Reflection and Semantics in Lisp

Brian Cantwell Smith

XEROX Palo Alto Research Center
3333 Covote Hill Road. Palo Alto. CA 94304; and
Center for the Study of lLangnage and Information
Stanford University, Stanford, CA 94305

1. Introduclion

For three reasons, Lisp’s self-referential properiies have not
led to a general understanding of what it is for a computatiounal
system to reason, in substantial ways, about ils own operations
and structures, First, there is more to reasoning than reference;
one also needs a theory, in terms of which to make sense of the
referenced domain. A computer system able to reason about
itself — what I will call a reflective system — will thercfore
need an account of itself embedded within it. Second, there
must he a systematic relationship between that embedded
account and the system it describes. Without such a connection,
the aceount would be uscless — as disconnected as the words of
a hapless drunk who carries on about the evils of inebriation,
without realising that his story applies to himself. Traditional
embeddings of Lisp in Lisp are inandequate in just this way; they
provide no mieans for the implicit stute of the Lisp process to be
reflected, moment by moment, in the explicit terms of the
embed-led account. Third, a reflective system must be given an
appropriate vantage point at which to stand, far enough away to
have itself in focus, and yet close enough to sce the important
details.

This paper presents a general architecture, called
procedural reflection, to support self-directed reesoning in a
serial programining language. The architecture, illustrated in a
revamped dialect. called 3-Lisp, solves all three problems with a
single mechanism. The basic idea is to define an infinite tower
of procedural self-models, very mwuch like metacircular
interpreters [Steele and Sussman 1978b], except connected to
each other in a simple but critical way. In such an architecture,
any aspect of a process’s state that can be described in terms of
the theory can be rendered explicit, in program accessible
structures. Furthermore, as we will see, this apparently infinite
architecture can be finitely implemented.

The architecture allows the user to define complex
progromnming constructs (such as escape operators, deviant
variable-passing protocols, and debugging primitives), by writing
direct analogucs of those metalinguistic semantical expressions
that would normally be used to describe them. As is always
true in semantics, the metatheorctic descriptions must he
phrased in terms of some particular set of concepts; in this case
I have used a theory of Lisp based on environments and
continuations. A 3-Lisp progrum, therefore, at any point during
a computation, can obtain representations of the environment

Permission to copy without fec all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0023 $00.75

23

and continuation characterising the state of the computation at
that point. Thus, such constructs as THROW and CATCH, which
must otherwise be provided primitively, can in 3-Lisp be easily
defined as user procedures (and defined, furthermore, in code
thal is obhnoest isomorphic to the A-calculus equations one
norinally writes, in the metalarguage, to describe them). And
all this can be done without writing the entire program in a
continnation-passing style, of the sort illustrated in (Stecle
1976]. The point is no!, to decide ut the outsel what should nnd
what should not be explicit (in Steele’s example, continuations
must be passed around explicitly from the beginning). Rather,
the reflective architecture provides a method of making some
aspects of the computation explicit, right in the midst of a
computation, even if they were implicit a moment earlier. It
provides a mechanism, in other words, of reaching up and
“pulling information out of the sky" when unexpected
circumstances warrant it, without having to worry about it
otherwise.

The overall claim is that reflection is simple to build on a
semantically sound base, where ‘semantically sound’ means
more than that the semantics be carefully formulated. Rather, I
assume throughout that computational structures have a
semantic significance that transcends their behavioural import
-— or, to put this another way, that computational struclures are
about something, over and above the effects they have on the
systems they inhabit. Lisp's wniL, for example, not only
evaluates to itself forever, but also (and somewhat
independently) stands for Falschood. A reconstruction of Lisp
semantics, therefore, must deal explicitly with both declarative
and procedural aspects of the overall significance of
computational structures. This distinction is different from
(though 1 will contrast it with) the distinction between
operational and denotational semantics. It is a reconstruction
has been developed within a view that programming languages
are properly to be understood in the same theoretical terins used
to analyse not only other computer languages, but even natural
languages.

This approach forces us to distinguish between a structure’s
value and what it returns, and to discriminate entities, like
numerals and numbers, that are isomorphic but not identical
(both instances of the general intellectual hygiene of avoiding
use/mention errors). Lisp’s basic notion of evaluation, I will
argue, is confused in this regard, and should be replaced with
independent notions of designation and simplification. The
result is illustrated in a semantically rationalised dialect, called
2-Lisp, based on a simplifying (designation-preserving) term-
reducing processor. The point of defining 2-Lisp is that the
reflective 3-Lisp can be very simply defined on top of it, whereas
defining a reflective version of a non-rationalised dialect would
be more complicated and more difficult to understand.

The strategy of presenting a general architecture by
developing a concrete instance of it was selected on the grounds
that a genuine theory of reflection (perhaps analogous to the
theory of recursion) would be difficult to motivate or defend
without taking this first, more pragmatic, step. In section 10,

however, we will sketch a general "recipe” for adding reflective
capabilities to any serial language; 3-Lisp is the result of
applying this conversion process to the non-reflective 2-Lisp.

It is sometimes said that there ave only a few constructs
fromi which languages are assembled, including for example
predicates, terms, functions, composition, recursion, abstraction,
a branching sclector, and quantification. Though different from
{liese notions (and not definable in terms of them), reflection is
perhaps best viewed as a proposed addition to that family.
Given this view, it is helpful to understand reflection by
comparing it, in particular, with recursion -— a construct with
which it shares many features. Specifically, recursion can seem
viciously circular to the uninitiated, and can lead to confused
impleinentations if poorly understood. The mathematical theory
of recursion, however, underwrites our ability to use recursion
in programming languages without doubting its fundamental
soundness (in fact, for many programmers, without
understanding much about the formal theory at all). Reflective
systems, similarly, initially seem viciously circular (or at least
infinite), and are difficult te implement without an adequate
understanding. The intent of this paper, however, is to argue
that reflection is as well-tamed a concept as recursion, and
potentially as efficient to use. The long-range goal is net to
force programmers to understand the intricacies of designing a
reflective dialect, but rather to enable them to use reflection and
recursion with equal abandon.

2. Motivating Intuitions

Before taking up technical details, it will help to lay out
some motivations and assumptions. First, by ‘reflection’ in its
most general sense, I mean the ability of an agent to reason not
only introspectively, about its self and internal thought
processes, but also externally, about its hehaviour and situation
in the world. Ordinary reasoning is external in a simple sense;
the point of reflection is to give an agent a more sophisticated
stance from which to consider its own presence in that
embedding world. There is a growing consensus! that reflective
ahilities underlic much of the plasticity with which we deal with
the world, both in language (such as when one says Did you
understand what I meant?) and in thought (such as when one
wonders how to deliver bad news compassionately). Common
sense suggests that reflection cnables us to master new skills,
cope with incomplete knowledge, define terms, examine
assumptions, review and distill our experiences, learn from
unexpected situations, plan, check for consistency, and recover
from mistakes.

In spite of working with reflection in formal languages,
most of the driving intuitions about reflection are grounded in
human rationality and language. Steps towards reflection,
however, can also he found in much of current computational
practice. Debugging systems, trace packages, dynamic code
optimizers, run-time compilers, macros, metacircular
interpreters, error handlers, type declarations, escape operators,
comments, and a variely of other programming constructs
involve, in one way or another, structures that refer to or deal
with other parts of a computational system. These practices
sugzest, as a first step towards a more general theory, defining
a limited and rather introspective notion of ‘procedural
veflection”: self-referential behaviour in procedural languages, in
which expressions are primarily wused instructionally, to
engender behaviour, rather than assevtionally, to make claims.
It is the hope that the lessons learned in this smaller task will
serve well in the larger account.

We mentioned at the outset that the general task, in
defining a reflcctive system, is to embed a theory of the system
in the system, so as to support smooth shifting hetween
reasoning dircctly about the world and reasoning about that
reasoning. Because we are talking of reasoning. not merely of
language. we added an additional requirement on this embedded
theory, beyond its being descriptive and true: it must also be
what we will call carnsally connected, so that accounts of objects
and events are tied directly to those objerts and eventa, The

24

firocessor

e

Struc—lural Field

Figure 1: A Serial Model of Computation

causal relationship, furthermore, must go both ways: fromn event
to description, and from description back to event. (It is as if we
were creating a magic kingdom, where from a cake you could
automatically get a recipe, and from a recipe you could
automatically get a cake.)) In mathematical cases of self-
reference, including hoth self-referential statements, and models
of syntax and proof theory, there is of course no causation at all,
since there is no temporalily or behaviour (mathematical
systems don’t run). Causation, however, is certainly part of any
reflective agent. Suppose, for example, that you capsize while
canoeing through difficult rapids, and swim to the shore to
figure out what you did wrong. You need a description of what
you were doing at the moment the mishap occurred; merely
having a name for yourself, or even a general description of
yourself, would be useless. Also, your thinking must be able to
have some effect; no good will come from your merely
contemplating .a wonderful theory of an improved you. As well
as stepping back and being able to think about your behaviour,
in other words, you must also be able to take a revised theory .
and "dive back in under it", adjusting your behaviour so as to
satisfy the new account. And finally, we mentioned that when
you take the step backwards, to reflect, you need a place to
stand with just the right combination of connection and
detachment.

