26 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-1

The Significance of Computational Psychology
(A commentary on Charles Taylor's "Cognitive Psychology")

Brian C. Smith

1. Introduction

| am sure that full-blooded human mental life is as deep and
subtle as Charles Taylor suggests. The story of significance he tells may
well be true. But there is a striking contrast between the richness of
his account of people, and the nalvete of his sense of computation ==~ a
naivete, | will argue, that ultimately undermines his conclusion.

| take him to argue as follows:

1. Certain essential qualities attend human mental life and human
action, such as implicitness and self-interpretation == which
derive from the fact that we are in an essentlal way "subjects

of significance".

2. These qualities'must occupy a central position in any explanatory
theory of human psychology. They cannot be lightly dismissed as
"irrelevant" or "epiphenomenal” because they are a crucial part of

the very phenomena which psychology has as its t_ask to explain.

3. Such qualities cannot attend the "mental life" of computational
processes, or be described in computational terms.

From these three premises Bms Taylor concludes that computational
psychology must inevitably fail == that no computational account can or

will illuminate the workings of the human psyche.

While he argues for the first two premises, he apparently finds
the third self-evident. Typically, after identifying an essential feature
or quality of the human psyche, he suggests that it is obvious that a
computer could not have it. For example, in the discussion that much of
human knowledge is and must be tacit, we are told that in contrast “there
is nothing comparable to tacit knowledge in a machine". Similarly, after
arguing for what he calls strong action in humans, #sf. Taylor claims
that "one cannot easily conceive of any basis [for strong action] being
found in a machine”. Other such statements can be found scattered
throughout his paper, but we are never given an argument from first

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-2

principles explaining exactly why It is that machines == or pomputational
processes =- must {;necessarily> lack these qualities so essential to

- human rationality.

Since | do not myself find this third step nearly so obvious, |
will take it as one my tasks to cull from his remarks those which deal
with computational matters, and attempt to show that he has no argument
that computational notions will prove inadequate to deal <;with what |
will agree are necessary components of any theory of psychology> --
tacitness, self-interpretation, "full-bloodedness", and so forth. As a
consequence, | must conclude that the most we can take from his paper is a
reminder of some of the facts about human cognition -- admittedly serious
and difficult -- that any psychological theory is going to have to face.

, I am not, in other words, primarily going to disagree with Prof.
Taylor's concept of the (;human>. Rather, | will take issue with his
concept of the <;computational>.

My technical criticism may be taken as illustrative of a general
concern, the relevance of which goes well beyond today's particular
discussion. It is surely an elementary fact that the utility of any
scientific metaphor is limited by the extent to which the {;base> of the
metaphor Is itself understood; before we can understand what it is to
apply computational metaphors in our study of human cognition, therefore,
we need to understand what computation is. But, though we build
computational artifacts every day, | submit that as a community, we do not
yet have an explicitly articulated understanding of computation nearly
‘adequate to withstand the kind of scrutiny to which it must necessarily be
'subjected by arguments about what can and cannot be accomplished under its

banner.

There are of course certain aspects of computation which are
relatively well understood == such as which functions are formally
computable. But discussions of the sort we are engaged in today make much
stronger demands on our concept of what computation than that. We are
talking today about <jstrong> properties of computation: about possible
reference for internal symbols, about the relationships between ingredient
processes and constituted wholes, about the interplay between
implementation and Iinterpretation. The moral underlying my remarks will
be that, without adequate accounts of these and a host of other similar
computational concepts, arguments about the promises and limits of
computational psychology must founder out of simple ignorance.

One more introductory remark: in spite of the critical posture |
am adopting, | find myself in very substantial agreement with Prof.

26 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-3

Taylor's concerns. That "the significance feature is at the centre of
human life" Is a position which | thoroughly endorse, and | share with him
a frustration at its apparent neglect in current theories. Although |
disagree with his <;argument>, | don't necessarlly disagree with his
<;conclusion> == in fact | would love to know whether It is true or not.
Furthermore, | feel his paper will make a substantial contribution to
those computationlists among us, if it "ups the ante" on what it is to
develop an adequate theory, by making explicit facts that we should all
know, but that we may all too easily forget. ‘

2. An Argument about Computation?

My first task will be to look briefly at the comments thatFrsf-
Taylor makes about computation. We find in essence five claims, all of
which, | will argue, turn out on scrutiny either to be false, or else
- to seriously beg the question.

2.1: An Ingredient is not the Whole

First, consider the argument that people cannot be computational
since people do not generally take themselves to be "decomposing” or
"making explicit" any series of ingredient steps, whereas, by assumption,
<;a computational process must do these things>. Unfortunately, this
assumption is simply false of computational processes: while they may
" perhaps be <constituted> of ingredient processes which make a series of
explicit moves (although see the discussion of explicitness, below), those
are <;underlying> processes == they are ingredients in a composite
whole>. This distinction is cruclal in computational practice: if in
implementing an Al program, | were to fail to distinguish the process as a
whole from the underlying LISP interpreter, | would end up spinning in
infinite circles. | will mention a number of other examples later in the
discussion.

This distinction between whole and ingredient has been remarked on
by commentators: indeed, this is the issue about which Dennett "cares
tremendously", in apparent contrast with Fodor, But that Prof. Taylor
falls to recognize the compositionality of process == surely one of the
" hallmarks of computation -- is made evident at the very outset. He says
it Is the task of what | am calling computational psychology to explain
"by some underlying process" how we perform various cognitive activities.
So far so good. But then we encounter:

"to explain the performance would then be to give an
account of how {;we)> compute these responses, how we

26 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-4

take in the data, process it" etc. [emphasis mine]

which Is seriously problematical. A metaphorical story of how we perform
cognitive activities, based on current computational practice, would not be

a story of how <;we) take in data and process it; rather, it would show how
we are constituted of processes that take in data and process it.

