
R e f l e c t i o n a n d S e n t a n t i c s i n L i s p

Brian Cantwell Smi th

XEROX Pale Alto Research Center
3333 Coyote Hill Road. Pale Alto. CA 94304; and

Center for the Study of l .anguage and Information
Stantbrd Universi ty. Stanlbrd. CA 94305

1. I n t r o d u c t i o n

l"or three reasons, bi.';p's self-refi;rential properl.ies have not
led to a general un(h:rst.auding of what it is fro" a cmuputa t ional
sys tem to reason, in subs tan t ia l way~, about its; owe operat ions
a,ul s t ructures . First., there is more to reasoning than reference;
one also needs a theory, in terms of which to make .,~ense of the
referenced domain. A comln, ter sys tem able to reason about
i t . : ; e l f - what I will call a reflective sys t em - - will therefore
need an account of i tself embedded within it. Second, there
mos t he a sys temat ic relat ionship between tha t embedded
account and the sys tem it describes. Wi thou t such a connection,
the account would be useless - - as disconnected an the words of
a haple~;s drunk who carries on about the evils of inebriation,
without reali~iug tha t his story applies to himself . Tl 'aditional
embeddiugs of IAsp in Lisp are inadequate in jus t this way; they
provide no m e a n s for the implicit s ta te of the Lisp process to he
reflected, momen t by moment , in the explicit t e rms of the
embecbled account. Tlaird, a reflective sys tem n m s t be given an
appropriate van tage point a t which to s tand, far enough away to
have itself in focus, and ye t close enough to see the impor tan t
details.

This paper presents a general archi tecture, called
procedurcd refh'ctio,, to support sell 'directed reosoning in a
serial p rogramming lmaguage. Tim architecture, i l lustrated in a
revamped dialect called 3-Lisp, solves all three problems with a
single mechanism. The basic idea is to define an infinite tower
of procedural self-nmdels, very much like mctaci rcular
in terpreters [Steele and S u s s m a n 1978b], except connected to
each other in a s imple but critical way. In such an archi tecture,
any aspect of a procc~s's s ta te tha t can be described in t e rms of
One theory can be rendered explicit, in program accessihle
s t ructures . Fur thermore , as we will see, this apparent ly infini te
archi tecture can be finitely implemented.

The archi tecture allows the user to define complex
p rogramming constructs {such as escape operators, deviant
var iableqmssing protocols, and dehugging primitives), by wri t ing
direct analogues of those meta l inguis t ie semant ica l express ions
tha t would normally be used to describe them. As is a lways
true in semant ics , the metatheoret ie descript ions m u s t be
phrased in te rms of some part icular se t of concepts; in this case
I have used a theory of Lisp ba:;ed on env i ronmen t s and
continuations. A 3-Lisp program, therefore, a t any point dur ing
a computation, can obtain representa t ions of the env i ronmen t

Permission to copy without fee all or part of this material is granted
provided that the copi~ are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 1 2 5 - 3 / 8 4 / 0 0 1 / 0 0 2 3 $ 0 0 . 7 5

and cont inuat ion char;wtcris ing the s ta te of the computat ion at
tha t pui,~t. Thus , such constructs as t tmow and C,~TCII, which
mus t otherwise be providt,d primitively, can in 3-Lisp be easily
defined a:; user procedures (and defined, fur thermore , in code
tha t is ~,!most isomorphic to the ~-calculus. equat ions one
normally writes, in the metalal'$,3~a!,'c, to describe them). And
all this can be dolte wi lhout wri t ing the ent ire program in a
centinuation-pas:;iz~g :~tyle, o!' the sort illu,;trated in [Steele
197til. The point is no!. to decide at the outse t what should and
what should not be explicit (in Steele 's example, con t inua t ions
mus t be passed arouml explicitly from the hcgim, ing). Rather ,
the retlective archi tecture provides a method of mak in g some
aspects of the computat ion explicit, r ight in the midst of a
computat ion, even if they were implicit a m o m e n t earlier. It
provides a mech 'mism, in other wo~'ds, of reaching up and
"pull ing information out of the sky" when unexpected
c i rcumstances war ran t it, wi thout hav ing to worry about it
otherwise.

The overall claim is tha t retlection is s imple to build on a
semant ica l ly sound hase, where ' semant ica l ly sound ' m e a n s
more than tha t the semant ics be earefl~lly formulated. Rather, I
a s sume th roughout tha t computa t ional s t ruc tu res have a
semant ic significance tha t t ranscends their behavioural import
- - or, to put th is another way, tha t cmnputa t inna l s t ruc tu res are
about something, over anti above the effects they have on the
sys tems they inhabit . Lisp's Nft. for example , not only
ev~tluates to itself forever, but also (and somewhat
independently) s t ands for Falsehood. A reconstruct ion of Lisp
semant ics , therefore, mus t deal explicitly with both declarat ive
and procedural ospects of the overall significance of
computat ional s t ructures . This dist inction is different from
(though I will coutras t it with) the dis t inct ion between
operalional and denotat ional semant ics . It is a reconstruct ion
has boca developed within a view tha t p r o g r a m m i n g l anguages
are properly to be understood in the same theoretical te rms used
to ana lyse not only other computer languages , but even na tu ra l
languages .

This approach forces us to d i s t inguish between a s t ruc ture ' s
wdue and wha t it re turns , and to discr iminate enti t ies, like
numera l s and numbers , t ha t are isomorphic but not identical
(both ins tances of the general intel lectual hygiene of avoiding
use /men t ion errors). Lisp's basic notion of evaluat ion, I will
argue, is confused in th is regard, and should be replaced with
independent notions of designat ion and simplification. The
resul t is i l lustrated in a semantically rationalised dialect, called
2-Lisp, based on a s implifying (designat ion-preserving) term-
reducing processor. The point of defining 2-Lisp is tha t the
reflective 3-Lisp can be very s imply defined on top of it, whereas
defining a reflective version of a non-rat ionalised dialect would
be more cmnplicated and more difficult to unders tand .

The s t ra tegy of present ing a genera l archi tecture by
developing a concrete ins tance of it was selected on the grounds
tha t a gemfine theory of reflection (perhaps analogous to the
theory of rccursion) would be difficult to mot iva te or defend
without t ak ing this first, more pragtnatic, step. In section lO,

23

however, we will sketch a general "recipe" for adding reflective
capabili t ies to any serial language; 3-Lisp is the resul t of
applying this conversion process to the non-reflective 2-Lisp.

It is somet imes said tha t there are only a few con'~truc~.s
fi'om which l anguages are a,~sembled, ihcluding for example
predicates, terms, functions, composition, recursion, abstract ion,
a branching eulnctor, end quantif icat ion. Though differellt from
Ihe:~e notions (and not definable iJ~ t e rms of them), reflection is
perhaps best viewed as a preposed addition to tha t family.
Given this view, it is helpfid to unders tand relleci.ion by
compar ing it, ia part icular , with L'ecursion - - a construct with
which it sha res m a n y features. Specifically, recursion can seem
viciously circldar to the unini t ia ted, and can lead to confused
implementa t ions if poorly understood. The ma themat i ca l theory
ef recursion, however, underwri tes our ability to usa reeursion
in p rogrammiug l anguages without doubt ing i ts f undamen ta l
soundness (in thct, for many programmers , w i t h o u t
under s t and ing much about the formal theory at all). Reflective
sys tems, s imilar ly, init ial ly seem viciously circular (or a t leas t
infinite), and are difficult to implement wi thout an adequate
unders tanding . The in ten t of th is paper, however, is to a rgue
tha t reflection is as well-tamed a concept as recursion, and
potentially as efficient to use. Tim long . range goal is not to
force p rog rammers to unders tand the intricacies of des ign ing a
reflective dialect, bu t ra ther to enable them to use reflection and
recursion with equal abandon.

2. M o t i v a t i n g I n t u i t i o n s

Before t ak ing up technical details , it will help to lay out
seme mot ivat ions and assumpt ions . First , by 'reflection' in its
most general sense, I mean tire ability of an agen t to reason not
only introspectively, about its self and in ternal t hough t
processes, bu t ~.lso external ly , about its behaviour and s i tua t ion
in the world. Ordinary reasoning is ex te rna l in a s imple sense;
the point of reflection is to give an agen t a more sophist icated
s tance from which to consider its own presence in tha t
embedd:,ng world. There is a growing consensus I t ha t reflective
abilities underl ie much of the plasticity with which we deal with
the world, both in l anguage (such as when one says Did you
understand uhat I meant?) and in "thought (such as when one
wenders how to deliver bad news compassionately). Common
sense sugges ts tha t reflection enables u s to mas te r new skills,
cope with incomplete knowledge, define terms, examine
assumpt ions , review and distill our experiences, learn from
unexpected s i tuat ions, plan, check for consistency, and recover
from mistakes .

In spite of working with reflection in formal l anguages ,
most of the dr iving in tu i t ions about reflection are grounded in
h u m a n rat ional i ty and language. Steps towards reflection,
however, can also be found i,l much of cur ren t computa t ional
practice. Debugging sys tems, trace packages, dynamic code
optimizers, run- t ime compilers, macros, metaci rcular
interpreters , error handlers , type declarations, escape operators,
cerements , and a variety of other p rogramming const ructs
involve, in one way or another , s t ruc tu res tha t refer to or deal
with other ourts of a computat ional sys tem. These practices
st~ggest, as a first step towards a more general theory, def in ing
a l imited and ra the r intro~,pcctive notion of 'procedural
reflection': self-referential behaviour itJ procedural languages , in
which expressions a re pr:.marily used iu.,~tructionally, to
engender behaviour , ra ther than assert ional ly, to make claims.
It is the hope tha t the lessons learned in this smal le r task will
serve well in the larger account.