Computational reflective systems, similarly, must provide
both directions of causal connection, and an appropriate vantage
point. Consider, for example, a debugging system that accesses
stack frames and other implementation-dependent
representations of processor state, in order to give the user an
account of what a program is up to in the midst of a
computation. First, stack-frames and implementation codes are
really just descriptions, in a rather inelegant language, of the
state of the process they describe. Like any description, they
make explicit some of what was implicit in the process itself
(Lthis is one reason they are uscful in debugging). Furthermore,
because of the nature of implementation, they are always
available, and always true. They have these properties because
they play a causal role in.the very existence of the process they
implement; they therefore automatically solve the “"event-to-
description” direction of causal connection. Second, debugging
systcms must solve the "“description to reality” problem, by
providing a way of making revised descriptions of the process
true of that process. They carefully provide facilities for
altering the underlying state, based on the user’s description of
what that state should be. Without this direction of causal
connection, the debugging system, like an abstract model, could
have no effect on the process it was examining. And finally,
programmers who write debugging systems wrestle with the
problem of providing a proper vantage point. I[n this case,
practice has been particularly athcoretical; it is typical to
arrange, very cautiously, for the debugger to tiptoe around its
own stack frames, in order to avoid variable clashes and other
unwanted interactions.

As we will see in developing 3-Lisp, all of these concerns
can be dealt with in a reflective language in ways that arc both
simple and implementation-independent. The procedural code in
the metacircular processor serves as the "theory” discussed
ahove; the causal conncction is provided by a mechanism
whereby procedures at one level in the reflective tower are run
in the process one level above (a clean way, essentially, of
enabling a program to define subroulines to be run in its own

[
L Syntactic Domain S}_——-“ﬁ Semantic Domain D l

Figure2: A Simple Semantic Intepretation Function

implementation). In one sense it is all straightforward; the
subtlety of 3-Lisp has to dv not so much with the power of such
a mechanism, which is evident, but with how such power can be
finitely provided -—— a question we will examine in scction 9.

Some final assumptions. I assume a simple serial model of
computation, illustrated in Figure 1, in which a computational
process as a whole is divided into an internal assemblage of
program and data structures collectively called the structural
field, coupled with an internal process that examines and
manipulates these structures. In computer science this inner
process (or ‘homunculus’) is typically called the interpreter; in
order to avoid confusion with semantic notions of interpretation,
I will call it the processor. While models of reflection for
concurrent systems could undoubtedly be formulated, I claim
here only that our particular architecture is general for calculi
of this serial (i.e., single processor) sort.

I will use the term ‘structure’ for elements of the structural
field, all of which are inside the machine, never for abstract
mathematical or other "external” entities like numbers,
functions, or radies. (Although this terminology may be
confusing for semanticists who think of a structure as a model, 1
want to avoid calling them expressions, since the latter term
connotes linguistic or notational entities. The aim is for a
concept covering both data structures and internal
representations of programs, with which to categorize what we
would in ordinary English call the structure of the overall
process or agent.) Consequently, I call metastructural any
structure that designates amnother structure, reserving
melasyntactic for expressions designating linguistic entities or
expressions.? Given our interest in internal self-reference, it is
clear that bhoth structural field and processor, as well as
numbers and functions and the like, will be part of the semantic
domain. Note that metastructaral caleuli must be distinguished
from those that are higher-order, in which terms and arguments
may designate functions of any degree (2-Lisp and 3-Lisp will
have both properties).?

3. A Framework for Computalional Semantics

We turn, then, to questions of semantics. In the simplest
case, semantics is taken to involve a mapping, possibly
contextually relativized, from a syntactic to semantic domain, as
shown in Figure 2. .The mapping (#) is called an interpretation
function (to be distinguished, as noted above, from the standard
computer science notion of an interpreter). It is usually specified
inductively, with respect to the compositional structure of the
elements of the syntactic domain, which is typically a set of
syntactic or linguistic sorts of entities. The semantic domain
may be of any type whatsoever, including a domain of
behaviour; in reflective systems it will often include the
syntactic domain as a proper part. We will use a variety of
different terms for different kinds of semantic relationship; in
the general case, we will call 8 a symbol or sign, and say that s
signifies d, or conversely that d is the significance or
interpretation of s.

In a computational setting, there are several semantic
relationships — not different ways of characterizing the same
relationship (as operational and denotational semantical
décounts are sometimes taken to be), for example, but genuinely
distinct relationships. These different relationships make for a
more complex semantic framework, as do ambiguities in the use
of words like ‘program’. In many scttings, such as in purely
extensional functional programming languages, such distinetions
are inconsequentinl. But when we turn to reflection, self-
reference, and metastructural processors, these otherwise minor
distinctions play a much more important role. Also, since the
semantical theory we adopt will be at least partially embedded

25

-interactional event.

within 3-Lisp, the analysis will affect the formal design. Our
approach, therefore, will be start with basic and simple
intuitions, and to identify a finer-grained set of distinctions than
are usually employed. We will consider very bricfly the issue of
how current programming language semantics would be
reconstructed in these terms, but the complexities involved in
answering that question adequately would take us beyond the
scope of the present paper.

At the outset, we distinguish three things: a) the objects
and cvents in the world in which a computational process is
embedded, including both real-world objects like cars and caviar,
and sct-theoretic abstractions like numbers and functions (i.e.,
we adopt a kind of pan-platonic idealism about mathematics); b)
the internal elements, structures, or processes inside the
computer, including data structures, program representations,
execution sequences and so forth (these are all formal objects, in
the sense that compulation is formal symbol manipulation); and
c) notational or communicational expressions, in some externally
observable and consensually established medium of interaction,
such as strings of characters, streams of words, or sequences of
display images on a computer terminal. The last set are the
consilituents of the communication one has with the
computational process; the middle are the ingredients of the
process with which one interacts, and the first (at least
presumptively) are the elements of the world about which that
cummunication is held. In the human case, the three domuins
correspond to world, mind, and language.

It is a truism that the third domain of objects —
communication elements — are semantic. We claim, however,
that the middle set are semantic as well (i.e., that structures are
bearers of meaning, information, or whatever). Distinguishing
between the semantics of communicative expressions und the
semantics of inlernal structures will be one of main features of
the framework we adopt. It should be noted, however, that in
spite of our endorsing the reality of internal structures, and the
reality of the embedding world, it is nonetheless true that the
only things that actually happen with computers (at least the
only thing we will consider, since we will ignore sensors and
manipulators) are communicative interactions. If, for example, I
ask my Lisp machine to calculate the square root of 2. what I do
is to type some expression like (SQRT 2.0) at it, and then receive
back some other expression, probably quite like 1.414, by way of
response. The interaction is carried out entirely in terms of
expressions; no structures, numbers, or functions are part of the
The participation or relevance of any of
these more abstract objects, therefore, must be inferred from,
and mediated through, the communicative act.

We will begin to analyse this complex of relationships
using the terminology suggested in Figure 3. By 0, very simply,
we refer to the relationship between external notational
expressions and internal structures; by ¥ to the processes and
behaviours those structural field elements engender (thus v is
inherently temporal), and by & to the entities in the world that
they designate. The relations ¢ and ¥ are named, for mnemonic
convenience, by analogy with philosophy and psychology,
respectively, since a study of ® is a study of the relationship
between structures and the world, whereas a study of ¥ is a
study of the relationships among symbols, all of which, in
contrast, are “within the head” (of person or machine).

Computation is inherently temporal; our semantic analysis,
therefore, will have to deal explicitly with relationships across
the passage of time. In Figure 4, therefore, we have unfolded
the diagram of Figure 3 across a unit of time, so as to get at a
full configuration of these relationships. The expressions n; and
nz are intended to be linguistic or communicative entities, as
described above; s; and sy are internal structures over which
the internal processing is defined. The relationship 0, which we
will call internalisation, relates these two kinds of object, as
appropriate for the device or process in question (we will say, in
addition, that ny notates s,). For example, in first-order logic n;
and ny would be expressions, perhaps written with letters and
spaces and ‘3’ signs; §; and sg, t. the extent they can cven be
said to exist, would be something like abstract derivation tree

Figure 3: Semantic Relationships in a Computalional P'rocess

types of the corresponding first-order formulae. [n Lisp, as we

will see, n) and ny would be the input and output expressions,

written with letters and parentheses, or perhaps with boxes and

:}\‘rrows; s; and 83 would be the cons-cells in the s-expression
eap.