A "computation", according to PEgf:. Taylor, is not something that
we are aware of doing == not something we "could be got to avow and take
responsibility for, granted undistorted self-knowledge". Fine, | say. Why
should we be aware of it? Computational psychology doesn't say we should,
since there is no reason to conclude, just because a computational process
does something in some way, that that process itself should in any way be
disposed to admit, or know, <;or have any form of direct access
‘Whatsoever>, to the manner in which it did it.

. Now of course when we get to self-interpretation, W Taylor is
going to talk about things we <;do> have to admit to. Again, fine: by the
same token, if we are going to develop an adequate computational
psychology, we will have to construct computational models which do the
same. What aspects of its own constitution a process == human or
computational -- can be made aware of is of course a very substantial
question (which we will look at in a few moments). But we have yet to see
an argument that constructing one will prove impossible.

As a footnote, | find it odd that-R#f. Taylor feels that programs
must somehow be capable of "introspective confessions" <;ad infinitum>,
especially given his recognition of the "inescapable horizon of the
implicit surrounding activity" which must, as he has realized (and, | take
it, as Wittgenstein and Polanyi and Quine and others have also realized),
characterize human knowledge. The point is that inescapable tacitness is
a fact about <;all> symbolic systems: it is as much an ultimate truth
about computation as it is an ultimate truth about people.

2.2: The Priveleged Account

A second "fact" that Bkgf. Taylor mentions regarding computation
has to do with his claim that, for people, there is a "priveleged"
description which Iidentifies what they really> do, as opposed to other
possible stories which are merely externally attributed, and which lack
this special kind of <;authenticity>. Computers, according to Taylor,
obviously lack such a priveleged description. Now while this {;may> be
true, surely we have here no argument, but rather a restatement of the
conclusion, For {;why> must computers lack privileged descriptions? The
claim itself doesn't provide an answer. Prof, Taylor is of course right

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-6 ‘ :

that computers <;may> be taken under externally imposed descriptions, but
so may people (as his example of lecturing taken as mantric-clicking
illustrates). 'Thus, being subject to external description doesn't

distinguish people from machines. Being causally embedded in the worid
can't be sufficlent either, sirice it is plain that a robot may in actual

fact screw a typewriter together. -Suppose it turns out to be some kind of
self-interpretation that is the speclal ingredient that makes descriptions
priveleged. Then presumably if | construct a self-interpreting machine,

it too will be subject to priveleged description.

Of course whether | can do ¢;that> will depend on whether machines
can be self-interpreting. But the point is this: it-is not incumbent on
me) . to elucidate what “subject-to-priveleged-description” comes to.
Rather, Prof. Taylor must show that it involves something inherently
impossible computationally (and | take it that he has not done so).
‘Otherwise this point amounts to a claim that computers can't be
‘full-blooded because they would have to posess some quality which only
full-blooded processes can possess. The point merely begs the question,
in other words, and his conclusion must depend on what other arguments he

can advance.
2,3: Self-Interpretation

A third claim is that while full-blooded human activity involves
self-interpretation, computational artifacts could not be
self-interpreting. Once agaln, | must ask "Why not?". Where Is the
analysis of what it is to be self-interpretive, such that computational
processes cannot be so? Surely this too begs the question. | would agree
that no extant program posesses any substantial degree of
self-interpretation, but nothing in principle follows from that
observation of current practice. Furthermore, as opposed for example to
emotion, about which | haven't any clues, self-interpretation is not a
phenomenon about which we are in total mystery. A great deal of current
work in Artificial intelligence just might illuminate such questions. |
will have more to say about this later, when we look at what in fact
computation comes to. But once again, all | can take away from Beisf.
Taylor's claim Is that self-interpretation is another ingredient in, or
‘aspect of, full-bloodedness. Nothing of computational import follows.

2.4: Tacitness

A fourth recurrent theme about computation is that human action is
tacit, whereas computational action is explicit. Now this claim is a
little difficult to refute in detail, because it is far from clear what
notion of "explicit" is meant. In a few moments we will take this subject

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] - PAGE 1-6

up in some detail: | will suggest five definitions of "explicit", each an
eminently reasonable notion In computation, but <;ho two of which are
equivalent.> But, as it turns out, Prof. Taylor's argument will survive
under no one of these definitions. For some of them (including the
"temporally composite" sense which Prof. Taylor seems at places to have in
mind), It is simply false that computational processes {;are> explicit.

If by "explicit" he means explicit <;from the point of view of the process
as a whole>, then my denlal is particularly strong: on the contrary, the
vast majority of computational processes | have ever met have been most
extrodinarily tacit. On the other hand, if explicit means no more than .

- “js somehow constituted in terms of explicit ingredients", then | say "so
what?"; surely the minimal fact that we are physically constituted makes
us explicit too, with respect to <;that> definition. And furthermore

" nothing would <;follow> from this last kind of explicitness. This can be
seen even In the computational case, for the theoretical achievements
computer science in ho way flow full-blown from the explicitness of

programs.

Finally, if the définitions of "explicit" or "tacit" depend in any
way on notions of how people do or do not act, then the claim is again
reduced a question-begging one, for we would once again have a circular ‘

argument. :

In sum, | can make no sense of his remark that because "we make no
explicit definition of the problem ., there is correspondingly no
break-down into sub-problems, or application of procedures". From the
simple fact that <;we> don't break.-our activity down into subproblems,
there is no valid argument that there <;is> no break-down into
sub-problems. <;Computational processes don't break their activity
either>. To the extent that it happens at all, {;we programmers> do it,
and we do it in many different ways. Some of these many ways will be
discussed in a few moments.

2.6: Theory reduction

Finally, there is the point about theory reduction: that the
relationship between adequate psychology and computational accounts must
be what Prof. Taylor calls "case Ill". But this, of course, is a summary
of, or corrollary to, his conclusion, not an argument for it. The
reduction will be case Il just in case computational psychology is
~ impossible. But we have, as | have attempted to demonstate, simply no

argument as yet.