We ment ioned a t the outset t ha t the general task. in
defining a reflective system, is to embed a theory of the sys tem
in the sys tem, so as to support smooth shif t ing be tween
reasuning directly about the worhl and reasoning about t imt
reasoning. Because we are ta lk ing ef reasoning, not merely of
language, we added aa additional r equ i r emen t on this embedded
theory, beyond i ts being descriptive aml true: it m u s t also be
what we will call ca,sally conm,ch.d, so tha t accounts of objects
anti events are tied directly to those objects and events. Tim

Figure l : A Serial Medel of Cemputation
|

causal relat ionship, htr therinore, m u s t go both ways: fi'om event
to description, and from description back to event . (It is as if we
were crea t ing a magic kingdom, where fl'om a cake you could
automat ica l ly ge t a recipe, and from a recipe you could
automat ica l ly ge t a cake.) In ma thema t i ca l cases of self-
reference, inc luding both self-referential s t a t ement s , and models
of syn tax and proof theory, there is of course no causat ion a t all,
since there is no temporal i ty or behaviour (ma themat i ca l
sys t ems don't run). Causa t ion , however, is cer ta inly par t of any
reflective agent. Suppose, for example, t ha t you capsize while
canoeing th rough dit/icult rapids, and swim to the shore to
figure out wha t you did wrong. You need a description of wha t
you were doing a t the momen t the m i s h a p occurred; merely
hav ing a n a m e for yoursell , or even a genera l description of
yourself, would be use l e~ . Also, your t h ink ing m u s t be able to
have some effect; no good will come from your mere ly
con templa t ing .a wonderful theory of an improved you. As well
as s tepping back and being able to th ink about your behaviour ,
in e the r words, you m u s t also be able to t ake a revised theo ry .
and "dive back in under it", ad jus t ing your behaviour so as to
sat isfy the new account. And finally, we ment ioned t h a t when
you take the s tep backwards, to reflect, you need a place to
~tand with jus t the r ight combination of connection and
de tachment .

Computa t iona l reflective sys tems , s imilar ly, m u s t provide
both directions of causal connection, and an appropriate van tage
point. Consider, for example, a debugging sy s t em tha t accesses
stack f rames and other implementa t ion-dependen t
representa t ions of processor s tate , in order to give the user an
account of what a program is up to in the mids t of a
computat ion. First , slalck-l'rames and implementa t ion codes a re
really jus t descriptions, in a ra ther ine legan t language , of the
state of the process they describe. Like any description, they
make explicit some ef what was implicit in the process i tself
(this is one reason they are useful in debugging). Fur the rnmre ,
because of the na tu re of implementa t ion , they are a lways
available, and a lways true. They have these propert ies because
they play a causa l role ia . .~hever¥ existence el' the process they
implement ; they therefore au tomat ica l ly solve the "event-to-
description" direction of causal connection. Second, debugging
sys tems m u s t solve the "description to real i ty" problem, by
providing a way of m a k i n g revised descript ions of the process
true of tha t process. They carefully provide facilities for
a l ter ing the under ly ing state, based on the user ' s description of
what tha t s ta te should be. Wi thout this direction el: causal
connection, the debugging sys tem, like an abs t rac t nmdel, could
have no effect on the process it was examining . And finally,
p rogrammers who write debugging sy s t ems wrestle wi th the
problem of providing a proper van tage point. In th is case,
practice has been part icular ly atheoretical ; it is typical to
ar range, very cautiously, fur the debugger to tiptoe around i ts
own stack frames, in order to avoid var iable c lashes and other
unwanted interact ions.

As we will see in developing 3-Lisp, all of these concerns
can be dealt with in a reflective l anguage in ways tha t a re both
simple and implementa t ion- independent . The procedural code in
the metac i rcular processor serves as the " theory" discussed
above; the causal connection is provided by a m e c h a n i s m
whereby procedures at one level in the reflective tower are run
in the process one level above (a clean way, essent ia l ly , of
enabl ing a program to define subreu t ines to be rux~ in i ts own

24

~ S~l_~act,c Ooma~n S 1 ~3F"Semant. i c " Do.._.mmatn D

Figure 2: A Simple Seman.tic lntepretalion Function

m~plemeutation). In one sense it is all straightforward; the
subtlety of 3-Lisp has to do not so much with the power of such
a mechanism, which is evidi~nt, but with how such power can be
finitely provided - - a question we will examine in section 9.

Some final assumptions. I assume a simple serial model of
computation, illustrated in Figure 1, in which a computational
process as a whole is divided into an internal assemblage of
program and data s tructures collectively called the structural
field, coupled with an internal process tha t examines and
manipulates these structures. In computer science this inner
process (or 'homunculus') is typically called the intelpreter; in
order to avoid confusion with semantic notions of interpretat ion,
I will call it the processor. While models of reflection for
concurrent systems could undoubtedly be formulated, I claim
here only that our particular architecture is general for calculi
of this serial (i.e., single processor) sort.

I will use the term 's tructure ' for e lements of the structural
field, all of which are inside the machine, never for abstract
mathematical or other "external" enti t ies like numbers,
functions, or radios. (Although this terminology may be
confusing for semanticists who think of a s t ructure as a model, I
want to avoid calling them expressions, since the la t ter term
connotes linguistic or notational entities. The aim is for a
concept covering both data s t ructures and internal
representations of programs, with which to categorize what we
would in ordinary English call the structure of the overall
process or agent.) Consequently, I call metastructural any
structure that designates another structure, reserving
metasyntactic for expressions designating linguistic enti t ies or

• O

expressmns.- Given our interest in internal self-reference, it is
clear that both structural field and processor, as well as
numbers and functions and the like, will be par t of the semantic
domain. Note tha t metast ructaral calculi must be dist inguished
from those that are higher-order, in which terms and arguments
may designate functions of any degree (2-Lisp and 3-Lisp will
have both properties). 3

3. A F r a m e w o r k for C o m p u t a t i o n a l S e m a n t i c s

We turn, then, to questions of semantics. In the simplest
case, semantics is taken to involve a mapping, possibly
contextually relativized, from a syntactic to semantic domain, as
shown in Figure 2 . . T h e mapping (,1)) is called an interpretation
function (to be distinguished, as noted above, from the s tandard
comlmter science notion of an interpreter). It is usually specified
inductively, with respect to the compositional structure of the
elements of the syntactic domain, which is typically a set of
syntactic or linguistic sorts of entities. The semantic domain
may be of any type whatsoever, including a domain of
behaviour; in reflective systems it will often include the
syntactic domain as a proper part. We will use a variety of
different terms for different kinds of semantic relationship; in
the general case, we will call s a symbol or sign, and say tha t s
signifies d, or conversely that d is the significance or
interpretation of s.

In a computational setting, there are several semantic
relationships - - not different ways of characterizing the same
relationship (as operational and denotational semantical
~ coun t s are sometimes taken to be), for example, but genuinely
distinct relationships. These different relationships make for a
more complex semantic framework, as do ambiguit ies in the use
of words like 'program'. In many settings, such as in purely
extensional functional programming languages, such distinctions
are inconsequential. But when we turn to reflection, self-
reference, and metastructural processors, these otherwise minor
distinctions play a much more important role. Also, since the
semantical thi~ory we adopt will be a t least partially embedded

within 3-Lisp, the analysis will aflbct the formal design• Our
approach, therefore, will be s tar t with basic and simple
intuitions, and to identify a finer-grained set of distinctions than
are usually employed. We will consider very brielly the issue of
how current programming language semantics would be
reconstructed in these terms, but the complexities involved in
answering that question adequately would take us beyond the
scope of the present paper.

At the outset, we distinguish three things: a) the objects
and events in the world in which a comlmtational process is
embedded, including both real-world objects like cars and caviar,
and set-theoretic abstractions like numbers and functions (i.e.,
we "ldopt a kind of pan-platonic idealism about mathematics}; b)
the internal elements, structures, or processes inside the
computer, including data structures, l~rogram representations,
execution sequences and so forth {these are all formal objects, in
the sense that computation is formal symbol manipulation}; and
c) notational or communicational expressions, in some externally
observable and eonsensually established medium of interaction,
such as str ings of characters, s t reams of words, or sequences of
display images on a computer terminal . The last set are the
consP.ituent3 of the communication one has with the
computational process; the middle are the ingredients of the
process with which one interacts, and the first (at least
presumptively) are the elements of the world about which that
communication is held. In the human case, the three domains
correspond to world, mind, and language.

It is a t ruism that the third domain of objects
communication elements - - are semantic. We claim, however,
that the middle set are semantic as well (i.e., that s t ructures are
bearers of meaning, information, or whatever). Dist inguishing
between the semautics of communicative expressions and the
semantics of internal structures will be one of main features of
the framework we adopt. It should be noted, however, that in
spite of our endorsing the reality of internal structures, and the
reality of the embedding world, it is nonetheless true tha t the
only things that actually happen with computers (at least the
only thing we will consider, since we will ignore sensors and
manipulators} are communicative interactions. If, for example, I
ask my Lisp machine to calculate the square root of 2. wha t I do
is to type some expression like (SQRr Z.0) at it, and then receive
back some other expression, probably quite like I. 414, by way of
response. '['he interaction is carried out entirely in te rms of
expressions; no structures, numbers, or functions are par t of the

• interactional event. The participation or relevance of any of
these more abstract objects, therefore, must be inferred from,
and mediated through, the communicative act.

We will begin to analyse this complex of relationships
using the terminology suggested in Figure 3. By O, very simply,
we refer to the relationship between external notational
expressions and internal structures; by ,1, to the processes and
behaviours those structural tield e lements engender (thus I, is
inherently temporal), and by ,1, to the enti t ies in the world that
they designate. The relations 4, and t, are named, for mnemonic
convenience, by analogy with philosophy and psychology,
respectively, since a study of ,I, is a study of the relationship
between structures and the world, whereas a study of ,1, is a
study of the relationships among symbols, all of which, in
contrast, are "within the head" (of person or machine).

Computation is inherently temporal; our semantic analysis,
therefore, will have to deal explicitly with relationships across
the passage of time. In Figure 4, therefore, we have unfolded
the diagram of Figure 3 across a unit of time, so as to get at a
full configuration of these relationships. The expressions n I and
n2 are intended to be linguistic or communicative entities, as
described above; Sl and s2 are internal s t ructures over which
the internal processing is defined. The relat ionship o, which we
will call internalisation, relates these two kinds of object, as
appropriate for the device or process in question (we will say, in
addition, that nl ,otates sl)• For example, in first-order logic nl
and n2 would be expressions, perhaps wri t ten with let ters and
spaces and '3" signs; st and s2. t~ '~he extent they can even be
said to exist, would be something like abstract der ivat ion tree

25

J

7 J

Figure 3: Sem~lntic Relationships in a Computollonal Process

types of the corresponding first-order formulae, hi Lisp, as we
will see, n I and n 2 would be the input and output expressions,
wri t ten with let ters and parent.hoses, or perhaps with boxes and
arrows; sl and s2 would be the cons-cells in the s-expre,q.qion
heap.

