
Mechanism
(The Problem of the “Body”)

I. Review (Logic)

A. Intro
1. Last time, we talked about logic
2. We didn’t go into technical details, focusing in-

stead on its underlying conceptual structure.
B. Logic

1. The conceptual structure is given in figure 1.
2. It consists of

a. A syntactic domain S, consisting of sentences,
identifiers, tokens, etc.

b. A semantic domain D, consisting of the entities that the syntactic items denote or signify
or are about (objects, states of affairs, Truth or Falsity, etc.)

c. A “derivability” relation (‘|–’), from sentences (or other syntactic items) onto sentences,
defined in terms of the syntactic or formal properties of the syntactic items.

d. An “interpretation function” ρ, mapping syntactic items onto what they are about (in D);
e. An “entailment relation” (‘|=’) that, like derivability, maps from sentences (or other syn-

tactic items) onto sentences, but is defined (vertically, in the diagram) in terms of the in-
terpretation function ρ—and (horizontally) in terms of something like “truth-theoretic
consequence” (or a subset relation) between (sets of) interpretations of the sentences.

C. Constraints
1. The most important conceptual point is the restriction of the mechanical.

a. Note that the semantic relations (‘⇒ ’
and ‘|=’) must be perfectly well defined
(in order for the logical system to be
conceptually coherent)

b. In addition, the syntactic relation (‘→’
or ‘|–’) must be more restricted than
what is the case semantically (‘|=’).

c. If ‘→’ weren’t more restrictive than ‘‘⇒ ’’
then logic would be trivial—or vacuous:
we could just define derivability (‘|–’) to
be identical to entailment (‘|=’), and all
truths would be instantly derivable.

CSci • B607 Week #3 (a) Jan 23, 2001

Copyright: © 2001 Brian Cantwell Smith Last edited Sunday, January 21, 2001

⊃

S1, S2, …
S S

D D’

S’

ρ ρ

D D

Figure 1 — Basic Logic

⊃

S1, S2, …
S

MS

D D’

S’

MD

ρ ρ
MS1,MS2

D

Figure 2 — Model-theoretic Logic

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 2

d. In other words, the conceptual preconditions conditions for the possibility of logic (the possi-
bility of it being a substantial topic) require that what is (formally) derivable be (intension-
ally) distinct from what is semantically entailed.

2. Norms
a. Given those constraints, there are basically two norms:

i. Soundness: that what can be derived is entailed
ii. Completeness: that what is entailed be derivable.

B. Models
1. We will call the conception of logic we’ve been using so far (e.g., in figure 1) direct.
2. However logic is often studied model-theoretically, as indicated in figure 2 (previous page)
3. Instead of talking directly about sentences or formulae, and their types, one instead deals

with mathematical models of those sentences.
4. Similarly, instead of

talking directly about
the denotations or ref-
erences or interpreta-
tions of sentences, one
talks in terms of models
of those denotations.

5. Terminologically, there
is a confusion:
a. So far, I have used

the term ‘model’ in
a way in which it is
used in English, and also (e.g.) in science—as, for example, in constructing a model of the
solar system, or a model of gene replication, or a (computational) model of a tsunami.

b. In logic, however, the term ‘model’ is used differently, in a very non-standard way.
c. As indicated in figure 3, one talks (in logic) about a “model of a sentence” (or other syn-

tactic entity) where really what is being talked about is a model of the denotation or inter-
pretation of a sentence.

d. It is absolutely vital to be clear on this distinction: the difference being one of seman-
tics—the very subject we are trying to understand.

C. Summary
1. This basic picture of the interplay of mechanical (syntactic, causal, effective—see below)

phenomena and semantic (denotation, interpretation, etc.) phenomena is very important to
understand.

2. Its development was also a stunning achievement, in 20th cent. philosophy & mathematics.
3. Keep in mind the fundamental structure and desideratum:

◆ It is the semantic relations (‘⇒ ’ and ‘|=’) that matter;
◆ It is the causal relations (‘→’ or ‘|–’) that do the work.
◆ The overarching desideratum is to have, or arrange for, the causal relations and

processes honour the semantic relations (i.e., to have ‘|–’ mirror or match ‘|=’).