3. Five Principles of Computation

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-7

But look: we must examine these issues in a little more depth.
For one thing, | put myself in'a dangerous position, if | merely counter
gt Taylor's sense of the facts about computation with my own sense of
the facts (this is no way for a reasoned debate to proceed). Secondly, it
would be nice to take away from the current discussion some facts that
will enlighten future analysis. Finally, we have still not considered the
obviously serious question of whether his conclusion Is <;true.

| would like, therefore, in this second portion of my commentary,
to set out five basic principles about computers and computational
processes which | take to be crucially relevant to discussions of the
present sort. As we come to each one, we wili be able to look from a more
Informed position at the claims which PEf: Taylor has made about
computation, and see not only why they are in error, but also how a more
adequate story would go. Instead of just looking at his paper on its own,
in other words, | want now to subject his arguments to the light of at
least a suggestive theory of computation. | will be forced to conclude
that he has in serious ways failed to grasp the very notions he considers

so inadequate for psychology.
Principle 1: Computers are not a Natural Kind

First, <;computers are not a pre-existing natural kind>, like some
strange variety of horned owl, the properties of which we, as natural
sclentists, are engaged in uncovering. If there is a coherent notion of
computation, it Is presumably a professional consensus, residing in the
heads of those people who design and use them.

It Is possible to argue, of course, that this consensus delineates
some cohesive, ultimate concept, analagous to that of number, that
transcends our understanding, and that lives, say, in Plato's heaven, It
Ish't obvious, after all, that numbers are a natural kind either, but we
cartainly assume there is more to the concept of number than some
consensus in the minds of mathematicians. Or, if you don't like
transcendence, you might want to claim that the concepts of computation
are somehow an inate part of our human rational endowment, of which
computer science should be taken as the "rational reconstruction"
(although who besides Fodor was born with the concept of a Turing machine .
wired In?). But views on elther the transcendence or innateness of
computation would have to be argued, and | have yet to hear such argument.
Without them, it follows that there is no apriori reason to think that
computation is now, or has ever been, a precisely defined or fixed concept
(although there is presumably some agreement, since the field does seem to

hang together).

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-8

The importance of raising these issues at the moment Is this: we
heed to know wherein lies the responsibility of deciding whether something
is computational or not. Suppose you and | disagree on whether some
<stheory? is computational because we disagree as to what it <is> to be
computational. Do we settle our differences by conducting a physical
experiment? Obviously not. Nor can we retreat to pretheoretic intuition,
as we might with numbers or sets. Surely our recourse would be to "ask
someone who knows", It seems likely, in other words, that the causal
chain legitimizing our use of the word "computation" runs indirectly
- through the knowledge of experts.

And these experts of course don't necessarily have or need an
explicitly articulated theory of computation. As is true In any sclence,
the story of what constitutes their subject matter is part of the implicit
background in which they work. Therefore, claims about whether the mind
(or anything else, for that matter) is or is not computational are going
to be difficult to defend -- and certainly aren't going to be <;obvious>
-= without somebody's first undertaking the substantial task of providing
an adequate definition of computation, sufficient to explain == in a
manner which reflects expert usage -- the concepts that one encounters in
"the field": concepts like <;represent>, <;symbol>, {jinterpret,
<;compiled, <sprocedure>, <;program>, {;process>, {jcode>, {;state, and
so on and so forth.

| actually have a tentative working definition of computation:

Computation is a notion which applies first and foremost to a
particular class of {;processes>, namely, to those which can
be understood as {;compositionally constituted of ingredient
processes interacting with abstract symbols that we, as
external observers, interpret as significant>.

While | have no intention of defending the empirical adequacy of that
definition, or even of spelling it out in detail, there are a few comments
that can be made. First, it is tentative (I cannot over-emphasize how
inchoate and preliminary | consider <;all> explicit accounts of
computation to be). Second, it is {;strong>, in the sense that it defmes
computation in terms of the internal structure> of processes, not simply
in terms of their surface behaviour (computationalists, in other words,
are not behaviourists about their domain). Third, as formulated, it makes
use of semantical terms: "symbols" and "significant". | am defining
computation, in other words, with respect to concepts which may themselves
bear only a "case llI" reduction to electronic physiology.

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-9

Principle 2: Computation is a Special Science

This last point leads us to our second principle: there is no
simple relationship between computational predicates applying to abstract
processes, and physical predicates applying to the machines on which those
computational processes are implemented. In particular, it is by no means
type-type In Fodor's sense. An account of how any given process Is
Implemented in hardware can be a vastly complex, time-depeﬁdent, and
disjunctive, the simplest description of which is often the program for
the interpreter for the language under consideration, which can often be
hundreds of pages long. And this is only in a particular case -- general
"law-like" relationships are as unlikely as Fodor's despaired-of law-like
physical predicates for money. In other words computation, as various
commentators have realized, is a "special science". ‘

Adding to the complexity is the fact that computational processes
are implemented not only in hardware, but also in terms of other
processes, and the relationships between the latter aren't type-type
either. One of the questions | want to raise later is what happens to
-such semantic notions as reference when you cross from one of these
processes to the one in terms of which it is implemented. There are some
non~-trivial technical problems: for one thing, the Identity of objects is
generally not preserved across an implementation boundary: it is only
"whole systems" which are implemented (they are connected by "total
theories", so to speak). What counts as a unique object at one level may
disappear into some disjunctive fragment of the whole organizational
texture of the system-wide encoding. Further, even if one object at the
lower level "is" (the reduction of) some higher level object at any given
instant in time, that may be false one second later,

Let me give an example of this latter case. Consider a typical
implementation of LISP, for example, and suppose that a LISP object L1
(say, an atom) at some Instant is "reducible" to a machine-language object
M1 (say, a location in a sequential memory). It may be possible to watch
the behaviour of this machine for one minute both under Its description as
a LISP system, and under its description as a machine-language system
(remember, this is <;one and the same artifact> -- just two ways of
describing it). At the end of this minute atom L1 may now to reduce to
some <differentd machine-language object M2 (suppose, for example, what
is known as a "garbage collection" has revamped the mapping of objects).
Now suppose that this "sequential memory" in which M1 exists is not
Implemented directly In hardware, but Is run-length encoded In PASCAL
lists, which get copied over every time a memory access is made. Not only
is there now no lower=level object reducing L1, but to the extent it is
encoded in a functional state of the machine, the predicate identifying it

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-10
is changing every single machine instruction.