In contrast, d l and d 2 are elements oz" fragments of the
embedding world, and 4, is the relat ionship tha t in ternal
s tructures bear to them. q~, in other words, is the interpretat ion
function t h s t makes explicit what we will call the designation of
intern,d s t ructures (not the designation of linguistic terms,
which would be described by ~,oO). The relationship between my
mental token for T. S. Eliot, for example, and the poet himself,
would be formulated as par t of ~, whereas the relat ionship
between the public name ~I'. S. Eliot" and the poet would be
expressed as 4~(O("T.S.EI.IOT')) • T.S.I.:I.IOT. Similarly, 4, would
relate an internal "numeral" s tructure (say, the numeral 3) to
the corresponding number. As mentioned at the outset, our
focus on ,1, is evidence of our permeat ing semantical assumption
tha t all s t ructures have designations - - or, to put it another
way, tha t the structures are all symbols. 4

The ~1, relation, in contrast to O and ~, always (and
necessarily, becau~ it dosen' t hove access to anyth ing else)
relates some internal s t ructures to others, or a t least to
behaviours over them. To the extent tha t it would make sense
to talk of a '¢ in logic, it would approximately be the formally
computed derivability relat ionship (i.e., I-); in a na tura l
deduction or resolution ~hemee , ,I, would be a subset of the
derivability relationship, picking out the particular inference
procedures those regimens adopt. In a computational setting,
however, ,l, would be the function computed by the processor
(i.e., * is evaluation in Lisp).

The relationships O, ,I,, and q have differeat relative
importances in different linguistic disciplines, and different
relationships among them have been given different names. For
example, O is usually ignored in logic, and there is little
tendency to view the study of ~', called proof theory, as
semantical, al though it is always related to semantics, as in
proving soundness and completsner~ (which, incidentally, can be
expressed as the equation ~,(Sl,S 2) m [dl ~ d2]. if one takes ,If
to be a relation, and <, to be an inverse satisfaction relationship
between sentences and possible worlds tha t satisfy them). In
addition, there are a variety of "independence" claims tha t have
arisen in different fields. That ,I, does not uniquely determine 4,,
for example, is the "psychology narrowly construed" and
col~comitant methodological solipsism of Putnam, Fodor, and
others [Fodor 19801. That O is usually specifiable
compositionally and independently of 4, or • is essentially a
s ta tement of the autonomy thesis for language. Similarly, when
0 cannot be ~pecified indepently of ,I,, computer science will say
tha t a programming language "cannot be parsed except a t
runt ime" (Teco and the first versions of Small talk were of this
character).

A thorough analysis of these semantic relationships,
however, and of the relationships among them, is the subject of
a different paper. For present purposes we need not take a
stand on which of O, q', or • has a prior claim on being
semantics, but we do need a little terminology to make sense of
it all. For discussion, we will refer to the "~" of a s t ructure as
its declaratit~e import, and to its "q," as i ts procedural

Figure 4: A Fra mework for Computational Semantics

consequence. It is also convenient to identify some of the
situations when two of the six enti t ies (nt, n2, s l , s2, all, and
do) are identical. In particular, we will say tha t sl is self-
referential if dl • sl, tha t ,I, de-references s! if s2 ffi dr, and tha t
• is designatioa.preser~iag (at s t) when d t • d 2 (as it always is,
for example, in the ~,-calculus, where t, - - a- and #-reduction
do not a l t e r the interpretation in the s tandard model).

I t is natural to ask what a program is, what programndng
language semantics gives an account of, and how (this is a
related question) • and ,Z, relate in the programming language
case. An adequate answer to this, however, introduces a maze
of complexity tha t will be considered in future work. To
appreciate some of the difficulties, note tha t there are two
different ways in which we can conceive of a program,
suggesting different semantical analyses. On the one hand, a
program can be viewed as a linguistic object tha t de~riboa or
signifies a computational process consisting of the data
structures and activities that result from (or arise during) its
execution. In this sense a program is primarily a
communicative object, not so much playing a role within a
computational process as exist ing outside the process and
representing it. Put t ing aside for a moment the question of
whom it is mean t to communicate to, we would simply say tha t
a program is in the domain of O, and, roughly, tha t ~oO of such
an expression would be the computation described. The same
characterization would of course apply to a specification; indeed,
the only sal ient difference might be tha t a specification would
avoid using non-effective concepts in describing behaviour. One
would expect specifications to be stated in a declarative
language (in the sense defined in footnote 4), since specifications
aren' t themselves to be executed or run, even though they speak
about behaviours or computations. Thus, for program or
specification b describing computational process c, we would
have (for the re levant language) something like ~(O(b) l - c. If
b were a program, there would be an additional constraint tha t
the program somehow play a causal role in engendering the
computational process c tha t i t is taken to describe.

There is, however, an al ternat ive conception, tha t places
the program inside the machine as a causal part icipant in the
bchsviour that results. This view is closer to the one implicitly
adopted in Figure 1, and it is closer (we claim) to the way in
which a Lisp program must be semantically analysed, especially
if we are to understand Lisp's emergent reflective properties. In
some ways this different view has a yon Neuman character, in
the sense of equating program and data. On this view, the more
appropriate equation would seem to be ¢/(O(b)) --e, since one
would expect t he .processing of the program to yield the
appropriate behaviour. One would seem to have to reconcile
this equation with tha t in the previous paragraph; something i t
is not clear it is possible to do.

But this will require fur ther work. What we can say here
is tha t programming language semantics seems to focus on
what, in our terminology, would be an amalgam of q' and @.
For our purposes we need only note tha t we will have to keep q,
and • strictly separate, while recognising (because of the context
relativity and nonlocal effects) tha t the two parts cannot be told
independently. Formally, one needs to specify a general
significance function Z, that recursively specifies • and
together. In particular, given any structure Sl, and any state of

26

the processor and the rest of the field (encoded, say, in an
envi ronment , continuat ion, and perhaps a store), ~ will specify
the s t ructure , configuration, and s tate tha t would resul t (i.e., i t
will specify the use of st) , and also the relat ionship to the world
tha t Sl signifies. For example, given a I,isp s t ruc ture o£ the
form (÷ I (PRO~ (SZTQ A 2) A)), X would specify tha t the whole
s t ruc ture designated the number three, tha t it would re turn the
numera l 3, and tha t the machiue would be left in a s ta te in
which the binding of the variable A was changed to the n u m e r a l
z.

Before leaving semant ics completely, it is ins t ruct ive to
apply our various dist inct ions to tradit ional Lisp. We said
above tha t all interaction with computat ional processes is
mediated by cmnmunicat ion; this can be s ta ted in th is
terminology by not ing tha t O and O "t (we will call the la t te r
e.rternalisation) are a par t of any interaction. T h u s Lisp's "read-
eval-print" loop is mirrored in our ana lys i s as an i terated
version of O'1o*oO (i.e., if n j is an expression you type a t Lisp,
then n 2 is o ' l (* (O (n l l))) . The Lisp s t ruc tura l field, as it
happens, has an extremely s imple compositional s t ructure , based
on a binary directed graph of atomic e l emen t s called cons-cells,
extended with atoms, numera ls , and so forth. The l inguist ic or
communicat ive expressions tha t we use to represent Lisp
programs - - the formal language objects t ha t we edit with our
editors and pr int in books and on t e rmina l screens - - is a
separate lexicai (or somet imes graphical) object, with i ts own
syntax (of parentheses and identif iers in the lexical case; or
boxes and arrows in the graphical).

There is in Lisp a relatively close correspondence between
expressions and s t ructures; it is one-to-one in the graphical case,
but the s tandard lexical notat ion is both ambiguous (because of
shared tails) and incomplete (because of its inabil i ty to
represent cyclical s t ructures) . The correspondence need not
have been as close as it is; t he process of conver t ing from
external syn tax or notat ion to in terna l s t ruc ture could involve
arbi t rary amoun t s of computat ion, as evidenced by read macros
and other syntactic or notat ional devices. But the impor tan t
point is t ha t it is s t ruc tura l field e lements , not notat ions, over
which most Lisp operations are defined. If you type
(RPLACA '(A . e I ' e l , for example, the processor will change the
CAR of a field s t ructure; it will not back up your t e rmina l and
erase the eleventh character of your im~ut exvreseion.
Similarly, Lisp a toms are field element% not to be confused with
their lexical representa t ions (called P .names) . Again, quoted
forms like (QUOTE AOC) designate s t ruc tura l field e lements , not
input s t r ings. The form (QUOrE ...), in other words, is a
s t ruc tura l quotat ion operator; notat ional quota t ion is different,
usual ly notated with s t r ing quotes ('ABe'). 5

4. E v a l u a t i o n C o n s i d e r e d H a r m f u l

The claim tha t all three re la t ionships (O, ~, and ,v) f igure
crucially in :m account of Lisp is not a formal one. It m a k e s a n
empirical claim on the minds of programmers , and cannot be
sett led by point ing to any cur ren t them'ies or implementa t ions .
Nonetheless , it is una rguab le tha t l , isp's numera l s des ignate
numbers , and tha t the a toms T and NIL (at leas t in predicative
contexts) des ignate t ru th and falsi ty - - no one could learn Lisp

"l~ree "lhrce Tmthl x

Falsityl a th nction

Figure 5: L I S P Evaluation vs. Designation: Some Examples

,b

¢,1, Intctnal Structures

~ ... cdgc of the machinc
, :

External World

Figure 6: LISP's "De-reference I f You Call" Evalunlion Protocol

without learn ing Lhis fact. Similarly, (EQ 'A '8) des igna tes
falsity. Fur thermore , the s t ruc ture (CAR '(A . n i l des igna tes
the a tom A; this is manifes ted by the fact t ha t people, in
describing Lisp, use expressions such as "i£ the C^lt of the list is
I At~nOA, tl~cn it 's a procedure", where the te rm "the CAR of the
list" is used as an Engl ish referring expression, not as a quoted
f ragment of Lisp (and English, or na tura l l anguage general ly, is
by definition the locus of what des ignat ion is). (ouorE A), or 'A,
is ano ther way of des ignat ing the atom A; tha t ' s j u s t wha t
quotat ion is. Finally, we can take a toms like CAR and ÷ to
designate the obvious functions.

What , then, is the relat ionship he tween the declarat ive
import (,I,) of Lisp s t ruc tures and their procedural consequence
(,v)? Inspection of the da ta given in Figure 5 shows t ha t Lisp
obeys the following constra int (more m u s t be said about * in
those cases for which ~ (* (s)) = ,P(s), since the identi ty funct ion
would sat isfy this equation):

VS E ,S'[i f [~P(SlC S] then [¢ / (S) = 4b(S)] (1)
else ['~ (¢ / (S)) = 4) (S) I]

All Lisps, including Scheme [Steele and S u s s m a n 1978a], in
other words, dereference any s t ruc ture whose des ignat ion is
another s t ructure , bu t will re tu rn a co-designat ing s t ruc ture for
any whose designat ion is outside of the mach ine (Figure 6).
Whereas evaluat ion is often though t to correspond to the
semant ic interpretat ion function q,, in other words, and
therefore to have type EXeRESSIONS -~ VALUES, evalua t ion in Lisp
is often a designat ion-preserving operation. In fact no computer
can evalua te a s t ruc ture like (~ 2 3), if t ha t m e a n s r e tu rn ing
the designat ion, any more than it can eva lua te the n am e
Ilesperus or peanut b, t ter.