⊃

S1, S2, …
S

MS

D D’

S’

MD

ρ ρ
MS1,MS2

D

In logic this relation
is often called ‘model’
(i.e., semantic structure
D is called a “model”
of a sentence S)

Figure 3 — The term ‘model’ in logic

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 3

D. Diagrams
1. For clarity and consistency, I have adopted a number of conventions in these diagrams,

which we will continue to honour, throughout our discussions of computing.
2. Mechanism

a. The causal/mechanical/syntactic operations are in the “upper half” of the diagram, and
run horizontally

b. Causal relations (such as derivability) will normally be indicated with single arrows (‘→’)
3. Meaning (Semantics)

a. Mathematical or semantic states of affairs, in the task domain, are in the “lower half”
b. Semantic relations (such as denotation) are indicated with double arrows (‘⇒ ’)
c. By and large, semantic directedness (“denotation”, etc.) will be indicated vertically.

4. Note that these two conventions fit with the standard notations for derivability (‘|–’) and en-
tailment (‘|=’).

5. Modelling relations, in the ordinary English and scientific sense of the word (paradigmatically
including modelling that is an epistemic phenomenon: part of the theory—i.e., as something
like theoretical equipment) will be indicated with triple lines (‘≡’).

II. Mechanism

A. Introduction
1. With this much of a discussion of meaning and semantics (last Tuesday), and this much of a

picture of how logic works, and especially of how it embodies a solution to the fundamental
and primary dialectic between meaning and mechanism, we need to turn to the other half of
the primary dialectic: the issue of mechanism

2. This is the “body” side of the “mind/body” problem for machines.
3. It is also the dimension that I have referred to using the term “effectiveness”

B. Physicality
1. By introducing effectiveness with respect to a notion of “body,” I am treating it as if it were

essentially causal.
2. That is: I’m identifying effectiveness with physical or material properties (of a system)
3. This makes sense for two reasons

a. Intuitively sensible (ontologically)
i. Some kind of materiality seems implicit in claim that computers are mechanisms
ii. But that just says computers must be physically implemented to be concretely real
iii. Deeper claim at stake: that very notion of effective computability (the core concept

in terms of which the subject is traditionally defined) ultimately derives from physi-
cal properties of the underlying devices or systems on which the computations run.

iv. I.e., that “computability” (whether something can be computed) is a physical issue
b. Methodologically sensible

i. Some such physicalist sentiment seems necessary in order to in order to naturalise

computing: to show that it is continuous with the rest of natural science.
ii. And if computation can’t be naturalised, we would not have met the conditions for

what we are looking for: a comprehensive theory.
4. So it might seem like a natural move.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 4

C. Problem
1. But there is a problem
2. Most current theories treat computing (or computability) and derivability as abstract
3. This move is based on a thesis of medium independence

a. Based on two underlying intuitions
i. “Same” computation: carried out on variety of different (types) of physical device
ii. Variety of different computations can run on “same”—i.e., single—physical device.

b. First intuition more traditionally cited. But something like the second (which underlies
notion of universality) plays an equally strong role in the tradition

c. I.e., presumptive two-way independence (physical substrate vs. realized computation)
4. Traditionally, therefore, formal definitions of computability make no reference to concrete

physical properties
5. Note: this strategy, too, looks overwhelmingly sensible

a. Nothing is said—because seemingly nothing can be said—about:
i. How much energy it takes to perform primitive operations in standard models

(“add one,” erase a mark on a tape, take “and” of two bits, clear a register, etc.)
ii. Whether such operations happen mechanically, electrically, optically, or biologically,
iii. Whether they are to be executed primitively by a microscopic gate, or sequentially

by a computer the size of a star cluster
iv. … and so on and so forth.

b. Similarly, terms like “writing” and “erasing” are understood, if not quite entirely meta-
phorically (like the ‘charm’ of quarks), then at least in a very abstract sense.

c. Similarly, notions of space and time are thought to be something like abstract or meta-
phorical (though which—and what either statement means—is very hard to say).