The point is this: there may easily be half a dozen such levels of
implementation between the computational process a user interacts with,
and the one implemented in hardware, no one of which has special claim to
be the <;real> description of what is going on, Establishing the identity
of abstract symbols, by looking at hardware, would be about as possible as
establishing the identity of word tokens, in terms of a predicate on air
molecules.

In light of this fact we may look at Prof. Taylor's argument that,
because we are not aware "at the top level" of any decomposition to our
skilled performances like catching a ball, then if these processes are
computational they

"would have to be an underlying process, on a par with == or indeed,
identical with, === the electrical discharges in brain and nervous

systems".

There are of course several problems with this; we have already dealt with
the false assumption that we would <;know> about the decomposition if
there were any decomposition to be made. But this brief story about
implementation hierarchies also denies the conclusion that, if a
computational account isn't apparent to the overall process, then it must

be on a par with physiology. This simply isn't true.

Principle 3: Turing Equivalence is Weak Equivalence

Our third principle is that <;Turing-Church equivalence is weak
equivalence>. Of course any notion of equivalence must rely on some
metric: the metric used In the proofs of equivalence between the systems
of Post, Church, Turing, Markov, etc., Is that they are able to compute
the same functions. All that Church's thesis amounts to, therefore, is ' ‘
that any <;behaviour> definable on one machine can be defined on any
other. No notion of "strong" plays a role in deciding whether the two
machines are Turing equivalent (it is perhaps not surprising, in light of
this, that the Turing test for intelligence is a test of weak
equivalence). This makes sense in terms of the implementation story we
just gave, since Turing equivalence is generally demonstrated by showing
how each machine can be implemented in terms of the other, and, as we have
just seen, strong properties aren't preserved across implementations.

Now it is clearly one of Prof. Taylor's principal views that to
say of something that it Is full-blooded is to say something <;strong>.
Hence, arguments depending on intuitions garnered from the operations of

25 Mar 1980 8:04 | TAYLOR.TXT[BCS, TW] PAGE 1-11

Turing machines will fail: it is patently obvious that no strong argument
advanced about any one member of a weakly equivalent class will
hecessarily hold of any other. '

. Thus, the notion "equivalent to a Turing machine" will simply not
serve as the definition of computation we so urgently need for discussions
of this sort. If Turing equivalence were all there was to computation, we
could eliminate the word "computer" from our vocabulary, and simply use
"machine". But of course there <;is> more to computation than Turing
equivalence, and not only that: both Prof. Taylor's arguments, and my own
definition, deal crucially with such strong attributions. It is for this
reason that | will be able, in the final portion of this talk, to begin to
analyse how the requirements he sets forth might impinge on a
.computational model. :

Princible 4: A Process is not its Intepreter

The following are not the same: a computational process, and the
ingredient process which interprets the programs in terms of which the
other process is defined. The latter Is informally (by which | mean in
computational circles) called the "interpreter" (but note that this is a
different, if related, notion to the one, used in model theory and
semantics, that deals with positing properties of signifying to "“symbolic"
objects).

Imagine saying of a car engine that <it> decides how much gas it
needs by measuring the incoming air pressure. This informal manner of
speaking is literally incorrect: the engine comprises, among other things,

a fuel monitoring system, and if anything "decldes" how much gas is -
needed, it is this ingredient monitoring system. Further, you <;know>

that in saying "the engine decides", you don't mean the whole engine. For
if the engine sputtered because the system malfunctioned, would you admit
that the engine was causing itself to run badly? Do we have
self-reference from Detroit? Of course not.

It is exactly analogous, and equally incorrect, to say of a
computational process that <;it> manipulates its internal representations.
This we noted earlier, but we can nhow see what it comes to. Specifically,
a (serial) process is <;constituted> of an interpretive process that
examines (manipulates, etc.) representations (often called programs and
data structures), and In virtue of that manipulation, the process as a
whole is constituted. This distinction, which is tacitly but universally
understood in computational work, is particularly serious for Prof.

Taylor, because it interacts intimately with such issues as
self-interpretation and consciousness. It also relates to the

25 Mar 1980 8:04° TAYLOR.TXT[BCS, TW] PAGE 1-12

interpretation hlerarchy we Just described, which, to avoid infinite
regress, Is grounded at some point by constructing a {;weakly equivalent>
physical device to mimic the behaviour of the lowest interpreter in the
chain. '

| submit that interpretation of this sort is one of the certral
notions of computer science (as opposed, by the way, to <;compilation>,
which is a red herring and of no import for current metaphorical
theorizing). Perhaps because it is so very central, it is often tacitly
assumed. | recall once reading a paper of which the first sentence went
something like: "When two people engage in discourse, they wander around
thelr respective mental maps". Now | am certain that the author didn't
mean <;they> wandered around their mental maps: that just doesn't make any
sense. Rather, the suggestion was that a possible explanation of
discourse is being constituted of an interpreting process wandering around
‘a mental map. You can't write programs If you are confused on this issue
(the relationships between micro-code and macro-code, the distinctions
between meta~circular Interpreters vs, bootstrapping interpreters, and so
forth, demand that one keep these separate).

It is part of my emerging theory of computational ontology that,
complex though it may be, it is only by taking this chain of
interpretation to be the essence of computation one can begin to develop
serious definitions of the other theoretical terms of art: a "program" is
then a representation, for the Interpretive process, of instructions to
obey In constituting the overall process; a "computer" is a physical
device so constituted that its behaviour can be taken as the Interpreter
for a class of computational processes, etc, Much of the confusion that
arose over the infamous procedural/declarative distinction turns on a
fallure to recognize how such questions must be relativized to a specific
interpreter. But these are mere glimpses into a subject that demands a

book, not a paragraph.