Obeying equat ion (t) is h ighly anomolous. It m e a n s t h a t
even if one knows what Y is, and knows X eva lua tes to Y, one
still doesn' t know what X designates . It l icences such semant ic
anomal ies as (÷ I ' z) , which will eva lua te to 3 in all ex t an t
Lisps. Informally, we will say tha t Lisp's eva lua te r crosses
semantical levels, and therefore o h ~ u r e s the difference between
simplification and designat ion. Given t ha t processors cannot
a lways de-reference (since the co-domain is l imited to the
s t ruc tura l field), it serous they should a lways simplify, and
therefore obey the following cons t ra in t (d iagrammed in Figure
7):

VS E S [, b (* (s)) : ,P(S) A NOIINAL-FORM(~P(S))] (2)

The content of this equat ion clearly depends ent irely on the
content of the predicale'NonHAL-rOaN (if ~ORĤ L-rOnN were kx. true
then * could be the identi ty function). In the k-calculus, the

~ / normal form

Figure 7: A Normalisat ion Protocol

2?

Reduction

[vo: valut~ Dos l~l.li

Application

Figure 8: Appliceaion vs. Reduction

notion of normal- formedness is defined in t e rms of the
processing protocols (~- and p-reduction), bu t we cannot use t h a t
definit ion here, on th rea t of circularity. Instead, we say tha t a
s t ruc ture is in normal iorm if and only if it sat isf ies the
following three independent conditions:

1. It is context-independent, in the sense of hav ing the s ame
declarat ive (,I,) and procedural (,1,) import independent of
the context of use;

2. It is side-effect-free, implying tha t the processing of the
s t ruc ture will have no effect on the s t ruc tura l field,
processor s tate , or external world; and

3. It is stable, mean i ng tha t it m u s t normal ise to i tself in all
contexts, so tha t * will be idempotent .

We would then have to prove, given a l anguage specification,
t ha t equat ion (2) is satisfied.

Two notes. First , I won't use the t e rms ' eva lua te ' or
'value ' for expressions or s t ruc tures , referr ing ins tead to
normalisation for *, and designrttion for ¢. I will somet imes call
the resul t of normul is ing a s t ruc ture its result or what it
retur~ts. There is also a problem with the t e rms 'apply' and
'application'; in s t andard Lisps, APPLY is a funct ion from
s t ruc tures and a r g u m e n t s onto values, bu t i ts use, l ike
"evaluate' , is rife with u se /men t ion confusions. As i l lus t ra ted in
Figure 8, we will use 'apply' for ma thema t i ca l funct ion
application - - i.e., to refer to a relat ionship between a function,
some a rgumen t s , and the value of the function applied to those
a r g u m e n t s --- and the te rm 'reduce' to relate the three
expressions tha t des ignate functions, a rgumen t s , and values,
respectively. Note tha t I still use the te rm 'va lue ' (as for
example in the previous sentence), bu t only to name t ha t ent i ty
onto which a function maps its a rgumen t s .

Second, the idea of a normal i s ing processor depends on the
idea tha t symbolic s t ruc tures have a semant ic significance prior
to. and independent at: the way in which they are t reated by
the processor. Wit lmut th is a s sumpt ion we could not even ask
about the semant ic charac ter of the Lisp (or any other)
processor, let alone sugges t a cleaner version. Wi thout such an
assumpt ion, more generally, one cannot say tha t a given
processor is correct, or coherent, or incoherent; it is merely wha t
it is. Given one account of what it does (like an
implementat ion) , one c~n compare tha t to ano ther account (like
a specification). One can also prove t ha t i t has cer ta in
properties, such as tha t it a lways te rmina tes , or uses resources
in certain ways. One can prove properties of programs wri t ten
in the l anguage it r uns (from a specification of the ALGOL
processor, for example, one mi gh t prove tha t a par t icu lar
t)rogram sorted its input). However none of these ques t ions deal
with the fundamen ta l quest ion about the semant ica l na tu re of
the processor itself. We are not looking for a way in which to
say tha t the semant ics of (CA~ ' (a . s)) is A because t h a t is how
the language is defined; ra ther , we wan t to say tha t the
l anguage was defined t ha t way because A is wha t (CAR ' (^ . 8))
designates . Semantics , in other words, can be a tool with which
to judge sys tems , not merely a method of describing them.

5. 2-Lisp: A S e m a n t i c a l l y R a t i o n a l i s c d Dia l ec t

Since we lmve torn apar t the notion of ewduat ion into two
cons t i tuent notions, we mus t s t a r t at the beginning and build
Lisp over again. 2-Lisp is a proposed result . Some s u m m a r y
comments can be made. Firs t , I have reconstructed wha t I call
the category structure of Lisp, requi r ing tha t the categories into
which Lisp s t ruc tures are sorted, for var ious purposes, l ine up
(giving the dialect a property called category alignment). More
specifically, Lisp expressions are sorted into categories by
notat ion, by s t ruc ture (atoms, cons pairs, numera ls) , by
procedural t r e a tmen t (the "dispatch" inside EVAL), and by
declarat ive semant ics (the type of object designated).
Tradit ionally, as i l lustrated in Figure 9, these categories are not
aligned; lists, a derived s t ruc ture type, include some of the pairs
and one a tom (Nzt); the procedural reg imen t reats some pairs
(those with LAMSDA in the CAR) in one way, most a toms (except T
and ~It) in another , and so forth. In 2-Lisp we require the
notational, s t ruc tura l , procedural, and semant ic categories to
correspond one-to-one, as shown in Figure l0 (this is a bit of an
oversimplification, since a toms and pairs - - r epresen t ing
arbi t rary var iables and arbi t rary funct ion application s t ruc tu res
or redexes - - can des ignate ent i t ies of any semant ic type).

A s u m m a r y of 2-Lisp is given in Figure 11, bu t some
comments can be made here. Like most ma themat i ca l and
logical l anguages , 2-Lisp is a lmost entirely declarat ively
extensional . T h u s (+ 1 z), which is an abbreviat ion for
(+ . [t 2]), des igna tes the value of the application of the
function des ignated by the a tom + to the sequence of n u m b e r s
designated by the rail f l 2]. In other words (+ I z) des igna tes
the n u m b e r three, of whici~ the n u m e r a l 3 is the normal-form
designator; (÷ 1 2) therefore normel ises to the numera l 3, as
expected. 2-Lisp is also usua l ly call-by-value (what one can
th ink of as "procedurally extensional"), in the sense tha t
procedures by and large normal ise the i r a rgumen t s . Thus ,
(+ ! (BLOCK (PnZNT "hel lo')Z) will normal i se to 3, p r in t ing
'hello ° in the process.

Many properties of Lisp tha t m u s t normal ly be posited in
an ad hoc way fall ou t directly from our analysis . For example,
one m u s t normally s ta te explicitly tha t some atoms, such as v
and NZL and the numera l s , a re self-evaluating; in 2-Lisp, the fact
t ha t the boolean cons tan ts a re se l f -normal is ing follows directly
from the fact t ha t they are normal form designators . Similarly,
closures are a na tu ra l category, and d is t inguishable from the
functions they des igna te (there is ambigui ty , in Scheme, as to
whether the value of + is a function or a closure). Finally,
because of the category a l ignment , if x des igna tes a sequence of
the first three number s (i.e., it is bound to the rail [z 3]), then
(+ . x) will des ignate five and normal i se to 5; no metatbeoret ic
m.'zchinery is needed for this "uncur ry ing" operation (in regular
Lisp one m u s t use (APPLY '+ X); in Scheme, (aPPLY ÷ X)).

'['here are numerous properties of 2-Lisp tha t we will
ignore in th is paper. The dialect is defined (in [Smith 82]) to
izmlude side-effects, in te | | s ional procedures (tha t do not
uot~nalise thei r a rguments) , and a var ie ty of o ther somet imes-
shunned properties, in par t to show tha t our semant ic
reconstruction is compatible with the full g a m u t of fea tures
found in real p rog ramming languages . Reeursion is handled
with explicit fixed-point operators. 2-Lisp is an eminen t ly '
usable dialect (it s u b s u m e s Scheme bu t is nmre powerful, in
par t because of the me t^s t ruc tu ra l access to closures), a l though
it is ru th less ly semant ica l ly strict.

6. S e l f - R e f e r e n c e i n 2 . l , i sp

We tu rn now to ma t t e r s of ~elf-reference.
Tradi t ional I,isps provide names U=V^L and APPLY) for the

pr imit ive proce&~or procedures; the 2-Lisp ana logues a re
UORHALZSF and n[DUCE. Ignoring for a m o m e n t context a rgument~
such as env i ronmen t s and continuat ions, (I~OR~ALISE '(÷ Z 3))
des ignates the normal-form s t ruc ture to which" (÷ z 3)
normal iscs , and therefore r e tu rns the handle '5. Similarly,

28

Lexical I)cr. Str. Proccdural Declarative

. A I" or NIL H T.Values
, , o . r . , s

[Labels ~ Atoms
loot tea P.

LiStS ~..-~(quote : .) ~ Sexprs - J l
I "L!st" " ~ " N~. Lis t s ,~Se~uence,

' 1 Appl'ns "

Figure 9: The Categol:y Structure o f LISP 1.5

I.exical Structural Ih'ocedural

. . .