6. Result: these considerations have driven theoretical computer science
a. Away from physics and materials
b. Towards abstract mathematics.

D. Status
1. What is going on?
2. What is the relation between computational effectiveness and underlying physicality?
3. Should the “mechanical” aspect of computing be understood abstractly, concretely—or in

some entirely new way (perhaps half-way in between)?
4. What is the relation between a computation and a computer?
5. Is a theory of computing going to be part of natural science, or part of mathematics?

E. Call these things question of the body

F. Similarly, we will take the implicit dialectic that this question deals with—between the abstract
and the concrete—to the be secondary dialectic of computing. Dealing adequately with it—ex-
plaining all these various intuitions, resolving just what “level of abstraction” we want to talk to
about computers and computation in terms of—this, too, will be an essential mandate on any
adequate theory of computation.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 5

III. Weak vs. strong abstraction

A. To start getting at what is going on, we will make a distinction between two kinds of abstraction
1. Call something weakly abstract if it is (necessarily) concrete, but nevertheless constituted

or defined at some “higher” level than that of elementary physical properties.
2. Call something strongly abstract if it is not concrete at all—i.e., in the sense in which

numbers, types, properties (and, according to some people, ideas) are thought to be ab-
stract, i.e., not locatable in space-time, not occurrent

B. Examples
1. Weakly abstract

a. Hospitals (since they are constituted—individuated, identified—without concern for ar-
rangements of proteins in the 2 × 4s in their walls), water molecules, whirlpools, traffic
jams, détente, consumer confidence, the particularly-configured strike zone through
which the ball passed that Joe McGuire hit as his 100th home run.

b. Note that not all of these things are echt physical objects.
c. Some lack physical heft (détente, consumer confidence, strike zones, whirlpools?)
d. Nevertheless, they are all still perfectly concrete, in this limiting sense: if you removed

(or blew up) the physical universe, they would go away. (Post-explosion, you would de-
scribe them in the past tense.)

e. In that sense they differ from numbers.
2. Strongly abstract

a. Numbers, sets
b. Properties, relations
c. “Concepts” and “Ideas” (in the sense in which you and I can share the very same (nu-

merically-identical) concept or idea.
d. Types—including types of physical object. Thus the type ‘tiger’ and the type ‘city’ are

strongly abstract, no matter how concrete individual tigers and cities are.
e. Words (as opposed to token inscriptions, or concrete utterances, of words), since we

normally talk about words as types.
C. Discussion

1. Weak abstraction is extremely weak. That’s the point. Just about everything—including, ar-
guably, every concrete physical object—is at least weakly abstract.1

2. Only strong abstraction is opposed to concreteness.
D. Computation

1. Our question: is the kind of abstraction relevant to computational effectiveness strong,
weak—or some third type?

2. In particular, when a “computation” is (in traditional theory) identified as an abstract object,
which of the following is intended:
a. That it is a strongly abstract particular (individual)?
b. That it is a weakly abstract type—in the sense of being a type (hence itself strongly ab-

1At least every extended or reidentifiable concrete object—i.e., every object other than the putative space-time
points that physicists use to describe fields. I myself do not believe that space-time points are objects, however.

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 6

stract) of weakly abstract (but nevertheless fully concrete) things—namely, concrete
computations, or concrete computational processes?2

c. That it is a strongly abstract type—in the sense of being a type (and hence itself strongly
abstract) of individuals, each of which is also strongly abstract?

d. Or something else entirely
3. Nothing in current theories answers this question.
4. This is a stunning ontological omission.

IV. Potency predicates

A. Setup
1. Over the years, people have used a spate of different predicates to get at computation’s first

(mechanical, effective, “do-something”) aspect.
2. Thirteen of the most important are listed in figure 4.
3. Call them potency predicates3

B. Potency predicates
1. Physical

a. Three—physical, causal, and material—clearly and
unambiguously have to do with a system’s physical
embodiment

b. Two—local and internal—depend on the existence
(establishment) of a boundary between the system
and its environment, and boundaries presumably
have to do with the space occupied by the system, a
physical (at least geometrical) notion.4

c. One—“like shape”— in reference to Fodor’s claim
that computational operations “apply in terms of
the, as it were, shapes of the” system’s internal struc-
tures,5 and that “syntax [see below] essentially re-
duces to shape.” Whatever else shape is, it pre-
sumably has something to do with causally efficacy.

