in “how does it work that

n/7 is of the form .(2n)(4n)(8n)?”
3. Means work effectively, or physically
4. Threat, though, is that it will reduce to va-

cuity, in virtue of “syntax” or “form” re-
ducing to anything that is causally effective,
and “work” being interpreted as “works,
effectively”, so that the whole thesis be-
comes: a formal system is one that works,
mechanically, in virtue of the possession of effective properties—i.e., to materialism (or stuff
manipulation again)

5. Won’t spend more time on it now.
6. Defer the intuitions underlying it (especially the shape intuitions) to the second construal

(and associated critique), which has to do with how things work
7. See figure 5.

F. Next Tuesday: we’ll pick up discussion of negative reading(s) of formality

—— end of file ——ðð

Primary (constitutive) ✔

1. Formal symbol manipulation

2. Effective computability
3. Rule following
4. Digital state machines
5. Information processing

6. Physical symbol systems

a. Lay
b. Popular
c. Syntactic
d. Semantic

a. Positive
b. Negative

✘

Figure 5—Deferring “positive” formality