In contrast, d; and dj are elements or fragments of the
embedding world, and ¢ is the relationship that internal
structures bear to them. @, in other words, is the interpretation
function that makes explicit what we will call the designation of
internal structures (not the designation of linguistic terms,
which would be described by ¢<0). The relationship between my
mental token for T. S. Eliot, for example, and the poet himself,
would be formulated as part of ¢, whereas the relationship
between the public name ‘T. S. Eliot' and the poet would be
expressed as ¢(O("T.SELIOT")) = TSELIOT. Similarly, & would
relate an internal "numeral” structure (say, the numeral 3) to
the corresponding number. As mentioned at the outset, our
focus on ¢ is evidence of our permeating semantical assumption
that all structures have designations — or, to put it another
way, that the structures are all symbols.*

The ¥ relation, in contrast to O and &, always (and
necessarily, because it dosen’t have access to anything else)
relates some internal structures to others, or at least to
behaviours over them. To the extent that it would make sense
to talk of a ¥ in logic, it would approximately be the formally
computed derivability relationship (i.e., +); in a natural
deduction or resolution schemes, ¥ would be a subset of the
derivability relationship, picking out the particular inference
procedures those regimens adopt. In a compulational setting,
however, ¥ would be the function computed by the processor
(i.e., ¥ is evaluation in Lisp).

The relationships 0, ¥, and ¢ have different relative
importances in different linguistic disciplines, and different
relationships among them have been given different names. For
example, O is usually ignored in logic, and there is little
tendency to view the study of ¥, called proof theory, as
semantical, although it is always related to semantics, as in
proving soundness and completeness (which, incidentally, can be
expressed as the equation ¥(sy,82) = [dy G dg], if one takes ¥
to be a relation, and 4 to be an inverse satisfaction relationship
between sentences und possible worlds that satisfy them). In
addition, there are a variety of "independence” claims that have
arisen in different fields. That ¥ does not uniquely determine ¢,
for example, is the “psychology narrowly construed” and
coficomitant methodological solipsism of Putnam, Fodor, and
others [Fodor 1980). That O is usually specifiable
compositionally and independently of & or ¥ is essentially a
statement of the autonomy thesis for language. Similarly, when
O cannot be specified indepently of ¥, computer science will say
that a programming language “cannot be parsed except at
runtime” (Teco and the first versions of Smalltalk were of this
character).

A thorough analysis of these semantic relationships,
however, and of the relationships among them, is the subject of
a different paper. For present purposes we need not take a
stand on which of O, ¥, or ¢ has a prior claim on being
semantics, but we do need a little terminology to make sense of
it all. For discussion, we will refer to the "@" of a structure as
its declarative import, and to its "¥" as ils procedural

26

Notation NZ]

[—";truc

L]

Ll)esignauon Dl] L Dasignation D2]

Figure4: A Framework for Compulational Semantics

consequence. It is also convenient to identify some of the
situations when two of the six entities (n;, ng, 8;, 83, d;, and
do) are identical. In particular, we will say that s; is self-
referential if d, » 8, that ¥ de-references s, if s3 = d;, and that
¥ is designation-preserving (at &) when d; = dy (as it always is,
for example, in the A-calculus, where ¥ — «- and g-reduction —
do not -alter the interpretation in the standard model).

It is natural to ask what a program is, what programming
language semantics gives an account of, and how (this is a
related question) ® and ¥ relate in the programming language
case. An adequate answer to this, however, introduces a maze
of complexity that will be considered in future work. To
appreciate some of the difficulties, note that there are two
different ways in which we can conceive of a- program,
suggesting different semantical analyses. On the one hand, a
program can be viewed as a linguistic object that describes or
signifies a computational process consisting of the data
structures and activities that result from (or arise during) its
execution, In this sense a program is primarily a
communicative object, not so much playing a role within a
computational process as existing outside the process and
representing it. Putting aside for a moment the question of
whom it is meant to communicate to, we would simply say that
a program is in the domain of ©, and, roughly, that ¢°0 of such
an cxpression would be the computation described. The same
characterization would of course apply to a specification; indeed,
the only salient difference might be that a specification would
avoid using non-effective concepts in describing behaviour. One
would expect specifications to be stated in a declarative
language (in the sense defined in footnote 4), since specifications
aren’t themselves to be executed or run, even though they speak
about behaviours or computations. Thus, for program or
specification b describing computational process ¢, we would
have (for the relevant language) something like ®(0(b)) = ¢. If
b were a program, there would be an additional constraint that
the program somehow play a causal role in engendering the
computational process ¢ that it is taken to describe.

There is, however, an alternative conception, that places
the program inside the machine as a causal participant in the
behaviour that results. This view is closer to the one implicitly
adopted in Figure 1, and it is closer (we claim) to the way in
which a Lisp program must be semantically analysed, especially
if we are to understand Lisp’s emergent reflective properties. In
some ways this different view has a von Neuman character, in
the sense of equating program and data. On this view, the more
appropriate equation would seem to be ¥(O(b)) =-¢, since one
would expect the processing of the program to yield the
appropriate behaviour. One would seem to have to reconcile
this equation with that in the previous paragraph; something it
is not clear it is possible to do.

But this will require further work. What we can say here
is that programming language semantics seems to focus on
what, in our terminology, would be an amalgam of ¥ and ®.
For our purposes we need only note that we will have to keep ¥
and @ strictly separate, while recognising (because of the context
relativity and nonlocal effects) that the two parts cannot be told
independently. Formally, one needs to specify a general
significance function %, that recursively specifies ¥ and ®
together. In particular, given any structure s, and any state of

the processor and the rest of the field (encoded, say, in an
environment, continuation, and perhaps a store), ¥ will specify
the structure, configuration, and state that would result (i.e., it
will specify the use of 81), and also the relationship to the world
that s; signifies. For example, given a Lisp structure of the
form (+ 1 (PROG (SETQ A 2) A)), ¥ would specily that the whole
structure designated the numbher three, that it would return the
numeral 3, and that the machine would be left in n state in
which the binding of the variable A was changed to the numeral
2.

Before leaving semantics completely, it is instructive to
apply our various distinctions to traditional Lisp. We said
above that all interaction with computational processes is
mediated by communication; this can be stated in this
terminology by noting that O and o' (we will call the latter
externalisation) are a part of any interaction. Thus Lisp’s "read-
eval-print" loop is mirrored in our analysis as an iterated
version of 0°le¥<0 (i.e., if n; is an expression you type at Lisp,
then ny is 0°'(¥(0(ny)))). The Lisp structural field, as it
happens, has an extremely simple compositional structure, based
on a binary directed graph of atomic elements called cons-cells,
extended with atoms, numerals, and so forth. The linguistic or
communicative expressions that we use to represent Lisp
programs — the formal language objects that we edit with our
editors and print in books and on terminal scrcens — is a
separate lexical (or sometimes graphical) object, with its own
syntax (of parentheses and identifiers in the lexical case; of
boxes and arrows in the graphical).

There is in Lisp a relatively close correspondence between
expressions and structures; it is one-to-one in the graphical case,
but the standard lexical notation is both ambiguous (because of
shared tails) and incomplete (because of its inability to
represent cyclical structures). The correspondence need not
have been as close as it is; the process of converting from
external syntax or notation to internal structure could involve
arbitrary amounts of computation, as evidenced by read macros
and other syntactic or notational devices. But the important
point is that it is structural ficld elements, not notations, over
which most Lisp operations are defined. If you type
(RPLACA '(A . B) 'C), for example, the processor will change the
CAR of a field structure; it will not back up your terminal and
erase the eleventh character of vyour input expression.
Similarly, Lisp atoms are ficld elements, not to be confused with
their lexical representations (called P-names). Again, quoled
forms like (QUOTE ABC) designate structural field elements, not
input strings. ‘The form (QUOTE ..), in other words, is a
structural quotation operator; notational quotation is different,
usually notated with string quotes (-Asc*).’

4. Evaluation Considered Harmful

The claim that all three velationships (0, #, and ¥) figure
crucially in an account of Lisp is not a formal one. It makes an
empirical claim on the minds of programmers, and cannot be
settled by pointing to any current theories or implementations.
Nonetheless, it is unarguable that lLisp’s numerals designate
numbers, and that the atoms 7 and NIL {(at least in predicative
contexts) designate truth and falsity — no one could learn Lisp

Falsity!

the CDR function

Figure 5: LISP Evaluation vs. Designation: Some Examples

... cdge of the machine ..

External World

Figure G: LISP’s "De-reference If You Can” Evaluation Protocol

without learning this fact. Similarly, (£Q 'A *8) designates
falsity. Furthermore, the structure (CAR '(A . B)) designates
the atom A; this is manifested by the fact that people, in
describing Lisp, use expressions such as "if the CAR of the list is
LAMBDA, Lhen it's a procedure”, where the term “the CAR of the
list" is used as an English referring expression, not as a quoted
fragment of Lisp (and English, or natural language generally, is
by definition the locus of what designation is). (QUOFE A), or 'A,
is another way of designating the atom a; that’s just what
quotation is. Finally, we can take atoms like cAR and + to
designate the obvious functions.