A confusion in Prof, Taylor's paper deriving from his failure to
grasp this interpretation of a program by an ingredient interpreting
process can be seen in the comment that representation must be

"separable from the stuff which it monitors, or of which it
is a symptom. If it plays any role in explaining these
processes, it must be in interacting with them. Since
interaction is ruled out on materialist assumptions, it
cannot be allowed any explanatory role at all."

" Now | must confess that | fail to understand what Prof. Taylor is getting
at in saying this; perhaps | am just too rooted in my computational

25 Mar 1980 8:04 "~ TAYLOR.TXT[BCS, TW] PAGE 1-13

background. For, by my analysis, if a computational process is
<sanything>, it is a process in which a representation <;of> behaviour

plays an ingredient causal role in {;effecting> that behaviour. This is

Just what we defined a program to be: a representation, to be inspected by
the interpreting process, of what the overall behaviour is to consist in?

Principle 56: There is no single meaning of 'explicit'

Our fifth principle (I call it a "principle" mostly because of its
Importance) summarizes a point made earlier: there is no single, clear
notion of what "explicit" means with regards to computation. Therefore,
before you can possibly defend any statement like "everything of causal
import in a computational process must be explicitly represented in the
data structures"”, or even "if it Is a computation It must be explicit",
you must provide a definition of the kind of explicitness intended. The
problem is that there are simply too many quite plausible candidates that
under scrutiny turn out to be very different.

Because of the importance of this point, | am going to take the
next few minutes to suggest a half-dozen or so possible kinds of ;
"explicltness" that strike me ~s the most reasonable. These won't, ' |
however, be <;definitions>, but rather pointers to areas where it seems to *
me that a coherent hotion of "explicit” Is lurking. | frankly don't yet
know how to tighten any of these into a real definition that would

withstand scrutiny.

E1: One possible meaning of "explicit", one in fact that Prof. Taylor
may have in mind, is the notion of being <;temporally composite>.
This is strongly suggested by his comment that for a process "to reach an
answer by computation is [for that process] to work it out in a series of
explicit steps", and his further remark "you wouldn't say someone was
computing, if he gave the answer straight off wihntout any analystical
reflection." But it is simply not true of current practice that for a
machine operation to be called a "computation" it has to be {;temporally>
decomposable into identifiable constituents. For one thing, if this were
true, all <;primitive> machine instructions would have to be denied the
status of "computations", which would be very strange. More seriously,
programmers often spent weeks designing computational artifacts so that
certain particular operations or "computations" will take place In what is
called "unit" time. This is, for example, standard practice in data base
inversions, knowledge representation inference systems, etc. It is also
one of the motivations behind the development of parallel machines
executing marker-passing algorithms, such as those of Woods and Fahiman

and so on.

25 Mar 1980 8:04 ~ TAYLOR.TXT[BCS, TW] PAGE 1-14

E2: Another possible meaning of "explicit" Is that we identify

' explicit causal relationships in our analysis of the functional
structure of the overall system. It should be obvious that <;causal> and
<stemporal) explicitness are not the same. | may for example identify
quite a few distinct causal links between the shift lever beside my seat,
and the gear my car is in, but it doesn't follow that | should expect
discernable delay between my shifting that lever and the car's changing

gears.

E3: Yet another possible meaning (and this is one of the most
"obvious" with respect to computation, and may be what Prof.
Taylor had in mind) would go something like "explicitly represented in the
program. Several comments are in order about this. First, | doubt that
it would be trivial to define just what this intuitive kind of
explicithess came to. Are the organizational relationships among the
expressions to be counted as part of the overall explicit structure, for
example? How about the syntactic structuer? Or the immediate deductive
or operational consequences? Or the {;possible> deductive or operational
consequences? Or the meaning? Which of these properties are
<sexplicitly> born In the expression? Perhaps there is no real answer ==

you could slmply decide.

Second, because what <;program> you are talking about depends on
what <;interpreterd you are refering to (remember, we just established
this -- any given process may be simultaneously described as running a
variety of very different programs), you would have to identify which
program you mean. What is explicit for one may be implicit for the other.
For example, suppose | take sides on a current debate in Al and decide |
that visual images are represented in terms of something very like a
visual array, and define a process embodying this assumption. But then
suppose that | need to implement this process, and, in order to do so
efficiently, | implement the visual array by some clever coding scheme, so
that | don't need to actually <;haved, in some sense, array elements for
each bit. This is in fact no idle fantasy == it is done in the software
supporting many of the fancy printers and terminals that we use all the
time. There are various encoding schemes that could be used: | might for
example maintain descriptions of the shapes of black areas, and then if |
want to know whether any bit is on, | will see if it must be part of one
of these shapes. If so, it is black -- otherwise it is white. (Perhaps
if | use the kind of ingenuity we were told about yesterday, | may be able
to do this in linear time.) Now | have a machine which can be said to
stores images either as arrays and as descriptions, depending on which
description you look at it under. It doesn't do <;two> things -- it does
one thing, which can be described either way.

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-156

E4: Of course yet another possible notion of explicit has to do with

what is explicit <;from the point of view the process itself> --
{;introspectively available>, so to speak, for the computational process
‘as a whole. Because of his constant reference to the fact we don't
(;take> what we are doing to be computational, this may be partly what
Prof. Taylor had in mind. But this, as | pointed out above, is unrelated
to any of the foregoing. In fact, this kind of explicitness is an
enormously difficult <;goal> In computational practice, which we rarely
achieve,

E5: Another potential meaning of "explicit", again unrelated to any of
the foregoing, might go something like: "understood in terms of an
explicit theory". Note that one cannot identify the explicithess of
programs with explicitness of theories describing those programs. To
think this would be as naive as to expect to find fully-developed physics
theorles sitting around in the external world, Take a computational
example: there has In recent years been an interesting development of
understanding of the relationship between so-called (iterative)> and
{;recursive> programs, in which It was discovered that various of our sort
of implicit notions of recursion weren't equivalent, that one of them
which was thought to be mutually exlusive with iteration was not, at least
by one account of iterative. A notion of "tall recursion" was proposed,
to help in explaining cases where the form of the <;program), taken as a
composite expression, was recursive, but where the control regime implied
by that program, was Iterative. Basically, papers were written, ideas
were explored, and finally an appopriate theoretical analysis took shape.
What was striking =~ and this is why | raise this -- was that programs
embodying all the qualities described in terms of this theoretical
structure had existed well before the debate started.