. . . . f la i ls
J ' : ~ ~ o r , . a l Eorm
L ~ m c r i c s ~ s . _ J ~ - ~ _ _ _ _ A _ A tom s
I (^1 .-^z) ' [--t___pal~_~__J I Pairs

I)cclarative

Numbers I
l ru th Values I

Funct ions I
Sequences [
Structures [

Figure I0: The Category Structure of 2-LISP and 3-LISP

Figure I 1: A n Overview of 2-Li~p

We begin with the objects. Ignoring i npu t / ou tpu t
categories such as characters , s t r ings, and s t reams , the re are
seven 2-Lisp s t ruc ture types, as i l lus t ra ted in Table 1. The
numerals (notated as usual) and the two boolean cons tan t s
(notated 'ST' and '$f') are un ique (i.e., canonical), atomic,
normal-form designators of n u m b e r s and t ru th-va lues ,
respectively. Rails (notated '[A~ Az ... AA]') des ignate sequences;
they resemble s tandard Lisp lists, bu t we d i s t ingu ish t hem from
pairs in order to avoid category confusion, and give t h e m their
own name, in order to avoid confusion with sequences (or
vectors or tuples), which are normal ly t aken to be platonic
ideals. All atoms are used as var iables (i.e., as context-
dependent names); as a consequence, no a tom is normal-form,
and no a tom will ever be re turned as the resu l t of processing a
s t ruc ture (a l though a des ignator of it may be). Pairs
(somet imes also called redexes, and notated '(A~ . Az)') des igna te
the value of the function des ignated by the CAR applied to the
a r g u m e n t s designated by the CDR. By t ak ing the nota t ional
form '{A~ Az ... A~)' to abbrevia te '(A 1 . I:A z Aa ... Akl)' ins tead of
'(A~ . (Az . (... (A~ .NIL).. .))) ' , we preserve the s t andard look
of Lisp programs, wi thout sacrificing category a l ignment . (Note
tha t in 2-Lisp there is no d is t inguished a tom NIL, and *()' is a
notational error ~ corresponding to no s t ruc tura l field e lement .)
Closures (notated '(CLOSURE: ... }') are normal-form function
designators, but they are not canonical, since it is not generally
decidable whether two structures designate the same function.
Finally, handles are unique normal-form designators of all
structures; they are notated with a leading single quote mark
(thus "'A' notates the handle of the atom notated 'A', "(A . St'
notates the handle of the pair notated '(A . s)', etc.). Because
designation and simplification are orthogonal, quotation is a
structural primitive, not a special procedure (although a QUOTE
procedure is easy to define in 3-Lisp).

We turn next to the functions (and use '~' to mean
'normalises to'). There are the usual arithmetic primitives (+, -,
• . and /). Identity (signified with =) is computable over the fall
semantic domain except functions; thus (- 3 (+ I z)) =* ST, but
(= + (LAMOOA [X] (+ X X)))will generate a processing error, even
though it designates truth. The traditionally unmotivated
difference between E0 and EOUAL turns out to be an expected
difference in granularity between the identity of mathematical
sequences and their syntactic designators; thus:

(= I t 2 3] [-1 z 3]) = , Sr
(= ' [I Z 3] ' [1 2 3]) =~ $F
(= (z z 3] ' [I z 3]) =~ $F

(In the las t case one s t ruc ture des igna tes a sequence and one a
rail.) IST and REST are the CAR/CDR ana logues on sequences and
rails; thus , (t a t It0 20 30]) ~ t0; (REST El0 20 30~]) ~ r20 30].
CAR and CaR are defined over pairs; t hus (CAR ' (a . S)) ~ 'A
(because it designates A), and (COR '(+ 1 2)) = ' [1 z]. The pair
constructor is called PC0NS (thus (PCONS 'A 'a) ~ ' (A . a)); the

corresponding constructors for atoms, rails, and closures are
called AEONS, aeONS, and CC0NS. There are 11 pr imit ive
characterist ic predicates, 7 for the in ternal s t ruc tura l types

(AlOM, PAll|, RAIl., i;OOLEAN, NUMERAL, CLOSURE, and IIAFJDLE) and 4 fo~
the externa l types (NUMBER, TRurtI-VALUE, SEOUENCE, and FuNcrIo~J).
Thus:

(NUMOER 3) ~ $T
(NUMERAL '3) =~ ST
(NUMBER '3) ~ Sf
(FUNCTION +l ==> ST
(FUBCTION '*) =-~ Sf

Procedurally intensional IF and CONO are defined as usual ; BLOCK
(as in Scheme) is like s tandard Lisp's PROGN. BODY, PATTERN, and
fNVta0NMENT are the three selector funct ions on closures.
Finally, funct ions are usua l ly "defined" (i.e., convenient ly
designated in a contextual ly relative way) with s t ruc tu res of the
tbrm (LAM8OA SIMPLE AReS BOOY) (the keyword SIMPLE will be
explained presently); thus (LAMBDA SIMPLe IX] (+ X Xl l r e t u rn s a
closure tha t des igna tes a function tha t doubles numbers ;
((LAblBflA SIMPLE IX] (+ X X)) 4) ~ 8,

2-Lisp is h igher order, and therefore lexically seeped, like
the X-calculus and Scheme. However, as ment ioned earl ier and;
i l lustrated with the handles in the previous paragraph, it is also
metas t ruc tura l , providing an explicit abil i ty to name in terna l
s t ructures . Two primit ive procedures, called uP and DOWN
(usual ly notated with the arrows %' and "C) help to mediate th i s
metas t ruc tu ra l h ie rarchy (there is otherwise no way to add or
remove quotes; ~z will normal ise to "2 forever, never TO z).
Specifically, tSTAVC des igna tes the normal~form des ignator of the
designat ion of SrRUC; i.e., tSreUC des igna tes what STRUC
normalises to (therefore t(+ z 3) ~ 's). Thus:

(LAMBDA SIMPLE IX] X) des ignates a function,
' (LAMaDA S I MPLE [X] X) des igna tes a pair or redex, and
t(LAMODA SIMPLE [xJ x) des ignates a closure.

(Note tha t ' t ' is call-by-value but not declarat ively extensional .)
Similarly, ~sTeuc des ignates the des ignat ion of the des ignat ion
of STROC, providing the designat ion of STRUC is in normal-form
(therefore * '2 ==* z). ~,*STRUC is a lways equiva lent to SrRoc, in
terms of both designat ion and result ; so is t~.srRvC when it is
defined. Thus if 00URLE is bound to (the resul t of normal is ing)
(I^MBO^ IX] (* x x)), then (BODY OOURLE) generates an error,
since BODY is extensional and DOUBLE des igna tes a function, b u t
(RODe tDOUrJLE) will des ignate the pair (+ x x).

Type Designq/ion Norm,d Canonical Notation

Numera l s Numbers Yes Yes - - digits
Booleans Tru th -Va lues Yes Yes - - ST or SF
Handles S t ruc tures Yes Yes - - ' STRUC
Closures Funct ions Yes No CC0NS (closure}
Rails Sequences Some No RC0NS [STRUC... srRv~
Atoms (,~ of Binding) No - - AC0NS alphamerics
Pairs (ValueofApp.) No - - PCONS (STRUC. STRUC

Table 1: The 2-LISP(and 3-LISP) Categories

29

===~ ~ . . o

Figure 12: Meta-Circtdar Processors
. !

(NORgAL[SE '(CAR ' (A . B))) ~ ' ' A
(NORNALISE (PCONS '= ' [2 3])) =~ '$1 r
(REDUCE ' IST '[~10 20 30]) =*, '10.

More generally, the basic idea is t ha t ~(NOIIMALISE) • ~, tO be
contrasted with o(~,), which is approximate ly o, except t ha t
because ,t is a part ial function we have @(~, o NORHALISE) = ~.
Given these equat ions, the behaviour i l lus t ra ted in the
foregoing examples is forced by genera l semant ica l
considerations.

In any computat ional formal ism able to model i ts own
syntox and ~structures, 6 it is possible to cons t ruc t wha t a re
commonly known as metacircular interpreters, which we call
, lelacireular processors (or MCPs) ~ "meta" because they
operate on (and therefore t e rms wi th in t hem des ignate) o ther
formal s t ructures , ~nd "circular" because they do not const i tu te
a definition of the processor. They are circular for two reasons.
First, they have to he run by t ha t processor in order to yield
any sor t of behaviour (since they are programs, not processors,
strictly). Second, the behaviour they would thereby engender
can be known only if one knows beforehand wha t the processor
does. (Standard techniques of fixed points, fu r thermore , are of
no help in d ischarging th is circulari ty, because th is kind of
modell ing is a kind of ~ l f -men t ion , whereas reeurs ive
definitions are more ~ l f -use .) Nonetheless , such processors are
pedagogically i l luminat ing , and play a critical role in the
development of procedural reflection.

The role of MCPs is i l lustrated in Figure 12, showing how,
if we ever replace P in Figure 1 with a process tha t resul ts from
P processing the metaci rcular processor MCP, it would ~till
correctly engender the behaviour of any overall program.
Tak ing processes to be funct ions from s t ruc tu res onto behaviour
(whatever behaviour is - - ['unctions from initial to final s ta tes ,
say), and call ing the primit ive processor P, we should be able to
prove that. P(MCP) = P, where by '=" we mean behavioura l ly
equivalent in some appropriate sense. The equivalence is, of
course, a global equivalence; by and large the pr imit ive
processor and the processor resu l t ing from the explicit r u n n i n g
of the MCP cannot be arbi t rar i ly mixed. If a variable is bound
by the under ly ing processor P, it will not be able to be looked up
by the metaci rcular code, for example, Similarly, if the
metaci rcular processor encounters :: control-s t ructure pr imit ive,
such as a Till'tOW or a 0ni l , it wid not cause the metac i rcu la r
processor itself to exit p remature ly , o t t o te rmina te . The point,
ra ther , is t ha t if an ent ire computa t ion is run by the process
tha t resu l t s from the explicit prece.~qing of the MCP by P, the

resul ts will be tbe same (modulo t ime) as i f tha t ent i re
computat ion had been carried out directly by P. MCPs are not
causal ly connected with the sys t ems they model.

The reason tha t we cannot mix code for the under ly ing
processor and cede for the MCI) and the r e a ~ a tha t we ignored
context a r g u m e n t s in the defini t ions above both have to do with
the s ta te of the processor P, In very s imple sys t ems (unordered
rewrite rule sys tems, for example, and hardware archi tec tures
).hat pu t even the p rogram counter into a memory location), the
processor ha s no in ternal s tate , in the sense t ha t it is in an
identical configurat ion a t every "click point" du r ing the r u n n i n g
of a program (i.e., all information is recorded explicitly in the

s t ruc tura l field). But in more complex c i rcumstances , there is
a lways a cer ta in a m o u n t of s ta te t~) the processor t ha t affects i ts
behaviour with respect to any part icular embedded f ragment of
code. In wr i t ing an MCP one m u s t demonst ra te , more or less
explicitly, how the proce.~qor s ta te affects the processing of
object-level s t ruc tures . By "more or less explicitly" we m e a n
tha t the des igner of the MCP has options: the s ta te can be
represented in explicit s t ruc tures tha t are passed around as
a r g u m e n t s within the processor, or it can be absorbed into the
state of the processor r u n n i n g the MCP. (I will say tha t a
property or feature of an object l anguage is obsorbed in a
me ta l anguage or theory ju:;t in case the mcta tbeory uses the
very same property to explain or describe the property of the
object language. T h u s conjunction is absorbed in s t anda rd
model theories of first-order logics, because the seman t i c s of
p A 0 is explained simply by conjoining the explanat ion of P and
0 - - specifically, in such a fornmla as: 'P A 0' is t rue jus t in
case 'P' is t rue and '0' is true.)