What, then, is the relationship between the declarative
import (#) of Lisp structures and their procedural consequence
(¥)? Inspection of the data given in Figure 5 shows that Lisp
obeys the following constraint (more must be said about ¥ in
those cases for which ®(¥(s)) = ¢(s), since the identity function
would satisfy this equation):

Vs € S{if [#(s)C S] then [¥(s)= &(s)]

else [B(¥(s)) = ¥(s)]]
All Lisps, including Scheme [Steele and Sussman 1978al, in
other words, dereference any structure whose designation is
another structure, but will return a co-designating structure for
any whose designation is outside of the machine (Figure 6).
Whereas cvaluation is often thought to correspond to the
semantic interpretation function @, in other words, and
therefore to have type EXPRESSIONS -» VALUES, evaluation in Lisp
is often a designation-preserving operation. In fact no computer
can cvaluate a structure like (+ 2 3), if that means returning
the designation, any more than it can cvaluate the name
Hesperus or peanut butter.

Obeying equation (1) is highly anomolous. It means that
even if one knows what Y is, and knows X evaluates to Y, one
still doesn’t know what X designates. It licences such semantic
anomalies as (+ 1 '2), which will evaluate to 3 in all extant
Lisps. Informally, we will say that Lisp’s evaluator crosses
semantical levels, and therefore ohscures the difference between
simplification and designation. Given that processors cannot
always de-reference (since the co-domain is limited to the
structural field), it seems they should always simplify, and
therefore obey the following constraint (diaugrammed in Figure
7

(1)

VS € S[d(¥(S)) = B(S) A NORMAL-FORM(¥(S))] (2)

The content of this equation clearly depends entirely on the
content of the predicate NORMAL-FORM (if NORMAL-FORM were AX.true
then ¥ could be the identity functivn). In the A-calculus, the

/ normal forin

L stﬁz":{ sz |
fb‘ ®

i

Figure 7: A Normalisation Protocol

27

Reduction i
'\\ ;
l fD: Func. oesig] [An: Arg. Desig.] | VD: Value Doslg]
[@ @ i
\ A \
[F: Function I l A: Argument] l V: Value]

Application

Figure 8: Application vs. Reduction

notion of normal-formedness is defined in terms of the
processing protocols (a- and g-reduction), but we cannot use that
definition here, on threat of circularity. lustead, we say that a
structure is in normat form if and only if it satisfies the
following three independent conditions:

L It is context-independent, in the sense of having the same
declarative (¢) and procedural (¥) import independent of
the context of use;

2. It is side-effect-free, implying that the processing of the
structure will have no cffect on the structural field,
processor state, or external world; and

3. It is stable, meaning that it must normalise to itself in all
countexts, so that ¥ will be idempotent.

We would then have to prove, given a language specification,
that equation (2) is satisfied.

Two notes. First, I won't use the terms ‘evaluate’ or
‘value’ for expressions or structures, referring instead to
normalisation for ¥, and designation for ®. 1 will sometimes call
the result of normalising a structure its reswlt or what it
relurns. There is also a problem with the terms ‘apply’ and
‘application’; in standard Lisps, APPLY is a function from
structures and arguments onto values, but its use, like
‘evaluate’, is rife with use/mention confusions. As illustrated in
Figure 8, we will use ‘apply’ for mathematical function
application — i.e., to refer to a relationship between a function,
some arguments, and the value of the function applied to those
arguments and the term ‘reduce’ to relate the threce

- expressions that designate functions, arguments, and values,
respectively. Note that I still use the term ‘value' (as for
example in the previous sentence), but only to name that entity
onto which a function maps its arguments.

Second, the idea of a normalising processor depends on the
idea that symbolic structures have a semantic significance prior
to. and independent of, the way in which they are treated by
the processor. Without this assumption we could not even ask
about the semantic character of the Lisp (or any other)
processor, let alone suggest a cleaner version. Without such an
assumption, more generally, one cannot say that a given
processor is correct, or coherent, or incoherent; it is merely what
it is. Given one account of what it does (like an
implementation), one cun compare that to another account (like
a specification). One can also prove that it has certain
properties, such as that it always terminates, or uses resources
in certain ways. One can prove properties of programs written
in the language it runs (from a specification of the ALGOL
processor, for example, one might prove that a particular
program sorted its input). However none of these questions deal
with the fundamental question about the semantical nature of
the processor itself. We are not looking for a way in which to
say that the semantics of (CAR '(A . 8)) is A because that is how
the language is defined; rather, we want to say that the
language was defined that way because A is what (CAR *(A . B))
designates. Semantics, in other words, can be a tool with which
to judge systems, not merely a method of describing Lhem.

28

5. 2-Lisp: A Semantically Ratioualised Dialect

Since we have torn apart the notion of evaluation into two
constituent notions, we must start at the beginning and build
Lisp over again. 2-Lisp is a proposed result. Some sumiary
comments can be made. First, I have reconstructed what I call
the category structure of Lisp, requiring that the categories into
which Lisp structures are sorted, for various purposes, line up
(giving the dialect a property called category alignment). More
specifically, Lisp expressions are sorted into categories by
notation, by structure (atoms, cons pairs, numerals), by
procedural treatment (the “dispatch” inside evat), and by
declarative semantics (the type of object designated).
Traditionally, as illustrated in Figure 9, these categories are not
aligned; lists, a derived structure type, include some of the pairs
and one atom (NIL); the procedural regimen treats some pairs
(those with LAMBDA in the CAR) in one way, most atoms (except T
and WNIL) in another, and so forth. In 2-Lisp we require the
notational, structural, procedural, and semantic categories to
correspond one-to-one, as shown in Figure 10 (this is a bit of an
oversimplification, since atoms and pairs — representing
arbitrary variables and arbitrary function application structures
or redexes —— can designate entities of any semantic type).

A summary of 2-Lisp is given in Figure 11, but some
comments can be made here. Like most mathematical and
logical languages, 2-Lisp is almost entirely declaratively
extensional. Thus (+ 1 2), which is an abbreviation for
(+ . [12]), designates the value of the application of the
function designated by the atom + to the sequence of numbers
designated by the rail {1 2. In other words (+ 1 2) designates
the number three, of which the numeral 3 is the normal-form
designator; (+ 1 2) therefore normalises to the numeral 3, as
expected. 2-Lisp is also usually call-by-value (what one can
think of as "procedurally extensional”), in the sense that
procedures by and large normalise their arguments. Thus,
(+ 1 (BLOCK (PRINT "hello") 2) will normalise to 3, printing
‘hello’ in the process.

Many properties of Lisp that must normally be posited in
an ad hoc way fall out directly from our analysis. For example,
one must normally state explicitly that some atoms, such as T
and NIL and the numerals, are self-evaluating; in 2-Lisp, the fact
that the boolean constants are self-normalising follows directly
from the fact that they are normal form designators. Similarly,
closures are a natural category, and distinguishable from the
functions they designate (there is ambiguity, in Scheme, as to
whether the value of + is a function or a closure). Finally,
because of the category alignment, if x designates a scquence of
the first three numbers (i.e., it is bound to the rail [2 3}), then
(+ . %) will designate five and normalise to &; no metatheoretic
machinery is needed for this "uncurrying” operation (in regular
Lisp one must use (APPLY '+ X): in Scheme, (APPLY + X)).

There are numerous properties of 2-Lisp that we will
ignore in this paper. The dialect is defined (in [Smith 821) to
include side-effects, inteusional procedures (thal do ot
normalise their arguments), and a variety of other sometimes-
shunned properties, in part to show that our semantic
reconstruction is compatible with the full gamut of features
found in real programming languages. Recursion is handled
with explicit fixed-point operators. 2-Lisp is an eminently
usable dialect (it subsumes Scheme but is more powerful, in
part because of the metastructural access to closures), although
it is ruthlessly semantically strict.

6. Sclf-Reference in 2.-Lisp

We turn now to matters of self-reference.