In sum, if tacitness is the opposite of explicitness, then the
comment that "there is nothing comparable to tacit knowledge in a machine
must simply be taken as under-determined. Further, on many plausible
reconstructions of what it might mean, it must be taken as false.

Summary

These five principles, | suggest, are a standard, if tacit, part
of the intellectual tool kit of every working programmer. This is not the
place to delve any further into pure computational ontology, although
ultimately, of course, | would like to defend this claim by analysing
computational practice, and to show in addition that all these principles
follow from the definition of computation | proposed. But in the meantime
| must rely on your acceptance of my Informal arguments. But most
importantly, | hope that this much of a glimpse has demonstrated both how

256 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-16

complex a subject matter we have at hand, and how much needs to be
" understood before one can develop careful arguments about the possibility
of computational psychology. ‘ ‘

Postscript:

| must pause In this analysis to consider a potential objection
that | am not being fair to Prof. Taylor in that | am not taking seriously ;
what he means by the term "computation". But | think this derives from a
confusion -- a confusion that | sometimes felt Prof. Taylor himself was
making, although to be honest it Is not completely sure from what he says.
Because of that possibility, however, | want to mention lt briefly. . :

He several times mentions a notion of what people call
“computing", which Is different (so he says, probably correctly) from what
machines do, and which is consequently unlikely to be explained by
mechanistic metaphor. Because of this, | take it that one’ way of reading
his overall argument that full=blooded human action cannot be
computational, would be to take him as saying that most full-blooded human
action Is not the kind "computing" that people do when we say that they

are "computing".

‘But surely to take this reading seriously is simply an error.
Look: no one has suggested ~= and no one, | take it, could reasonably
suggest -- that when we are doing what we call computing (that very
‘explicit "problem-solving" kind of thinking), that <;that> Is the basis
for the computational metaphors currently being applied in cognitive
psychology. Among other things, to take a psychological phenomenon == and
onhe we don't understand, at that -~ as an explanatory principle on which
to construct psychological theories, would be both circular and crazy.

And even if we were to accept this move, then what would be Prof.
Taylor's argument? That for principled reasons computers cannot really
compute? And therefore, since <;real computing> is what we want to ground
psychology in, we shouldn't use machines as theoretical intermediaries in
our research? This definition of the word "computing" would leave
machines, normal thinking, and problem-solving, all unrelated.

In fact, presumably, Prof. Taylor's argument is that psychology
based on what <{;machines> do will prove insufficient to deal with
full-bloodedness. And it is therefore <;machine computation> that we have
to examine. | take it that the only relevance of human "computation" to
Prof. Taylor's argument (and this he <;does> imply, in a manner that is
both coherent and consistent with his general position) is that machine
computation will in all likelihood <;not even be able to explain that

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-17

psychological phenomenon we call human computing, which you might expect
to submit to such explanation, even if other human actions didn't>. The
argument for this position, presumably, is the usual one: that human
computation is full-blooded, and <{;no> machine can be full-blooded.

Hence, | take it that the critique that | have given, which doesn't
deal at all with human computation, but attempts to show instead that we
have as yet no argument that machine computation must fall to be
full-blooded, is the correct one to mount, and relates to human computation
in the same sense that It relates to all full-blooded activity.

| want to take the remaining few minutes to briefly explore the
computational import of Taylor's account of psychology, <;completely apart
from his own notions of computation>. It would be too easy, and
ultimately uninteresting, simply to say that his conclusion is not
supported because his conception of computation is inadequate, since the
mere fact that | don't find his computational arguments compelling doesn't
tell me whether the very real requirements he has set forth for an
adequate theory of psychology could ever be met in a computational
framework. The question of substance, in other words, is whether his
conclusion is <;true), given that we accept his account of human
psychology, and given what is in fact the case about computation. | have
already claimed that none of us know the <;final> answer to that question,
but surely it is a question that we owe It to ourselves and to Prof. |
Taylor at least to look at. ‘

The ultimate challenge, | take it, would be to analyse what it
would be to construct a full-blooded comptutational artifact. But of
course | can't possibly do that, since | don't yet fully know what ‘
full-bloodedness comes to. However, it is part of Prof. Taylor's 5
argument, presumably, that, among other things, properties of tacitness
and self-interpretation will be central, as will be being a subject of
privileged description. | have argued that | don't understand any
interesting definition of tacitness which computers don't already possess,
so | will concentrate here on the other question: what it would be to
construct a computational process which was self-interpretive.

For purposes of the discussion | am going to need to assume that
we can construct some computational process P which, <;in the shallow
senhse, can be said to {jsay> something. Remember, this is <;shallow> ==~

25 Mar 1980 8:04 TAYLOB.TXT[BCS, TW] PAGE 1-18

| don't need you to admit to any kind of strong, full-blooded "saying" on
its part.

Now before | can set the stage that | need, | must digress briefly
about the subject of a computer "saying" something.

... thoughts and language (If not action) have a quality of what |
will call <;primary significance>, In that they are fundamentally <;about>
something, in a way that catching a ball is not. We may not know much
about reference or truth or meaning or denotation, but whatever they are,
they are qualities that relate first and foremost to language and thought,
to <;symbolic> or linguistic> behaviour. ...