The s ta te of a processor for a recursively-embedded
functional language, of which Lisp is an example, is typically
represented in an env i ronmen t and a cont inuat ion, both in
MCPs and in the s tandard meta theore t ic accounts. (Note tha t
these are not ions tha t arise in the theory of Lisp, net in Lisp
itself; except in self-referential or self-modell ing dialects, user
programs don' t traffic in such entities.) Most MCPs m ak e the
env i ronmen t explicit. The control port of the s ta te , Imwever,
encoded in a cont inuat ion, m u s t also be made explicit in order
to explain non-s tandard control operations, bu t in ma n y MCPs
(such as in [McCarthy 1965] and Steele and S u s s m a n ' s vers ions
for Scheme (see for example [Sus sman and Steele 1978b}), it is
absorbed. Two vers ions of the 2-Lisp metac i rcular processor, one
absorbing and one m a k i n g explicit the cont inua t ion s t ruc ture ,
are presented in Figures 13 and 14. Note, however, tha t in both
cases the under ly ing agency or a # i m a is not reified; it r em a in s
entirely absorbed by the processor of the MCP. We have no
mechan i sm to des ignate a process (as opposed to s t ructures) ,
and no method of obta in ing causal access to an independent
locus of active agency (the reason, of course, being t ha t we have
no theory of wha t a process is).

7. P r o c e d u r a l Re f l cc t l on a n d 3-Lisp

Given the met~tcircular processors defined above, 3-I,isp can
be non-cffectively defined in a series of steps. First , imagine a
dialect of 2-[,isp, called 2-l,isp/1, where use r progr 'xms were not
run directly by the pr imit ive processor, bu t by tha t p ro ce s~ r
r unn ing a copy of an MCP. Next, imagine 2-Lisp/2, in which the
MCP in tu rn was not r un by the pr imit ive processor, bu t was
run by the pr imit ive processor r u n n i n g ano the r copy of the MCP.
Etc. 3-Lisp is essent ia l ly 2-Lisp/Do, except t ha t the MCP is
changed in a critical way in order to provide the proper
connection between levels. 3-Li..,p. in e ther words, is what we
call a reflective lower, defined ad an infini te n u m b e r of Ct)l)ies of
an MCP-like program, run a t the "top" by an (infinitely fleet)
processor. The claim tha t 3-Lisp is well-founded is the c la im
tha t the l imit exists, as n-.oo, of 2-Lisp/n.

We will look a t the revised MCP present ly, bu t some
general properties of th is tower archi tecture can he pointed out
first. A rough idea of the levels of processing is given in F igure
15: a t each level the processor code is processed by an active
process t ha t interacts with it (locally and serially, as usual) , bu t
each processor is in tu rn composed of a s t ruc tu ra l field f r agmen t
in tu rn processed by a reflective processor on top of it. The
implied infinite regress is not problematic, and the archi tecture
can be efficiently realised, since only a finite a m o u n t of
information is encoded in all bu t a finite n u m b e r of the bot tom
levels,

There are two ways to th ink about reflection. On the one
hand, one can th ink of there being a pr imi t ive and noticeable
reflective act, which causes the i)rocessor to shilZ levels r a the r
markedly (this is the explanat ion tha t best coheres with some of
our pre-theoretic in tu i t ions about reflective th ink ing in the
sense of contemplation). On the other hand, the explanat ion

30

(define READ-NORHALISE-PRINT
(lambda simple [env stream]

(block (prompt&reply (normalise (prompt&road stream) env)
stream)

(road-normalise-prlnt one stream))))
(define NORMALISE

(lambda simple [str'uc e.v]
(rend [(normal struc) struc]

[(atom sLruc) (binding sLruc env)]
[(r a i l struc) (normaltse-rai l struc env)]
[(pa i r struc) (reduce (ca rs t ruc) (cd rs t ruc) env)])))

define REOUCE
(lambda slmple [proc args env]

(le t [[proc! (normalise proc env)]]
(selectq (procedure-type procl)

[simple (le t [[args! (eormaltse args env)]]
(i f (pr imi t ive procl)

(reduce-primit ive-simple
proc! argsl env)

(expand-closure procl a rgs l)))]
[intensional (i f (pr imi t ive proc!)

(reduce-primtttve-lntenslonal
proc! targs any)

(expand-closure procl targs))]
[macro (normalise (expand-closure procl targs)

env))]))))
(define NORMALISE°RAIL

(lambda simple [r a i l env]
(I f (empty r a i l)

(rears)
(prep (normalise (l s t r a i l) env)

(normaiise-rat l (rest r a i l) onv)))))
define EXPAND-CLOSURE
(lambda simple [proc! argsl]

(normalise (body, procl)
(bind (pattern procl)

argsi
(environment p roc l))))

Figure 13:ANon-C(mtinuation-Passblg 2-LISPMCP

given in the previous paragraph leads one to think of an infinite
number of levels of reflective processors, each implementing the
one below. 7 On such a view it is not coherent either to ask at
which level the tower is running, or to ask how many retlective
levels are running: in some sense they are all running at once.
Exactly the same situation obtains when you use an editor
implement, ed in APL. It is not as if the editor and the APL
interpreter are both running together, either side-by-side or
independently; rather, the one, being interior to the other,
SUl)plies the anima or agency of /.he outer one. To put this
another way, when you implement one process in another
process, you might want to say that you have two different
processes, but you don't have concurrency; it is more a
part /whole kind of relation. It is just this sense in which the
higher levels in our rcllective hierarchy are always running:
each of them is in some sense within the processor at the level
below, so that it can thereby engender it. We will not take a
principled view on which account - - a single locus of agency
stepping between levels, or an infinite hierarchy of
simultaneous processors - - is correct, since they turn out to be
behaviourally equivalent. (The simultaneous infinite tower of
levels is often the better way to understand processes, whereas
a shi|!,ing-level viewpoint is sometimes the better way to
understand programs.)

3-Lisp, as we said, is an infinite reflective tower based on
2-Lisp. The cede at each level is like; the continuation-passing 2-
Lisp MCP of Figure 14, but extended to provide a mechanism
whereby the user's program can gain access to fully articulated
descriptions of that program's operations and structures (thus
extended, and located in a reflective tower, we call this code the
3-Lisp reflective processor). One gains this access by using what
are called reflective prncedures ~ procedures that, when
invoked, arc run not at the level at which the invocation
occurred, but one level higher, at the level of the reflective
processor running the program, given as arguments those
structures being passed around in the reflective processor.

define READ-NORNALISE-PRINT
(lambda simple lone stream]

(normailse (prompt&read stream) oily
(lambda simple [resu l t]

(block (prompt&reply result stream)
(read-normalise-print env stream))))))

(define NORHALISE
(lambda simple [s t rc one cent]

(rend [(normal struc) (cent s t rc)]
[(atom sire) (cent (binding strc env))]
[(r a i l strc) (normaltse-rai l strut env cont)]
[(pa i r strc)(reduce (ca rs t r c) (cdcs t r c)envcon t)]) }

(define REDUCE
(lambda simple [proc args env coat]

(normalise proc env
(lambda slmpte [proc!]

(selectq (procedure-type procl)
[simple

(normaltse args any
(lambda simple [args!]

(i f (pr imi t ive procl)
(redece-primtttve-stmple

pratt args! env cent)
(expand-closure proc! args! cos t))))]

[intensional
(i f (pr imi t ive procl)

(reduce-primit ive- intenslonal
proc! targs env cent)

(expand-closure procl ~args cont))]
[macro (expand-closure pros! targs

(lambda simple [resu l t]
(normallse resul t any c o n t)))]))))))

(define NORMALISE-RAIL
(lambda simple [r a i l env cent]

(i f (empty r a i l)
(cent (rcons))
(normalise (l s t r a i l) env

(lambda simple [f t r s t l]
(normal ise-ral l (rest rat1) env

(iambda simple [r es t !]
(cent (prep f i r s t ! r e s t !)))))))))

define EXPAND-CLOSURE
(lambda simple [proc! ergs! cent]

(normalise (body procl)
(bind (pattern proc!) args! (one procI))
cent)))

Figure 14: A Continaation-Passing 2-LISP MCP

Reflective procedures are essentially analogues of subroutines b
be run "in tile implementation", except that they are in the
same dialect as that being implemented, and can use all the
power o(' the implemented language in carrying out their
function (e.g., reflective procedures can themselves use reflective
procedures, without limit). There is not a tower of different
languages - - there is a single dialect (3-Lisp) all the way up.

 L ve,,co . l''l J
Figure 15: The 3-LISP Reflective Tower

31

Rather, there is a tower of processors, necessary because there
is different processor state at each reflective level.

Some simple examples will illustrate. Reflective
procedures are "defined" (in the sense we described earlier)
using the form (LAMBOA REFLECT ARGS BODY), where ARG$
typically the rail fAnGS ENV coNr] - - is a pattern that should
match a 3-element designator of, respectively, the argument
structure at the point of call, the enviromnent, and the
continuation. Some simple examples are given in the
"Programming in 3-Lisp" overview in Figure 16, including a
working definition of Scheme's CATCH. Though simple, these
definitions would be impossible in a traditional language, since
they make crucial access to the full processor state at point of
call. Note also that although Tlm0w and CMC, deal explicitly
with continuations, the code that uses them need know nothing
about such subtleties. More complex routines, such as utilities
to abort or redefine calls already in process, are almost ns
simple. In addition, the reflection mechanism is so powerful
that many traditional primitives can be defined; C^MBOA, IF, and
QUOTE are all non-primitive (user) definitions in 3-Lisp, again
illustrated in the insert. There is also a simplistic break
package, to illustrate the use of the reflective machinery for
debugging purposes. It is noteworthy that no reflective
procedures need be primitive; even LAHBDA can bc built up from
scratch.

The importance of these examples comes from the fact that
they are causally connected in the right way, and will therefore

run in the system in which they defined, ra ther than being
models of another system. And, since reflective procedures are
fully integrated into the system design (their names are not
treated as special keywords), they can he passed around in the
normal higher-order way. There is also a sense in which 3-Lisp
is simpler than 2-I,isp, as well as being more powerful; there
are fewer primitives, and 3-[,isp provides much more compact
ways of dealing with a variety of intensional issues (like
macros).