Traditional Lisps provide names (tvalL and aPPLY) for the
primitive processor procedures; the 2-Lisp analogues are
NORMALTSE and REDUCE. Tgnoring for a moment context arguments
such as environments and continuations, (NORMALISE (+ 2 3))
designates the normal-form structure to which (+ 2 3)
normalises, and thercfore returns the handle ‘5. Similarly,

; : .exical Structural Peocedural Declarative
Iexical Der. Str. Procedural Declarative Lexica ¢ e
T or NIL T.values digits [—1_NumeralsF—— Normal form Numbers
Numerals Numerals Numerals F~ Numbers $T or SF 1 _Booleans—j Normal form r——f Truth Values)
Labels Atoms Atoms {CLOSURE ... }—1 Closures-— Nermal torm [-— Functions
Dotted P. Pairs (lambda ..) F—]tunctions [Al ... Ak] Rails p— Rails —{ Sequences
Lists —j(quote ..) 1 Sexprs ‘L l— iandles — Normal Form |—- Structures
"List" Lists Sequences alphanumerics Atoms Atoms rj
Appl'ns (M. A2) Pairs Pairs
Figure9: The Category Structureof LISP 1.5 Figure 10: The Cutegory Structure of 2-LISP and 3-LISP

Figure 11: An Overview of 2-Lisp

We begin with the objects. Ignoring input/output
categories such as characters, strings, and streams, there are
seven 2-Lisp structure types, as illustrated in Table 1. The
numerals (notated as usual) and the two buolean constants
(notated ‘sT' and °‘$f’) are unique (i.e., canonical), atomic,
normal-form designators of numbers and truth-values,
respectively. Rails (notated ‘[A, A, .. A,]') designate sequences;
they resemble standard Lisp lists, but we distinguish them from
pairs in order to avoid category confusion, and give them their
own name, in order to avoid confusion with sequences (or
vectors or tuples), which are normally taken to be platonic
ideals. All atoms are used as variables (i.e.,, as context-
dependent names); as a consequence, no atom is normal-form,
and no atom will ever be returned as the result of processing a
structure (although a designator of it may be). Pairs
(sometimes also called redexes, and notated ‘(4; . A,)’) designate
the value of the function designated by the CAR applied to the
arguments designated by the CDR. By taking the notational
form ‘(A, A, .. A,)" to abbreviate ‘(A, . [A, A; .. A,])" instead of
“(Ay . (Ap . (- (A . NIL).)))', we preserve the standard look
of Lisp programs, without sacrificing category alignment. (Note
that in 2-Lisp there is no distinguished atom NIL, and *()’ is a
nolational error — corresponding to no structural field element.)
Closures (notated ‘{CLOSURE: .. }) are normal-form function
designators, but they are not canonical, since it is not generally
decidable whether two structures designate the same function.
Finally, handles are unique normal-form designators of all
structures; they are notated with a leading single quote mark
(thus *'A’ notates the handle of the atom notated ‘A’, ‘*(A . 8)°
notates the handle of the pair notated ‘(A . 8)’, etc.). Because
designation and simplification are orthogonal, quotation is a
structural primitive, not a special procedure (although a QUOTE
procedure is easy to define in 3-Lisp).

We turn next to the functions (and use ‘=’ to mean
‘normalises to). There are the usual arithmetic primitives (+, -,
+ and /). Identity (signified with =) is computable over the full
semantic domain except functions; thus (= 3 (+ 1 2)) = $7, but
(= + (LAMBDA [X] (+ X X))) will generate a processing error, even
though it designates truth. The traditionally unmotivated
difference between EQ and EQUAL turns out to be an expected
difference in granularity between the identity of mathematical
sequences and their syntactic designators; thus:

(=[(r123){123) = T
(= '[123]°'C123]) = SF
(=[123]'(123]) = SF

(In the last case one structure designates a sequence and one a
rail.) 1ST and REST are the CAR/CDR analogues on sequences and
rails; thus, (1ST [10 20 30]) = 10; (REST [10 20 307) => [20 30).
cAR and cor are defined over pairs; thus (CAR '(A . B)) = 'A
(because it designates), and (COR *(+ 1 2)) = '[1 2]. The pair
constructor is called PCONS (thus (PCONS 'A 'B) = '(A . B)); the
corresponding constructors for atoms, rails, and closures are
called ACONS, RCONS, and CCONS. There are 11 primitive
characteristic predicates, 7 for the internal structural types

(AiOM, PAIR, RAIL, GOOLEAN, NUMERAL, CLOSURE, and HANDLE) and 4 for
the external types (NUMBER, TRUTH-VALUE, SEQUENCE, and FUNCTION).
Thus:

(NUMBCR 3) = T
(NUMERAL '3) = ST
(NUMBER *3) = SF
(FUNCTION +) = S$T
(FUNCTION *+) => SF

Procedurally intensional IF and coNp are defined as usual; 8LOCK
(as in Scheme) is like standard Lisp’s PROGN. 80DY, PAITERN, and
FNVIRONMENT are the three selector functions on closures.
Finally, functions are usually "defined"” (i.e., conveniently
designated in a contextually relative way) with structures of the
form (LAMBDA SIMPLE ARGS B800Y) (the keyword SIMPLE will be
explained presently); thus (LAMBDA SIMPLE [X] (+ X X)) returns a
closure that designates a function that doubles numbers;
((LAMBDA SIMPLE [X] (+ X X)) 4) => 8,

2-Lisp is higher order, and therefore lexically scoped, like
the A-caleulus and Scheme. FHowever, as mentioned earlier and
illustrated with the handles in the previous paragraph, it is also
wetastructural, providing an explicit ability to name internal
structures. 'f'wo primitive procedures, called UP and DOwWN
(usually notated with the arrows ‘+* and *¥’) help to mediate this
metastructural hierarchy (there is otherwise no way to add or
remove quotes; *2 will normalise to ‘2 forever, never to 2).
Specifically, +sTauC designates the normaliform designator of the
designation of STRUC; d.e., tSTRUC designates what STRuUC
normalises to (therefore t+(+ 2 3) = '5). Thus:

(LAMBDA SIMPLE [X] X) designates a function,

" (LAMBDA SIMPLE [X] X) designates a pair or redex, and

+(LAMBDA SIMPLE [X] X) designates a closure.
(Note that '+’ is call-by-valuc but not declaratively extensional.)
Similarly, STRUC designates the designation of the designation
of srauc, providing the designation of STRUC is in normal-form
(therefore 4'2 = 2). 1+STRUC is always equivalent to STRUC, in
terms of both designation and result; so is *4STRUC when it is
defined. Thus if pouste is bound to (the result of normalising)
(VAMBDA [X] (+ % X)), then (BODY DOUBLE) gecnerates an error,
since BODY is extensional and pousLe designates a function, but
(BoDY tDOUBLE) will designate the pair (+ x X).

Type Designation Normal Canonical Nolation

Numerals Numbers Yes Yes — digits

Booleans Truth-Values Yes Yes — ST or $F

Handles Structures Yes Yes — *STRUC

Closures Functions Yes No CCONS (ctosura)

Rails Sequences Some No RCONS [STRUC... STRUC]

Atomns (¢ of Binding) No - ACONS alphamerics

Pairs (Value of App.) No — PCONS (STAUC . STRUC)
Tauble 1: The 2-LISP (and 3-LISP) Categories

29

[

4@/%’/ e

Figure 12: Meta-Circular Processors

(NORMALISE '(CAR ‘(A . B))) = ''A
(NORMALISE (PCONS *= '[2 3])) = 'Sf
(REDUCE *1ST '[10 20 30]) = 10,

More generally, the basic idea is that ®(NORMALISE) = ¥, to be
contrasted with #(4), which is approximately &, except that
because ¢ is a partial function we have #(4 o NORMALISE) = &.

Given these cquations, the behaviour illustrated in the
foregoing examples is forced by general semantical
considerations.

In any computational formalism able to model its own
syntax and structures,® it is possible to construct what are
commonly known as melacircular interpreters, which we call
‘melacircular processors (or MCPs) — "meta" because they
operate on (and therefore terms within them designate) other
formal structures, and "circular” because they do not constitute
a definition of the processor. They are circular for two reasons.
First, they have to be run by that processor in order to yield
any sort of behaviour (since they are programs, not processors,
strictly). Second, the behaviour they would thereby engender
can be known only if one knows beforehand what the processor
does. (Standard techniques of fixed points, furthermore, are of
no help in discharging this circularity, because this kind of
modelling is a kind of self-mention, whereas recursive
definitions are more self-use.) Nonetheless, such processors are
pedagogically illuminating, and play a critical role in the
development of procedural reflection.

The role of MCPs is illustrated in Figure 12, showing how,
if we ever replace P in Figure 1 with a process that results from
P processing the metacircular processor MCP, it would §till
correctly engender the behaviour of any overall program.
Taking processes to be functions from structures onto behaviour
{whatever behaviour is — functions from initial to final states,
say), and calling the primitive processor P, we should be able to
prove that P(MCP) =~ P, where by ‘=’ we mean behaviourally
equivalent in some appropriate sense. The equivalence is, of
course, a global equivalence; by and large the primitive
processor and the processor resulting from the explicit running
of the MCP cannot be arbitrarily mixed. If a variable is bound
by the underlying processor P, it will not be able to be looked up
by the metacircular code, for example. Similarly, if the
metacircular processor encounters = control-structure primitive,
such as a THROW or a QUIT, it wii! not cause the metacircular
processor itself to exit prematurely, or to terminate. The point,
rather, is that if an entire computation is run by the process
that results from the explicit processing of the MCP by P, the
results will be the same (modvlo time) as if that entire
computation had been carried out directly by P. MCPs are not
causally connected with the systems they model.