... What is important about this distinction can be summarized as
follows: First, it is <;hot> a distinction with which Prof. Taylor is at
least explicitly concerned (I identify it partly in order to contrast it
in a moment with the more complex notions of significance on which he does
concentrate). Second, it <;is> the significance distinction on-which most
other current discussions of the possibility of computational psychology
appear to focus. The subject of primary significance in fact seems to be
rather popular these days: It is the essential subject matter of model
theory and denotational semantics; it is the key concept that people like
McDermott and Hayes find lacking in much of Al; and it is the feature of
cognition that Fodor claims computational pschology cannot account for.
In addition, as | will argue in the next sections, it is a distinction
which plays an essential role in our understanding of computation, and as
such it will come to the fore when we start Inquiring Into the
possibilities of computational self-interpretation.

.. It also seems clear that primary significance must play a

central role in any adequate theory of psychology. For, in spite of
Fodor's claim to the contrary, (and as some of the respondents to his
<;Brain and Behavioural Sciences> article point out), the import of mental
life's primary significance is not easy to escape. | take it, in

particular, that the very concepts of {;formal> and <;syntactic> make
Implicit reference to the potential primary significance of their

subjects, merely by avoiding it: Fodor's own working definition of
syntactic as "a way of {;not> being semantic" surely betrays this. Surely
you cannot claim to treat a pine cone formally or syntactically without
thereby admitting that you have some notion of significance which you are
temporarily setting aside.

In other words, the terms "formal" and "syntactic" may indeed
mean something like "shape", but if they are ultimately going to prove
useful they will surely select, out of the range of possibilities, <;just

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-19

those aspects of an object's shape in virtue of which it bears its primary
significance>. Somehow, in refering to the formal properties of a token

of the numeral "1" (in stating, for example, that my computer adds numbers
by considering only formal properties of numerals) | wouldn't take myself
to be refering to such features as the thickness of the serif {;unless |
could attribute significance to that feature>.

Thus, merely be being <;formal>, an account of psychology doesn't
finesse primary significance altogether. In addition, Prof, Taylor's
story of why self=Interpretation must be an integral part of the subject
matter of psychology would apply equally to primary significance. 'In
particular, since whether | smile at you Is likely to depend on whether |
think that you were the one who took my raincoat, <;some> aspects of the
references of thoughts will simply have to be included in any
psychological theory, if no more than to assume {;that> thoughts refer,
and <;that> some thoughts are about the same referents as other thoughts.

But end of digresslon, and back to our putative process P, For
example, suppose it ... In fact catches a ball (i.e., suppose it moves its
mechanical arm In such a way that a ball ends up resting in its grip).
Now according to my definition of "computational", it follows that P is
constituted of an interpretive process IP manipulating a field of symbol
structures that | will call S. They are symbols which {;for us> signify
in the world in which P is embedded -- which is to say, we take them to
signify trajectories or balls or arms or whatever. In other words, <;IP>
is an ingredient process which interacts with symbols (S) that for us
represent/encode/signify/whatever the actions and beliefs we (again as
external observers) attribute to <;P>.

Now | take it that all of this is simply what people in Al do when
they construct programs to do things. l.e., if you are disposed to
challenge anything yet, then you are challenging the <;assumptions> of my
argument, for we have not yet made any move to self-interpretation.

. But now | will make my move. - Suppose | design IP in such a way as
to interact with symbols S by manipulating instead symbols 8' which refer
to symbols S. Now a host of questions spring up demanding clarification.
First, in what sense does S' denote S? For now, suppose simply that we
external observers take them to do so. | will strengthen this in a moment.

Now there is actually much current research in Al which operates
just as | have described (in fact it is really tremendously popular, for
lots of technical reasons | won't go into here). In most of this work, the
relationship between S$' and S seems to have no real causal substance. The
programmer provides what he or she takes to be a model of how he or she

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-20

takes the program to work. For some purposes (such as providing what he or
she wants to call an explanation, IP may "reason" with these

meta-descriptive structures, Meta-circular interpreters provided in
programming systems like LISP are often of this flavour -- they reflect the
operation of the machine, but they are In no way causally related to that
machine.

On the other hand, it is possible to design a machine in such a way
as to have S' and S be very causally related. In fact, in virtue of
changing, say, an element in 8' saying that some description in S has been
negated, then that symbol in S can in fact be made to be negated. In other
words, providing a causally central self-descriptive model is technically
possible. [Note: ALMOSTI]

... Note quote on P. 4, also, In this machine, doing something and
taking itself to be doing it are relatively indistinguishable ...

Now what | want to ask is this: what'is it to say of P (not IP)
that it is taking itself to be catching a ball, when IP manipulates symbols
in S'. 1 am not asking <;whether> P is self-interpretive, for | really
have no idea. Really what | want to know is, what are we to say about such

a P?

... (1 will, however, avoid discussing whether such a process
could be legitimately said to be either conscious or self-conscious, for
two reasons: first, | have very little idea of what those notions mean,
and second, | would argue that, in spite of this present speculation, our
current understanding of the technical correlates of consciousness are so
primitive that we would flatter ourselves to consider it.) v

First, it seems to me that there is.a lot more reason to attribute
authentic reference to the relationship between S' and S than to the
relationship between S and the world, for the causal chain seems so much
stronger. Furthermore, <if> we are prepared to say of P that it (perhaps
shallowly) catches a ball, then It seems that we are forced to admit that
it took itself to catch a ball. Of course this "taking of itself to catch
a ball" is in some sense shallow also, although the strength of the §'-8
reference relationship may offset that. And | suspect that "externally
attributed self-interpretation" wouldn't count for much in Prof. Taylor's
book. | don't know that it would count for much in my book, either, but |

repeat my question: ...

Prof. Taylor says that the argument gets silly when we get towards
asking whether computational processes can be conscious. This, he feels,
makes it a highly suspect question. My response is that it is not silly,

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-21

it is merely confusing if one doesn't make very specific what one is
asking, and if one does not have in hand a cogent theory of what
computation is. That is all that is hard, | think: given those two (l have
just assumed both in the previous discussion, for instance), | think such
questions not only aren't silly, they even have answers.