8. The 3-Lisp Ref lec t ive P r o c e s s o r

3-Lisp can be understood only with a close inspection of the
3-l,isp reflective processor (Figure 17). the promised modification
of the continuation-passing 2-Lisp met~lcircular processor
mentioned above. NOnMALISE (line 7) takes an structure,
cnviromnent, and con t inua t i on , re turn ing the s t ructure
unchanged (i.e., sending it to the continuation) if it is in normal
lbrm, looking up the binding if it in an atom, normalis ing the
elements i f it is a rail (NORMALISE-RAIL is 3-I,isp's tail-recursive
continuation-passing analogue of Lisp 1.5's EVilS). and otherwise
reducing the CAR (procedure) with the CDIt (arguments). REOUCE
(line 13) first aormalises the procedure, with a continuation (C-
I'ROC!) that checks to see whether it is reflective (by convention,
we use exclamation point suffixes on atom names used as
variables to designate normal form structures). If it is not
rellcctive, C.PltOC~ normalises the arguments , with a
continuation tha t ei ther expands the closure (lines 23-25) if the

Figure 16: Programming in 3-Lisp:

For illustration, we will look at a handful of simple 3-Lisp
programs. The first merely coils thc Continuation with the
numeral 3; thus it is semantically identical to the simple
numeral:

(define THREE
(lambda reflect [[1 env cent]

(cent '3)))
Thus (three) ~ 3; (+ It (three)) ~ 14. The next example is an
intensional predicate, t rue if and only if its a rgument (which
must be a variable) is hound in the current context:

(define BOUND
(lambda rer lect [[var] one cent]

(t f (bound-in-env ear one)
(cent 'ST)
(cent 'Of))))

or equivalently
(define SOUND

(lambda reflect [[var] env cent]
(cent t(bound-in-env vat envl}))

Thus (LET [[X 31] (BOUND X)) ~ St, whereas (Donne x) ~ SF in
the global context. The following quits the computation, by
discarding the continuation and simply "returning":

(define QUIT
(lambda ref lect [[] env cont]

'QUIT!))
There are a variety of ways to implement a TtlROW/CATCH p a i r ;
the following defines the version used in Scheme:
(define SCHEME-CATCH

(lambda ref lect [[tag body] catch-ear catch-cent]
(normalise body

(bind tag
t(lambda ref lect [[answer] throw-env throw-cent]

(normal tso answer throw-ear catch-cent))
catch-earl

catch-cent)))
For example:

(le t [ix 111
(+ 2 (scheme-catch punt

(* 3 (/ 4 (i f (: x I)

(punt 15)
(- x l)))))))

would designate seventeen and return the numeral 17.
In addition, the reflection mechanism is so powerful that

many traditional primitives can be defined; LN4BDA, If, and QUOTE

are all non-primitive (user) definitions in 3-Lisp, with the
following definitions:

(define LNdBDA
(lambda ref lect [[kind pattern body] env cent]

(cent (coons kind tony pattern body))))

(define I f
(lambda rer lect [[promise then else] env cent]

(normal tse premise env
(lambda stmple [preml:ol]

(normalise (or 4premtse! then else) env cent) l)))
(define QUOTE

(lambda ref lect [[arg] nay cent] (cent targ)))
Some comments. First., the definition of tA..OA just given is of
course circular; a non-circular but effective version is given in
Smith and des Rivi&res [1984]; the one given in the text, if
executed in 3-Lisp, would leave the definition unchanged, except
that it is an innocent lie; in real 3-Lisp kind is a procedure tha t
is called with the arguments and environment , allowing the
definition of (lambda macro . . .), etc. COONS is a closure
constructor that uses SIMPLE and nEFLECT to tag the closures for
recognition by the reflective processor described in section 6. ZF
is an extensional conditional, tha t normalises all of its
arguments: the definition of IF defines the s tandard intensional
version tha t normalises only one of the second two, depending
on the result of normalising the first. Finally, the definition of
QUOTE will yield (QUOTE A) ~ 'A.

Finally, we have a trivial break package, with ENV and
C0Nr bound in the break environment for the user to see, and
nFivnn bound to a procedure tha t will normalise its a rgument
and pass that out as the result of the call to SNEAK:

(define BREAK
(lambda ref lect [[a rg] env cent]

Iblock (pr int arg primary-stream)
(read-normallse-prlnt ">>"

(bind' ['env tenv]
['cent t rent]
[' re turn t(lambda re f lec t [[a2] 02 c2]

(normaltse a2 e2 cent))]
env)

pr Imary-stream))))
If viewed 'as models of control constructs in a language being
iinplemented, these definitions will look innocuous; what is
important to remember is that they work in the very language
in which they are defined.

i

32

l (d e f i n e READ-NOnMALISE-PRINT
2 (lambda simple [l eve l say stream]
3 (no~mi ise (prompt&read level stream) env
4 (lambda simple [r e s u l t] ;ContinuationCRElq,Y
5 (block (prompt&reply resu l t level stream)
6 ... (read-normal tse-pr tn t l eve l env s~ream))))))

7 (d e f i n e NORMALISE
8 (lambda simple [s t ruc env coat]
9 (cond [(normal struc) (cent s t ruc)]

IO [(atom struc) (cent (binding struc env))]
I I [(r a i l s t ruc) (no rma l i se - r s l l struc env cont)]
12 [(p a i r s t ruc) (reduce (car s t ru t) (cdr struc) env c e n t) i)))
13 (d e f i n e REDUCE
14 (lambda simple [proc args ear c o a t]
15 (normsl lse proc env
16 (lsmbda simple [p r o c l] ;ContinuationC-PROC!
[7 (t r (r e f l e c t i ve procl)
18 (4(de-reflect procl) ar~s env cont~
19 (normaltse args e n v

20 .. (lambde simple [a rg s l] ;Continuation C-ARGS!
21 ... (I f (prhnt t tvo proci)
22 .. (cent *lCprocl . $argsl)}
23 .. (normsltse Ibody procl)
24 .. (bind (pat tern proc!) args! (environment proc!)
2S .. c o a t)))))))))
26 (d e f i n e NORMALISE-RAIL
27 (lambda stmple t r a i l env coat]
28 (t f (empty r a i l)
29 (COOt (teens))
30 (normeltso (l e t rat1) env
31 (lsmbds simple [f l r s t l] ;ContinuatlonC-FIRST!
32 (normsl tso-ra i l (r e s t r a i l) e a r

33 .. (lambde simple [r e s t]] ;Continuation C-RESTI
34 .. (cent (prep f i r s t] r e s t l)))))))))

Figure 17: The 3-Lisp Refleclive Processor:

procedure is non-primit , ve, or else directly execut ing it i f it is
pr imit ive (line 22).

Consider (REOUCE '+ ' i x 3] ENV IO), for example, where x is
be, end to the numera l z and + to the pr imit ive addition closure
in [NV. At the point of line 22, PaOC! will des igna te t ha t
primit ive closure, and ARG$! will des ignate the normal- form rail
[z 3]. Since addition is primitive, we m u s t s imply do the
addition. (Peoc!. ARGS!) won't work, because PROC! and AflGSl
are a t the wrong level; they designate s t ruc tures , not funct ions
or a rgumen t s . So, for a brief moment , we de-reference them
(with ~), do the addition, and then rega in our me ta - s t ruc tu ra l
viewpoint with the ,.8 If the procedure is reflective, however, it
is (as shown in line 18 of Figure 17) called directly, not
processed, and given the obvious three a r g u m e n t s (AnGS, [W,
and CONI) tha t are being passed around. The ¢(o[-nrFLECT
PROC:) is merely a mechan i sm to purify the reflective procedure
so t ha t it doesn ' t reflect again, and to de-reference it to be a t
the r ight level (we want to use, not ment ion, the procedure t ha t
is des ignated by PROCO. Note tha t line 18 is the only place tha t
reflective procedures can ever be called; th is is why they m u s t
a lways be prepared to accept exactly those three a rgumen t s .

Line 18 is the essence of 3-Lisp; it alone engenders the full
reflective tower, for it says tha t some par ts of the object
language - - the code processed by this program - - are called
d~rectly in this program. I t is as if an object level f r agment
were included directly in the meta language, which ra ises the
question of who is processing the meta language. The 3-Lisp
claim is t h a t an exactly equivalent reflective processor can be
processing this code, wi thout vicious th rea t of infinite ascent .

A reflective procedurc, . in sum, arr ives in the middle of the
processor context. It is handed env i ronmen t and cont inuat ion
s t ruc ture tha t designat~ t h e processing of the code below it, bu t
it is r un in a different context, wi th i ts own (implicit)
env i ronment and continuat ion, which in tu rn is represented in
s t ruc tures passed around by the processor one level above it.
Thu~ it is given causal access to the s ta te of the process tha t
was in progress (answer ing one of our init ial requirements) , and
it can of course cause any effect it wants , since it h a s complete

access to all fu ture processing ot t ha t code. Fur thermore , it has
a safe place to s tand, where it will not conflict with the code
being run below it.

These var ious protocols i l lustrate a general point. As
ment ioned a t the outset , par t of des igning an adequate
reflective archi tecture involves a trade-off between being so
connected tha t one s teps all over oneself (as in t radi t ional
implementa t ions of debugging utilities), and so disconnected (as
with metacircular processors) tha t one has no effective access to
what is going on. The 3-Lisp tower, we are suggest ing, provides
jus t the r ight balance between these two extremes, solving the
problem of van tage point as well as of causa l connection.

The 3-Lisp reflective processor unifies three t radi t ional ly
independent capabili t ies in Lisp: the explicit avai labi l i ty of EVAL
and APPLY, the ability to support metaci rcular processors, and
explicit operat ions (like Maclisp's RETFUN ~nd Interl isp 's FRETURN)
for debugging purposes. It is s t r ik ing t ha t the la t ter facilities
are required in t radi t ional dialects, in spite of the presence of
the former, especially since they depend crucially on
implementa t ion details , violating portability and other na tu ra l
aesthetics. In 3-Lisp, in contrast , all information about the
s tate of the processor is fully avai lable within the language .

9. T h e T h r e a t o f In f in i ty , a n d a F in i t e I m p l e m e n t a t i o n

The a r g u m e n t as to why 3-Lisp is finite is complex in
detail, bu t s imple in outl ine and in substance. Basically, one
shows tha t the reflective processor is fully tail-recursive, in two
senses: a) it r u n s p rograms tail-recursively, in t ha t it does not
build up records of s ta te for programs across procedure calls
(only on a r g u m e n t passing), and b) it i tself is fully tail-
recursive, in the sense tha t all recursive calls within it (except
for u n i m p o r t a n t subrout ines) occur in tail-recursive position.
The reflective processor, can be executed by a s imple finite s t a te
machine. In part icular , it can run itself wi thout us ing any s ta te
at all. Once the l imit ing behaviour of an infinite tower of
copies of th is processor is determined, therefore, t ha t ent i re
chain of processors can be s imulated by another s ta te machine ,
of complexity only moderately greater t han tha t of the reflective
processor itself. (It is an in teres t ing open research ques t ion

33

whether that "implementing" processor can be algorithmically
derived from the reflective processor code.) A full copy of such
an implementing processor - - about 50 lines of 2-Lisp - - is
provided in {Smith and des Rivi~res 1984J" a more substant ive
discussion of tractability will appear in [Smith forthcoming].