The reason that we cannot mix code for the underlying
processor and code for the MCP and the reason that we ignored
context arguments in the definitions above both have to do with
the state of the processor P. In very simple systems (unordered
rewrite rule systems, for example, and hardware architectures
that put even the program counter into a memory location), the
processor has no internal state, in the sense that it is in an
identical configuration at every “click point” during the running
of a program (i.c., all information is recorded explicitly in the

30

structural field). But in more complex circunstances, there is
always a certain amount of state to the processor that affects its
behaviour with respect to any particular embedded fragment of
code. In writing an MCP one¢ must demonstrate, more or less
explicitly, how the processor state affects the processing of
object-level structures. By "more or less explicitly” we mean
that the designer of the MCP has options: the state can be
represented in explicit structures that are passed around as
arguments within the processor, or it can be absorbed into the
state of the processor running the MCP. (I will say that a
property or feature of an object language is absorbed in a
metalanguage or theory just in case the metutheory uses the
very same property to explain or describe the property of the
object language. Thus conjunction is absorbed in standard
mode] theories of first-order logics, because the semantics of
P A @ is explained simply by conjoining the explanation of p and
Q — specifically, in such a formula as: ‘P A Q' is true just in
case ‘P’ is true and Q' is true.) ’

The state of a processor for a recursively-embedded
functional language, of which Lisp is an example, is typically
represented in an environment and a continuation, both in
MCPs and in the standard metatheoretic accounts. (Note that
these are notions that arise in the theory of Lisp, not in Lisp
itself; except in self-referential or self-modelling dialects, user
programs don't traffic in such entities.) Most MCPs make the’
environment explicit. The control part of the state, however,
encoded in a continuation, must also be made explicit in order
to explain non-standard control operations, but in many MCPs
(such as in [McCarthy 1965] and Steele and Sussman’s versions
for Scheme (see for example [Sussman and Steele 1978b)), it is
absorbed. Two versions of the 2-Lisp metacircular processor, one
absorbing and one making explicit the continuation structure,
are presented in Figures 13 and 14. Note, however, that in both
cases the underlying agency or anima is not reified; it remains
entirely absorbed hy the processor of the MCP. We have no
mechanisin to designate a process (as opposed to structures),
and no method of ohtaining causal access to an independent
locus of active ageney (the reason, of course, being that we have
no theory of what a process is).

7. Procedural Reflection and 3-Lisp

Given the metacireular processors defined ahove, 3-Lisp can
be non-cffectively defined in a series of steps. First, imagine a
dialect of 2-Lisp, called 2-Lisp/1, where user programs were not
run directly by the primitive processor, but by that processor
running a copy of an MCP. Next, imagine 2-Lisp/2, in which the
MCP in turn was not run by the primitive processor, but was
run by the primitive processor running another copy of the MCP.
Ete. 3-Lisp is essentially 2-Lisp/co, except that the MCP is
changed in a critical way in order to provide the proper
connection between levels. 3-Liap, in other words, is what we
call a reflective tower, defined o an infinite number of copies of
an MCP-like program, run at the "top” by an (infinitely fleet)
processor. The claim that 3-Lisp is well-founded is the claim
that the limit exists, as n-o0, of 2-Lisp/n.

We will look at the revised MCP presently, but some
general properties of this tower architecture can be pointed out
first. A rough idea of the levels of processing is given in Figure
15: at each level the processor code is processed by an active
process that interacts with it (locally and serially, as usual), but
cach processor is in turn composed of a structural field fragment
in turn processed by a reflective processor on top of it. The
implied infinite regress is not problematic, and the architecture
can be efficiently realised, since only a finite amount of
information is encoded in all but a finite number of the bottom
levels,

There are two ways to think about reflection. On the one
hand, one can think of there being a primitive and noticeable
reflective act, which causes the processor to shift levels rather
markedly (this is the explanation that best coheres with some of
our pre-theoretic intuitions about reflective thinking in the
sense of contemplation). On the other hand, the explanation

(define READ-NORMALISE-PRINT
{tambda simple [env stream]
(block (promptéreply (normalise (prompt&read stroam) env)
stream)
(road-normalise-print onv stream))))
(define NORMALISE
(lambda simple [struc env]
(cond [(normal struc) struc]
[(atom struc) (binding struc env)]
[(rait struc) (normalise-rail struc env)])
[(pair struc) (reduce (carstruc) (cdrstruc) anv})])))
(define REDUCE
(lambda simple [proc args env])
(let [{proc! (normalise proc env)]]
(selectq (procedure-type proc!)
[simple (let [[args! (normalise args env)]]}
(if (primitive proc!)
(reduce-primitive-simple
proc! args! env)
(expand-closure proc! args!)))]
[intensional (if (primitive proc!)
(reduco-primitive-intensional
proc! targs env)
(expand-closure proc! targs))]
[macro (normalise (expand-closure proc! targs)
env))1)))
(define NORMALISE-RAIL
(lamhbda simple [rail env]
(if (empty rail)
{rcons)
(prep (normalise (1st rail) env)
(normalise-rail (rest rail) onv)))))
(define EXPAND~CLOSURE
(1ambda simple [proc! args!]
(normalise (body proc!)
{bind (pattern proc!)
args!
(enviroament procl))))

Figure 13: A Non-Continuation-Passing 2-LISP MCP

given in the previous paragraph leads one to think of an infinite
number of levels of reflective processors, each implementing the
one below.” On such a view it is not coherent either to ask at
which level the tower is running, or to ask how many refloctive
levels are running: in some sense they are all running at once.
Exuactly the same situation obtains when you use an editor
implemented in APL. It is not as if the editor and the APL
interpreter are both running together, either side-by-side or
independently; rather, the one, being interior to the other,
supplies the anima or agency of the outer one. To put this
another way, when you implement one process in another
process, you might want to say that you have two different
processes, hut you don’t have concurrency; it is more a
part/whole kind of relation. It is just this sense in which the
higher levels in our reflective hierarchy are always running:
each of them is in some sense within the processor at the level
below, so that it can thercby engender it. We will not take a
principled view on which account — a single locus of agency
stepping between levels, or an infinite hierarchy of
simultaneous processors — is correct, since they turn out to be
behaviourally cquivalent. (The simultaneous infinite tower of
levels is often the better way to understand processes, whereas
a shifting-level viewpoint is semctimes the better way to
understand programs.)

3-Lisp, us we said, is an infinite reflective tower based on
2-Lisp. The code at each level is like the continuation-passing 2-
Lisp MCP of Figure 14, but extended to provide a mechanism
whereby the user's program can gain access to fully articulated
descriptions of that program’s operations and structures (thus
extended, and located in u reflective tower, we call this code the
3-Lisp reflective processor). One gains this access by using what
are called reflective procedures procedures that, when
invoked, are run not at the level at which the invocation
occurred, but one level higher, at the level of the reflective
processor running the program, given as arguments those
structures being passed around in the reflective processor.

31

(define READ-MORMALISE-PRINT
{lambda simple [env stream]
{normalise (prompt&read stream) env
(lambda simple [result]
(block (prompt&reply result stream)
{read-normalise-print env stream})))})
(defing NORMALISE
{(lambda simple [strc env cont]
{cond [(normal struc) (cont strc)]
[(atom strc) (cont (binding strc env))]
((rat) strc) (normalise-rail struc env cont)]
[(pair strc) (reduce (carstrc) (cdrstrc)envcont)]))
(define REDUCE
(1ambda simple [proc args env cont]
(normalise proc env
(1ambda simple [proc!]
{selectq (procedure-type proc!)
[simple
(normalise args env
(lambda simple [args!]
(if (primitive procl)
{reduce-primitive-simple
proc! args! env cont)
(expand-closure proc! args! cont))})]
[intensional
(if (primitive proc!)
{reduce-primitive-intensional
proc! targs env cont)
(expand-closure proc! targs cont))]
[macro (expand-closure proc! targs
(tambda simple [result]
{normalise result env cont)))])}))))
(defino NORMALISE-RAIL
(lambda simple {rai) env cont]
(il (empty rail)
(cont (rcons))
{normalise (1st rail) env
{1ambda simple [first!]
(normalise-rail (rest rail) env
(tambda simple [rest!]
{cont (prep first! rest!)})))))))
(define EXPAND-CLOSURE
(lambda simple [proc! args! cont]
(normalise (body proc!)
(bind (pattern proc!) args! (env proc!))
cont)))

Figure 14: A Continnation-Passing 2-LISPMCP '

Reflective procedures are essentially analogues of subroutines to
be run "in the implementation”, except that they are in the
same dialect as that being implemented, and can use all the
power of the implemented language in carrying out their
function (e.g., reflective procedures can themselves use reflective
procedures, without limit). There is not a tower of different
languages — there is a single dialect (3-Lisp) all the way up.

soe

leval 2 Cod

/
7171

tevel 1 Codg

Figure 15: The 3-LISP Reflective Tower

Rather, there is a tower of processors, necessary because there
is different processor state at each reflective level.