2Note: throughout, I will use “weakly abstract type” and “strongly abstract type” to refer, respectively, to things
that are strongly abstract: types of weakly abstract thing, and types of strongly abstract thing.
3As usual, I take predicates to be representational items—typically, elements of language—and properties to be on-
tological features of the world that predicates denote. I am calling this a list of potency predicates, rather than po-
tency properties, because the entries reflect distinct ways of speaking and describing the world. It is far from clear
what (classes of) properties each entry denotes—whether they are the same, overlapping, distinct, or even refer at
all. Figuring out the semantics of the entries in the list is one way of characterising the whole project.
4Some people will prefer to include ‘local’ and ‘internal’ in the second, functional group, on the grounds that
strongly abstract systems can still have “insides” and “outsides” That’s fine; nothing hangs on this taxonomy. My
only concern is with the warrant for the boundary: who draws it? what physical or metaphysical or conceptual
distinction does it represent? Is it justified in the world, or an epistemic projection of the theorist?
5Ref Fodor. Note that he assumes that the internal elements are symbols; for now, not a lot depends on that.

Potency predicates

A. Physical

B. Functional

1. Physical
2. Causal
3. Material
4. “Shape”
5. Internal
6. Local

1. Functional
2. Mechanical
3. Effective
4. (Computational1)

C. Linguistic

1. Formal
2. Syntactic
3. Grammatical

✔

Figure 4—Potency Predicates

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 7

2. Functional6

a. Three—functional, mechanical, and effective—that lean towards notions of role or func-
tion, away from detailed facts of material embodiment.

b. Also ‘computational1’—i.e., the use of ‘computational’ in a single-aspect sense, like ‘syn-
tactic’, to refer to computation’s effective or mechanical aspect, as distinct from its se-
mantic side (common in philosophy of mind—but bracketed to indicate my claim that
this usage is essentially mistaken).

3. Linguistic

a. Three—formal, syntactic, and grammatical—that seem applicable only to things like
words, sentence tokens, formulae, and expressions in a formal language.

b. These terms, though, are perhaps the most common potency predicates used to de-
scribe computation, so they will be of special interest to us here.

C. Metaphysical properties
1. Introduction

a. Figure 5 lists another (fourth) set of related types of property:
metaphysical, having to do with what’s necessary to something’s
being the thing, or being the kind of thing, that it is.

b. Three: essential, intrinsic, constitutive
2. Discussion

a. Relation
i. No means obvious that intrinsic or constitutive properties should have anything

specially to do with effectiveness
ii. Nevertheless, many views about what computing is, and about how it should be studied,

involve ties between and among these sets, including these metaphysical ones.
iii. E.g.: overarching presuppositions of physicalism mandate that the properties in vir-

tue of which computers do things must be intrinsic properties, on pain of metaphysi-
cal inconsistency.

b. Example: Searle’s second argument against the computational view of mind:7

i. Computers work in virtue of syntactic properties
ii. Syntactic properties are not intrinsic properties
iii. Consciousness is an intrinsic property
iv. Therefore consciousness cannot be computational

c. Or (an implicit parallel set of assumptions that he also seems to believe):
i. Computers work in virtue of syntactic, hence non-intrinsic, properties
ii. Natural kinds are constituted by intrinsic properties

6Note (for philosophers): functionalism was (supposedly) a doctrine, about the mind, according to which mental
states are individuated “functionally,” on supposed analogue to how computational machines states are individu-
ated. What is not clear, however, from the philosophical discussion of functionalism, is what kind of individuation
functional individuation is. One of the conclusions of Part III of the course will be that functionalist individuation is
usually radically more physical (concrete) than is typically recognised.
7This is the argument that he describes as showing that syntax does not inhere in the physics. The more famous first
argument, involving the Chinese Room, is an argument to the effect that semantics does not inhere in the syntax.