10. Conclt~slons and Mora ls

Fundamentally, the use of Lisp as a language in which to
explore semantics and reflection is of no great consequence; the
ideas shouhi hold in any similar circumstance. We chose Lisp
because it is familiar, because it has rudimentary self-
referential capabilities, and because there is a s tandard
procedural self-theory (continuation-passing metacircular
"interpreters"). Work has begun, however, on designing
reflective dialects of a side-effect-free Lisp and of Prolog, and on
studying a reflective version of the X-calculus (the last being an
obvious candidate for a mathematical study of reflection).

Furthermore, the technique we used in defining 3-Lisp can
be generalised ra ther directly to these other languages. In
order to construct a reflective dialect one needs a) to formulate
a theory of the language analogous to the metacircular
processor descriptions we have examined, b) to embed this
theory within the language, and c) t o connect the theory with
the underlying language in a causally connected way, as we did
in line 18 of the reflective processor, by providing reflective
procedures invoeable in the object language but run in the
processor. It remains, of course, to implement the result ing
infinite tower; a discussion of general techniques is presented in
[desRivi~res, forthcoming].

I t is partly a consequence of using Lisp that we have used
non-data-abstracted representations of functions and
environments; this facilitates side-effects to processor s tructures
without introducing unfamiliar machinery. It is clear that
enviromnenta could be readily abstracted, although it would
remain open to decide what modifying operations would be
supported (changing bindings is one, but one might wish to
excise bindings completely, splice new ones in, etc.). In
standard X-calculus-based metatheory there are no side effects
(and no notion of processing); environment designators mus t
therefore be passed around ("threaded") in order to model
environment side effects. I t should be simple to define a side-
effect-free version of 3-Lisp with an environment-threading
reflective processor, and then to define s~rQ and other such
routines as reflective procedures. Similarly, we assume in 3-
Lisp that the main structural field is simply visible from all
code; one could define an alternative dialect in which the field,
too, was threaded through the processor as an explicit
argument, as in standard metatheory.

The representation of procedures as closm'es is troublesome
(indeed, closures are failures, in the sense that they encode far
more information than would be required to identify a function
in intension; the problem being that we don't yet know what a
function in intension might be.). 3-Lisp unarguably provides far
too fine-grained (i.e., metastructural) access to function
designators, including continuations, and the like. Given an
abstract notion of procedure, it would be natura l to define a
reflective dialect that used abstract s t ructures to encode
procedures, and then to define reflective access in such terms.
We did not follow this direction here only to avoid taking on

another very difficult problem, bu t we will move in this
direction in future work.

These considerations all illustrate a general point: in
designing a reflective processor, one can choose to bring into
v iew more or less of the state of the underlying process. It is
all a question of what you want to make explicit, and wha t you
want to absorb. 3-Lisp, as currently defined, reifies the
environment and continuation, making explicit what was
implicit one level below. It absorbs the structural field (and
lmrtly absorbs the global enviromnent); as mentioned earlier, it
completely absorbs the animating agency of the whole
computation. If one defines a reflective procSssor based on a
metacircular processor that al.~o absorbs the representation of

control (i.e., like the MCP in Figure 13, which uses the control
structure of the processor to encode the control structure of the
code being processed), then reflective procedures couhl not affect
the control structure, In any real application, it would need to
be determined jus t what parts of the underlying dialect required
reification. One could perhaps provide a dialect in which a
reflective procedure could specify, with respect to a very general
theory, what aspects it wanted to get explicit access to. Then
operations, for example, that needed only environment access,
like 9ouNo, could avoid having to traffic in continuations.

A final point. I have talked throughout about semantics,
but have presented no mathematical semantical accounts of any
of these dialects. To do so for 2-Lisp is relatively
straightforward (see Smith [forthcoming J), but I have not yet
worked out the appropriate semantical equations to describe 3-
Lisp. It would be simple to model such equations on the
implementation mentioned in section 9, but to do so would be a
failure: rather, one should instead take the definition of 3-Lisp
in terms of the infinite virtual tower (i.e., take the limit of 2-
Lisp/n), and then prove that the implementation strategies of
section 9 are correct. This awaits further work. In addition, I
want to explore what it would be to deal explicitly, in the
semantical account, with the anima or agency, and with the
questions of causal connection, that are so crucial to the success
of any reflective architecture. These various tasks will require
an even more radical reformulation of semantics than has been
considered here.

A c k n o w l e d g e m e n t s

I have benefited greatly from the collaboration of J im des
Rivi~res on these questions, particularly with regard to issues of
effective implementation. The research was conducted in the
Cognitive and Instructional Sciences Group at Xerox PARC, as
part of the Situated Language Program of Stanford's Center for
the Study of Language and Information.

Notes

1. See]Doyle 1980],]Wcyrauch 1980], [Genesereth and Lenat 1980], and
{Batali 1983].

2. In the dialects we consider, the metastructural capability must be provided
by primitive quotation mechanisms, as opposed to merely by being able to
model or designate syntax - - something virtually any calculus can do,
using Godel numbering, for exomple - - for reasons of causal connection.

3. Most programming languages, such as Fortran and Algol 60, are neither
higher-order nor metastructura]; the ~,-calculus is the first but not the
second, whereas Lisp 1.5 is the second but not the first (dynamic .seeping is
n contextual protocol that, coupled with the mete-structural facilities,
partially allows Lisp 1.5 to compensate for the fact that it is only first-
order). At least soma incarnations of Scheme, on the other hand, are beth
(although Scheme's metastructural imwers are limited). As we will see, 2-
Lisp and 3-Lisp are very definitely both metastructural and higher-order.

4. For what we might call declarative languages, there is n natural account of
the relationship between linguistic expressions and in.the-world designations
that need not make crucial.reference to issues of processing (to which we
wiU turn in a moment). It is for such languages, in particular, that the
composition ~PoO, which we might call ep,, would be formulated. And this,
for obvious reasons, is what is typically studied in mathematical model
theory and logic, since those fields do not deal in any crucial way with the
active use of the languages they ~tudy. Thus, for example, 4J' in logic
would be the interpretation function of standard model theory. In what we
will call cnmpototionol languages, on the other hand, questions of
processing do arise.

5. The string '10tmTE Ae¢]' notates a structure that designates another
structure that in turn could be notated with the string "ABe'. The string
'"ABC"', on the other hand, notates a structure that designates the string
'ABe' directly.

6. Virtually any language, of course, has the requisite power to do this kind
of modelling. In a language with mete-structural ahilities, the mete-
circular processor can represent programs for the MCP as themsolsee - -

this is always done in Lisp MCPs - - but we need not define that to be an
essential property. The term 'metocircular processor" is by no means
strictly defined, and there arc various constraints that one might or might
not put on it. My general approach has been to view as metacircular any
non.causally connected model of a calculus within itself; thus the 3-Lisp
reflective processor is nut mete-circular, because it does have the requisite

34

caused connl,ction~, and therelbrc an essential Imrt of the 3-Lisp
architecture.

7. Curiously, there are also intuition~ about conlemplative thinking, where
one is both detoched and yet directly present, that fit more with this view.

8. One way to undcr~tand thi~ is tn realize that the reflective processor simply
asks its processor to do any primiHves that it encounters. I.e., i t passes
responsibility up to the processor running it. In other words, each time
one level uses a primitive, its proceg~or runs around setting everything up,
finally re~whing the point at which it must simply do the primitive action,
whereup~n it asks its own processor for help. Bul of course the processor
runnin~ that processor will else come racing towards the edge of the same

cliff, and will similarly duck responsibility, handing the primitive up yet
anolher level. In fact every primitive ever ex,~cutcd is handed all the way
to the tap of the tower. There is a magic moment, when the thing actually
happ~ms, and then the answer filters all the way back down to the level
that stortt.d tile whole procedure. It is as if tile deus ex mrwhina, living at
the tap of the tower, sends a l ightning bolt down to some level or other,
once every intervening level gets appropria~x~ly lined up (rather like the
sun, at the stonehenge and pyramids, reaching down through a long tunnel
at just one particular moment during the year). Except, of course, that
nothing ever h[Ippens, ultimately, except primitives. In other words tile
enabling agency, which must flow down from the top of the tower, consists
of an infinitely dense series of these l ightning bolts, with something like
10% of the ones that reach each level being allowed through to the level
below. All infinitely fast.

References

Batali, J . , "Computational Introspection", M.I.T. Artificial lntenigeneo
Laboratory Memo AIM-TI{-701 (1983).

dt, sll.ivi~,r~,s, J. '"l'he Implenl~ntotlon of Procedurally Reflective Languages",
(forthcoming).

Doyk,, J., A Model [or I)elihr,rali~m, Action, and Introspection, M.I.T. Artificial
Intelligence L~boratory Memo AIMJI'R-581 (1980).

Fodor, J. "MethodologicM Solipsism Considered as a Research Stralegy in
Cognitive Psychology", The Beh~wiour~d end Brian Sciences, 3:1 (1980) pp.
63-73; reprinted in Fodor, J., Iteprcsent~ttlons, Cambridge: Bradford (1981).

Gmresereth, M., and l,cnat, D. I:|., "Self-Description end -Modification in a
Knowledge Representation I,anguage", | leurist ic Programming Project
Report IIPI'-B0-10, Stanford University CS Dept., (1980),

McCarthy, J. at el,, Lh~P 1.5 Progrummcr'$ Munuul, Cambridge, Mass.: The
MIT PRess (1965).

Smith, B., Reflection and ,~emaltlics in a Prueetlural Language, M.I.T.
latboratory for Computer Science Report MIT-TR-272 (1982).

Smith, B. and desRivi~'res, J. "Interim 3-LISP Reference Manual ~, Xerox
PARC Report CIS-nn, Pale Alto (1984. forthcoming).

Steele, G., "I,AMI|DA: q'i~e Ultimate Declaralive", M.I.T. Artificial Intelligence
Laboratory Memo AIM.a79 (1976).

Steele, G., and Sussman, G. "The Revised Report an SCHEME, a Dialect of
IJSI >'', M.I.'I ~. Artificial Intelligence Imboratory Memo AIM-452, (1978a).

Steele, G., and Sussman, G. "The Art of the Interpreter, or, The Modularity
Complex (Parts Zero, One, and Two)", M.I.T. Artificial Intelligence
Imboratory Memo AIM-.153, (1978b).

Wcyhrauch, R. W., "Prolegomena to a Theory of Mechanized Formal
Reasoning", Artificial I~:lrlligem'e 13:1,2 (1980) pp. 133-170.

35