Some simple cxamples will illustrate. Reflective
procedures are "defined” (in the sense we described earlier)
using the form (LAMBDA REFLECT ARGS BODY), where ARGS —
typically the rail [ARGS ENV CONT] — is a pattern that should
match a 3-clement designator of, respectively, the argument
structure at the point of call, the environment, and the
continuation. Some simple examples are given in the
"Programming in 3-Lisp” overview in Figure 16, including a
working definition of Scheme’s carch. Though simple, these
definitions would he impossible in a traditional language, since
they make crucial access to the full processor state at point of
call. Note also that although THrow und cATCH deal explicitly
with continuations, the code that uses them need know nothing
ahout such subtleties. More complex routines, such as utilities
to abort or redefine calls already in process, are almost as
simple. In addition, the reflection mechanism is so powerful
that many traditional primitives can be defined; LAMBDA, 1F, and
QuoTE are all non-primitive (user) definitions in 3-Lisp, again
illustrated in the insert. There is also a simplistic break
package, to illustrate the use of the reflective machinery for
debugging purposes. It is noteworthy that no reflective
procedures necd be primitive; even LAMBDA can be built up from
scratch.

The importance of these examples comes from the fact that
they are causally connected in the right way, and will therefore

run in the system in which they defined, rather than being
models of another system. And, since reflective procedures are
fully integrated into the system design (their names are not
treated ns special keywords), they can be passed around in the
normal higher-order way. There is also a sense in which 3-Lisp
is simpler than 2-Lisp, as well as being more powerful; there
are fewer primitives, and 3-Lisp provides much more compact
ways of dealing with a variety of intensional issues (like
Micros).

8. The 3-Lisp Reflective PPvocessor

3-Lisp can be understood only with a close inspection of the
3-Lisp rellective processor (Figure 17), the promised modilication

of the continuation-passing 2-Lisp metacircular processor
mentioned above. nonMALISE (line 7) takes an structure,
environment, and continuation, veturning the structure

unchanged (i.e., sending it to the continuation) if it is in normal
formn, looking up the binding if it is an atom, normalising the
clements if it is a rail (NORMALISE-RAIL is 3-Lisp's tail-recursive
continuation-passing analogue of Lisp 1.5°s EVLIS), and otherwise
reducing the CAR (procedure) with the CDR (arguments). REDUCE
(line 13) first normalises the procedure, with a continuation (C-
rroc!) that checks to see whether it is reflective (by convention,
we use exclamation point suffixes on atom names used as
variables to designate normal form structures). If it is not
reflective, C-PROC! normalises the arguments, with a
continuation that either expands the closure (lines 23~25) if the

Figure 16: Programming in 3-Lisp:

For illustration, we will look at a handful of simple 3-Lisp
programs. The first merely calls the continuation with the
numeral 3; thus it is scmantically identical to the simple
numeral:
(define THREE
{1ambda reflect ([] env cont]
(cont '3)))
Thus (three) => 3; (+ 11 (three)) => 14. The next example is an
intensional predicate, true if and only if its argument (which
must be a varioble) is bound in the current context:
(define BOUND
(1ambda reflect [[var] env cont]
(if (bound-in-env var onv)
(cont 'S$T)
(cont '$F))))
or equivalently
{define BOUND
(1ambda reflect [[var] env cont]
(cont t{bound-in-env var env})}))
Thus (LET [[x 3]) (BOUND X)) = $T, whereas (BOUND X) => $F in
the global context. The following quits the computation, by
discarding the continuation and simply "returning”:
(define QUIT .
(1ambda reflect [[] env cont]
'QUIT!))

There are a variety of ways to implement a THROW/CATCH pair;

the following defines the version used in Scheme:
(define SCHEME~CATCH
{lambda reflect [[tag body] catch-env catch-cont]
{normalise body
{bind tag
t(1ambda reflect [[answer] throw-env throw-cont]
(normalise answer throw-env catch-cont))
catch-env)
catch-cont)))
For example:
(let [[x 11]
(+ 2 (scheme-catch punt
(*3 (/4 (if (=x1)
(punt 18)
(- x 1))
would designate seventeen and return the numeral 17.

In addition, the reflection mechanism is so powerful that
many traditional primitives can be defined; LAMBDA, If, and QUOTE

are all non-primitive (user) definitions in 3-Lisp, with the
following definitions:
(def ine LAMBDA
(lambda reflect [[kind pattern body] env cont}
{cont (ccons kind tonv pattern body))))

(define IF
(1ambda reflect [[promise then elsa] env cont]
(normalise premise env
(1ambda simple {premisel]
(normaiise (ef ipromise! then else) env cont)))))
(define QUOTE

(1ambda reflect [[arg] env cont] (cont targ)))

Some comments. First, the definition of o just given is of
course circular; a non-circular but effective version is given in
Smith and des Rividres [1984]; the one given in the text, if
excruted in 3-Lisp, would leave the definition unchanged, except
that it is an innocent lie; in real 3-Lisp kind is a procedure that
is called with the arguments and environment, allowing the
definition of (lambda macro), etc. CCONS is a closure
constructor that uses SIMPLE and REFLECT to tag the closures for
recognition by the reflective processor described in section 6. EF
is an extensional conditional, that normalises all of its
arguments; the definition of 1f defines the standard intensional
version that normalises only one of the second two, depending
on the result of normalising the first. Finally, the definition of
QuoTE will yield (QUOTE A) = ‘A.

Finally, we have a trivial break package, with env and
CONT bound in the break environment for the user to see, and
RE1URN bound to a procedure that will normalise its argument
and pass that out as the result of the call to BREAK:

(define BREAK ’
(1ambda reflact [{arg] env cont]
(block (print arg primary-stream)
(read-normatise-print ">>"
(bind®* ['env tenv]
['cont tcont]
['return t{lambda reflect [[a2] e2 c2}
(normalise a2 e2 cont))]
env)
. primary-stream))))
If viewed as models of control constructs in a language being
implemented, these definitions will look innocuous; what is
important to remember is that they work in the very language
in which they are defined.

32

(define READ~NORMALISE-PRINT

(road-normaiise-print level env s{ream))))))

2 . . {lambda simple [level env stream]

3 (normalise (prompt&read level stream) env

4 (lambda simple [result]

5 . (block (prompt&reply result level stream)
6

i (define NORMALISE

8 ...ou.. (lambda simple [struc env cont]

9 (cond [(normal struc) (cont struc)]

10 s, [(atom struc) (cont (binding struc env))])

[(ratl struc) {normalise-rail struc env cont)]
{(pair struc) (reduce (car struc) (cdr struc) eav cont)])))

; Continuation C- REPLY

; Continuation C-PROC!

(tambda simple [rail env cont]
. (17 (empty rail)

... {cont (rcons))

{normalise (1st rail) env
.. (lambda simple [first!]

13 ... (define REDUCE

14 {(1ambda simple [proc args env cont)

156 {normatise proc env

16 . (lTambda simple [proc!]

17 (1f (reflective proc!)

18 ... {¥{de-reflect proc!) args env cont)
19 .. (normalise args env

20 (1ambda simple [args!]

21 (if (primitive proct)

22 {cont t{iproc! . largs!))
23 (normalise (body proct)
24

26 cont)))}N))
26 ... (define NORMALISE~RAIL

{normalise-rail (rest rail) env
(tambda simple [rest!]
(cont (prep first! rest!))))IN))

Figure 17: The 3-Lisp Reflective Processor:

; Continuation C-ARGS!

(bind (pattern proc!) args! (environment proc!))

; Continuation C-FIRST!

; Continuation C-REST!

procedure is noa-primitive, or else directly executing it if it is
primitive (line 22).

Consider (REDUCE '+ '[X 3] ENV ID), for example, where X is
bound to the numeral 2 and + to the primitive addition closure
in eNv. At the point of line 22, proc! will designate that
primitive closure, and ArGS! will designate the normal-form rail
[2 3]. Since addition is primitive, we must simply do the
addition. (PROC! . ARGS!) won't work, because PROC! and ARGS!
are at the wrong level; they designate structures, not functions
or arguments. So, for a brief moment, we de-reference them
(with i), do the addition., and then regain our meta-structural
viewpoint with the +8 If the procedure is reflective, however, it
is (as shown in line 18 of Figure 17) called directly, not
processed, and given the obvious three arguments (ArGS, ENV,
and CONT) that are being passed around. ‘The (DE-RCFLECT
PROC!) is merely a mechanism to purify the reflective procedure
so that it doesn't reflect again, and to de-reference it to be at
the right level (we want to use, not mention, the procedure that
is designated by proct). Notc that line 18 is the only place that
reflective procedures can ever be called; this is why they must
always be prepared to accept exactly those thrce arguments.