Note that there are tremendous technical questions | haven't
addressed. Suppose that instead of catching a ball process P emitted the
sentence "There is a ball coming at you.", as a result of (causally)
interpreting data coming in though its TV camera. We externally attribute
significance to this remark, But If it happened in virtue of IP
manipulating expressions we (and It?) takes to refer to that sentence, Is
It requisite that it represent, among other things, the {;fact> that that
sentence refers to that ball? l.e, must reference relationships themselves
be represented (say, named)? And if so, what is it to causally represent a
reference relationship? This is just one of a whole host of thorny
technical questions that arise in constructing such systems.

*x%x END OMISSION **x

8. Conclusion

| want to review the three themes that have been woven together in
this commentary.

First, it has been my goal to show how badly arguments about what
can and cannot be computational fare without a prior theory of what it is
to be computational. | hope that the many examples | have mentioned will
have substantiated this position. But before closing let me offer one
last hint at how complex this situation is. What | will do is to identify
the many categories of object or relationship which would seem to have to
be explicated, before, as | understand it, anything which could be called
a "theory" of computational mentalese semantics could be defended.

First, there are the symbols which the interpretive process will
manipulate -~ the expressions of mentalese, so to speak. Second, there
are the {;external) expressions emitted and received by the program, if,
say, it Is designed to communicate in something like language. Third,
there is the notation you use to signify these internal symbols (and,
while you might not expect this, the relationship between the notation and
the internal symbols is anything but trivial -~ as must be obvious to
anyone who has ever trled to explain to a LISP programmer why printing out
a structure and reading something back in plays havoc with the two
varieties of the identity predicate.) Fourth, there are the operations

25 Mar 1980 8304 TAYLOR.TXT[BCS, TW] PAGE 1-22

which your interpreting program can effect on the structures (this, | take
it, although | am no expert on such matters, is what Scott/Strachey style
‘semantics. deals with, in terms of abstract functions). Fifth, there is

the denotational semantiecs you attribute to the internal symbols (the
semantics that would be illuminated by something Ilke a model theory for
the declarative expressions in the mentalese).

Then, suppose In addition that you implement your program in terms
of some underlying language. New versions of all five of these categories
will be relevant for the underlying language. After identifying them, you
would presumably want to clarify all the relationships across this
implementation boundary. The denotational semantical ones | suspect will
be paricularly tricky. | submit that we have a certain amount of homework

yet to do.

A second theme that has permeated my arguments is the argument
that a full understanding of the interplay between a <;computational
process> and the {ingredient processes in terms of which it is
constituted> is a crucial prerequisite to any application of computational
metaphors to psychological phenomena. This distinction has served as a
double-edged sword In my attempt to carve a critical path through this
material, First, | have argued that many of the false claims of
incompatibility between tacit and explicit computations derive from among
‘'other reasons, a failure to distinguish what are fundamentally distinct
processes. (I think this failure characterizes John Searle's "comments on
Al", also, but we can look at that this afternoon.) In particular, what
is tacit for one process may be explicitness itself to that process's
interpreter. But by the same token, | would use this distinction to argue
that much of what is advertised in Al to be self-interpretive behaviour
fails because of exactly the same confusion, With this latter claim |

suspect that Prof. Taylor would agree.

Separating these two notions, however, has its cost: | lay myself
open to the criticism that | == and computational theorists in general ==
will thereby fall {;even more thoroughly than Taylor imagined> to be able
to deal with self=Interpreting, "full blooded" rationality. But my
response to that is that that remains to be seen -- the deep causal
connection between that interpretive process and the computational process
which it effects may enable that challenge to be met.

- A third way to summarize our discussion is as an account of
various kinds of theory of human mental life we can develop, and as an
exploration of the kinds of relationship, or reduction, we may expect to
find among them. In order to review how our arguments have gone, let me
adopt Prof. Taylor's terminology, and distinguish between simple case I

25 Mar 1980 8:04 TAYLOR.TXT[BCS, TW] PAGE 1-23

reductions, "multiplex" case |l reductions, and full case lll reductions.
Suppose in addition that | identify the following three kinds of theory of
the human cognitive apparatus:

T1. A <physlological) theory (blological, electronic, whatever);

T2. A <;computational> theory (say, an idealized extrapolation of
the kind pursued in Al).

T3. A <psychological> theory (by which | mean one explanatory
of our lay conception of our human rationality).

Fodor's position, according to Taylor (and | would agree), is that T2 is
the best T3 we are going to get. Additionally, he (Fodor) claims that the
reduction from T2 to T1 (and hence from T3 to T1) is one of token
physicalism, Taylor's muitiplex case-ll. Taylor challenges Fodor on the
relationship between T3 and T2, arguing that, far from being one of
plausible identity, It Is likely itself be case lll. It is a much further

ery, according to Taylor, from psychology to computation than it is from
computation to physics.

| have argued as follows: First, regarding T2-T1: | think it is at
least possible that It is more serious than either Taylor or Fodor
realizes; while | am not convinced that it is case lli, | am not convinced
that It Is <;notd> case lll, elther., Fundamentally, the problems is that |
think that notions of reference may lie behind more computational jargon
than people realize. And if reference is required in order to identify
interpretive processes, and if interpretive processes are required in
order to identify symbols, there may be no case |l reduction to physics
even in the computational case, without a prior reduction of reference,
and the reduction of semantics to physlcs, | take it, is at least a good
candidate for case lll.

But no matter. This can perhaps be explored. The important point
is that Taylor's claim, that T3-T2 must be case lll, is a claim for which
| as yet see no argument (although | must reiterate that | think it is
possible). My basic claim Is that in spite of my experlence with
computation, and in spite of what | have read, | don't think | know what
computation is well enough to answer this question. | think computation
may be closer to psychology, and further from physics, than anyone
realizes, and certainly than Taylor wants to admit. In fact, computers, |
suspect, may be a projection into formalism of external human cognitive
abilities == i.e., they may already be metaphorical in essence. Who knows
-~ perhaps T2 will turn out to reduce to T3. <;Then> what will we say?

