
On Implementation
Due — Tuesday, January 30, 2001 (9:30 a.m.)

I. Instructions

A. For general instructions see Problem Set #1 (distributed January 11).
B. Question II.C.5 refers to Haugeland’s characterisation of computation,1 which is approximately

the following (he is sometimes unclear as to whether interpretability is necessary to, or only
convenient for, the notion of computation):

semantic engine ⇒ computer + interpretable
computer ⇒ automatic + formal
formal ⇒ self-contained + perfectly-definite + finitely-checkable

II. Assignment

A. It is standard computational practice to implement one language or virtual machine on top of
another. In fact one often constructs whole implementation hierarchies: Intel IA-32 machine lan-
guage ⇒ C++ ⇒ Scheme ⇒ a knowledge representation language ⇒ an expert system; etc.
When one does this, it seems that properties that hold at one level may or may not hold at an-
other above or below it (e.g., Lisp is recursive, whereas IA-32 machine language is not, even
though you can implement Lisp in machine language).

B. We will say that a property φ:

1. Crosses implementation boundaries upwards just in case

a. If it holds at level k, in a hierarchy of abstractions of a given system (i.e., if it is true of
the system, according to a description of it at level k), it must also hold at all levels j > k
—i.e., at all “higher” or “more abstract” levels of description of that same system.2

b. Or to say the same thing in a different way: a property φ crosses implementation bounda-

1See Haugeland’s “Semantic Engines” (available for copying in Lindley 210).
2By “must” is meant “necessarily”, or in all cases.

Suppose we ask whether “recursiveness crosses implementation boundaries upwards”. That means: given that
one level (K) in the abstraction hierarchy (i.e., Lisp), is recursive, does it follow, if we implement another virtual
machine M on top of Lisp, that M must be recursive?

Note that one can implement another recursive language on top of Lisp. If, therefore, we were to ask the
same question without the (modal) term ‘must’—i.e., “Given that Lisp is recursive, is virtual machine M imple-
mented on top of Lisp recursive?—the best answer one could give is: “It depends on M; we don’t have enough
information. Could be; could not be.” The interesting point is that it need not be. Since we can implement non-
recursive machines in Lisp, it is not true that all machines implemented in Lisp are recursive. Hence—according to
the definition—recursiveness does not cross implementation boundaries upwards.

CSci • B607 Problem Set #2 Jan 16, 2001

Copyright: © 2001 Brian Cantwell Smith Last edited Friday, January 19, 2001

 Spring 2001 B607 • Philosophy of Computing • Problem Sets Page 2 • 2

ries upwards just in case, if it holds of some virtual machine M, it must also hold of all
machines M' implemented on top of M.

2. Crosses implementation boundaries downwards just in case

a. If it holds at level k, it must also hold at all levels j < k (i.e., at levels that are “lower” or
“more concrete”).

b. Or to say the same thing in a different way: a property φ crosses implementation bounda-
ries downwards just in case, if it holds of some virtual machine M, it must also hold of all
machines M' that M is implemented on top of.

B. For each of the following properties, discuss whether it “crosses implementation boundaries”
both upwards and downwards, in the senses defined above. If it does, say why, and give some
examples. If not, say why not (as best you can), and describe a case where it does not. As you
may have noticed, in the notes for last week’s class, the answer will sometimes be more com-
plex than a simple “yes” or “no”. (References are to John Haugeland’s “Semantic Engines.”)

1. Serial/parallel
2. Discrete/continuous
3. Executing an “algorithm” vs. executing a “heuristic” (p. 17, lines 10–15)
4. Being universal, in Turing’s sense
5. Being formal, in Haugeland’s sense3

6. Being “real-time,” in the sense of being able to play rhythms, respond to interrupts within
“hard temporal constraints,” etc.

7. Having semantics (in the sense we talked about in lecture 2a, of representing some task do-
main)

8. Being correct
9. Having derivative vs. having original intentionality (p. 32, last ¶)
10. Being computational.

—— end of file ——ðð

3See general note I.B (above).