Metaphysical

1. Constitutive
2. Essential
3. Intrinsic

Figure 5

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 8

iii. Science, which studies natural kinds, is only interested in intrinsic properties
iv. “Being a computer” cannot be a natural kind, since it is not defined in terms of an

intrinsic property
v. Hence being computational cannot be scientifically explanatory

3. These sorts of chained assumptions (implicit arguments) we at least to expose—or rout.
D. Strategy

1. We will select ‘effective’ as the potency predicate of choice.
2. That is, we’ll stipulate that com-

puters work—do things, accom-
plish what they accomplish—in
virtue of their effective properties.

3. I.e., from here forward, we will
refer to computing’s first aspect
as its effective aspect: its activity-
or result-oriented dimension, the
aspect of its character having to
do with its being a mechanism.

4. This is a modal claim: not just as-
suming (i) that computation is, in
fact, effective, but (ii) that com-
puting is what it is (in part) in virtue of that effectiveness.

5. In sum, situation is as in figure 6
a. I.e., will use ‘effective’ where some (e.g., philosophers of mind) would have used a uni-

valent sense of ‘computational’ (i.e., what I am calling “[computational1]”)
b. They would have said “A theory of mind will consist of two components: a computa-

tional account of how it works, and a semantic or intentional account of how it has
(broad semantic) content.”

c. I will instead say “A computational theory of mind should be expected to consist of two
components: an effective account of how it works, and an intentional or semantical ac-
count of how it is has (broad semantic) content.”

E. Question of the body

1. The question of scientific interest is what effectiveness is.
2. Some different ways of asking it (at root really just one question):

a. What is the metaphysical origin of the classic “computability constraints” (which I will
eventually rename “effectiveness constraints”)?

b. Does computational effectiveness derive from physics?
i. If so, then how—and to what degree?
ii. If not, then how are the two related?

c. What identity and individuation conditions underlie the notion (or notions) of the “same
computation”? What is the right (strong or weak) notion of abstraction in terms of
which to formulate it?

d. How should the principle of (partial or full) “medium independence” be explained—the
idea that the “same computation” can be implemented on different kinds of hardware,

State 1 State 2

D D’

Effective aspect (what happens)

Semantic aspect
(what it means)

Figure 6 — Two aspects of computing

 Spring 2001 B607 • Philosophy of Computing • Notes Page 3 • 9

and that different computations can run on the same piece of hardware?
e. What is the relation between a computation and a computer?
f. Will a theory of computing be part of natural science, or part of mathematics?

i. If the former (part of science), how is that to be rationalised with results in logic and
mathematics (e.g., about recursive functions, abstract computability, etc.)?

ii. If the latter (part of mathematics), what does that imply for sciences that rely on no-
tions of computing in their own theorizing—such as the computational theory of
mind? Do current mathematised theories of computability implicitly support a kind
of property dualism?

3. Equivalently
a. Another way to task the question:

i. Did God, in creating the world, made two kinds of efficacy?8

α A concrete or physical one, having to do with energy, materials, and literal push-
ing and shoving—what is normally called causal efficacy? and

β An abstract one, having to do with computability, which we are calling computa-
tional effectiveness?

ii. Or did God provide efficacy in just one form—suggesting that the latter may be
merely a reflection of the former, perhaps in abstract guise?

b. This study will ultimately settle on the latter answer: there is just one.
i. Ontologically, this is the preferable result: it paints a picture of a simpler world than

would have been the case, had the answer been two.
ii. But conceptually and explanatorily not so simple.
iii. Will require showing (among other things) that all of computer science’s fundamen-

tal theorems—the halting theorem, Gödel’s incompleteness results, results about
computational complexity bounds, etc.—can be reformulated in terms of, and de-
rived from, a (perhaps reconstituted) physics.

V. Plan

A. Summary
1. OK, this is enough introduction to the issues
2. Starting Thursday, we’ll come back to computation, and start looking at the first construal of

computing: that what it is to be a computer is to be a formal symbol manipulator.

—— end of file ——ðð

8I’m not suggesting that I believe in God; this is just a rhetorical device.