Line 18 is the essence of 3-Lisp; it alone engenders the full
reflective tower, for it says that some parts of the object
language —- the code processed by this program — are called
ditectly in this program. It is as if an object level fragment
were included directly in the meta language, which raises the
question of who is processing the meta language. The 3-Lisp
claim is that an exactly equivalent reflective processor can be
processing this code, without vicious threat of infinite ascent.

A reflective procedure,.in sum, arrives in the middle of the
processor context. It is handed environment and continuation
structure that designate the processing of the code below it, but
it is run in a different context, with its own (implicit)
environment and continuation, which in turn is represented in
structures passed around by the processor one level above it.
Thus it is given causal access to the state of the process that
was in progress (answering one of our initial requirements), and
it can of course cause any effect it wants, since it has complete

33

aceess to all future processing ot that code. Furthermore, it has
a safe place to stand, where it will not conflict with the code
being run below it.

These various protocols illustrate a general point. As
mentioned at the outset, part of designing an adequate
reflective architecture involves a trade-off between being so
connected that one steps all over oneself (as in traditional
implementations of debugging utilities), and so disconnected {(as
with mctacircular processors) that one has no effective access to
what is going on. The 3-Lisp tower, we are suggesting, provides
just the right balance between these two extremes, solving the
problem of vantage point as well as of causal connection.

The 3-Lisp veflective processor unifies three traditionally
independent capabilities in Lisp: the explicit availability of EvaL
and APPLY, the ability to support metacircular processors, and
explicit operations (like Maclisp’s RETFUN and Interlisp’s FRETURN)
for debugging purposes. It is striking that the latter facilities
are required in traditional dialects, in spite of the presence of
the former, especially since they depend crucially on
implementation details, violating portability and other natural
aesthetics. In 3-Lisp, in contrast, all information about the
state of the processor is fully available within the language.

9. The Threat of Infinity, and a Finite Implementation

The argument as to why 3-Lisp is finite is complex in
detail, but simple in outline and in substance. Basically, one
shows that the reflective processor is fully tail-recursive, in two
senses: a) it runs programs tail-recursively, in that it does not
build up records of state for programs across procedure calls
(only on argument passing), and b) it itself is fully tail-
recursive, in the sense that all recursive calls within it (except
for unimportant subroutines) occur in tail-recursive position.
The reflective processor, can be executed by a simple finite state
machine. In particular, it can run itself without using any state
at all. Once the limiting behaviour of an infinite tower of
copies of this processor is determined, therefore, that entire
chain of processors can he simulated by another state machine,
of complexity only moderately greater than that of the reflective
processor itself. (It is an interesting open research question

whether that "implementing” processor can be algorithmically
derived from the reflective processor code.) A full copy of such
an implementing processor — about 50 lines of 2-Lisp — is
provided in {Smith and des Riviéres 1984); a more substantive
discussion of tractability will appear in {Smith forthcomingl.

10. Conclusions and Morals

Fundamentally, the use of Lisp as a language in which to
explore semantics and reflection is of no great consequence; the
ideas should hold in any similar circumstance. We chose Lisp
because it is familiar, because it has rudimentary self-
referential capabilities, and because there is a standard
procedural self-theory (continuation-passing metacircular
“interpreters”). = Work has begun, however, on designing
reflective dialects of a side-effect-free Lisp and of Prolog, and on
studying a reflective version of the A-calculus (the last heing an
obvious candidate for a mathematical study of reflection).

Furthermore, the technique we used in defining 3-Lisp can
be generalised rather dircctly to these other languages. In
order to construct a reflective dialect one needs a) to formulate
a theory of the language analogous to the metacircular
processor descriptions we have examined, b) to embed this
theory within the language, and c¢) to connect the theory with
the underlying language in a causally connected way, as we did
in line 18 of the reflective processor, by providing reflective
procedures invocable in the object language but run in the
processor. It remains, of course, Lo implement the resulting
infinite tower; a discussion of general techniques is presented in
|desRiviéres, forthcoming].

It is partly a consequence of using Lisp that we have used
non-data-abstracted representations of functions and
environments; this facilitates side-effects to processor structures
without introducing unfamiliar machinery. It is clear that
environments could be readily abstracted, although it would
remain open to decide what modifying operations would be
supported (changing bindings is one, but one might wish to
excise bindings completely, splice new ones in, etc.). In
standard A-calculus-based metatheory there are no side effects
(and no notion of processing); environment designators must
therefore be passed around ("threaded”) in order to model
environment side effects. It should be simple to define a side-
effect-free version of 3-Lisp with an environment-threading
reflective processor, and then to define SETQ and other such
routines as reflective procedures. Similarly, we assume in 3-
Lisp that the main structural field is simply visible from all
code; one could define an alternative dialect in which the field,
too, was threaded through the processor as an explicit
argument, as in standard metatheory.

The representation of procedures as closures is troublesome
(indeed, closures are failures, in the sense that they encode far
more information than would be required to identify a function
in intension; the problem being that we don't yet know what a
function in intension might he.). 3-Lisp unarguably provides far
too fine-grained (i.e., melastructural) access to function
designators, including continuations, and the like. Given an
abstract notion of procedure, it would be natural to define a
reflective dialect that uscd abstract structures to encode
procedures, and then to define reflective access in such terms.
We did not follow this direction here only to avoid taking on
another very difficult problem, but we will move in this
direction in future work.

These considerations all illuslrate a general point: in
designing a reflective processor, one can choose to bring into
‘view more or less of the state of the underlying process. It is
all a question of what you want to make explicit, and what you
want to absorb. 3-Lisp, as currently defined, reifies the
environment and continuation, making explicit what was
implicit one level below. It absorbs the structural field (and
partly absorbs the global environment); as mentioned earlier, it
completely absorbs the animating agency of the whole
computation. If one defines a reflective procéssor based on a
metacircular processor that also ahsorbs the representation of

34

control (i.e., like the MCP in Figure 13, which uses the control
structure of the processor to encode the control structure of the
code being processed), then reflective procedures could not affect
the control structure. In any real application, it would need to
be determined just what parts of the underlying dialect required
reification. One could perhaps provide a dialect in which a
reflective procedure could specify, with respect to a very general
theory, what aspects it wanted to get explicit access to. Then
operations, for example, that needed only environment access,
like BOUND, could avoid having to traffic in continuations.

A final point. I have talked throughout about semantics,
but have presented no mathematical semantical accounts of any
of these dialects. To do so for 2-Lisp is relatively
straightforward (see Smith [forthcoming]), but I have not yet
worked out the appropriate semantical equations to describe 3-
Lisp. It would be simple to model such equations on the
implementation mentioned in section 9, but to do so would be a
failure: rather, one should instead take the definition of 3-Lisp
in terms of the infinite virtual tower (i.e., take the limit of 2-
Lisp/n), and then prove that the implementation strategies of
section 9 are correct. This awaits further work. In addition, I
want to explore what it would be to deal explicitly, in the
semantical account, with the anima or agency, and with the
questions of causal connection, that are so crucial to the success
of any reflective architecture. These various tasks will require
an even more radical reformulation of semantics than has been
considered here.

Acknowledgements

I have benefited greatly from the collaboration of Jim des
Riviéres on these questions, particularly with regard to issues of
effective implementation. The research was conducted in the
Cognitive and Instructional Sciences Group at Xerox PARC, as
part of the Situated Language Program of Stanford’s Center for
the Study of Language and Information.

Notes

1. See [Doyle 1980), {Wcyrauch 1980], [Genevsereth and lenat 1980), and
[Batali 1983).

2. In the dialects we consider, the metastructural capability must be provided
by primitive quotation mechanisms, as opposed to merely by being able to
model or designate syntax = something virtually any calculus can do,
using Godel numbering, for example — for reasons of causal connection.

3. Most programming languages, such as Fortran and Algol 60, are neither
higher-order nor metastructural; the A-calculus is the first but not the
second, whereas Lisp 1.5 is the second but not the first (dvnamic scoping is
a contextual protocol that, coupled with the meta-structural facilities,
partiolly allows Lisp 1.5 to compensate for the fact that it is only first-
order). AL least some incarnations of Scheme, on the other hand, are both
(although Scheme’s metastructural powers are limited). As we will see, 2-
Lisp and 3-Lisp are very definitely both metastructural and higher-order,

4. For what we might call declarative languages, there is a natural account of

the relationship between linguistic expressions and in-the-world designations
that noed not make crucial.reference to issues of processing (to which we
will turn in a moment). It is for such languages, in particular, that the
composition $°0, which we might call ¢', would he formulated. And this,
for obvious reasons, is what is typically studied in mathematical model
theory and logic, since those fields do not deal in any crucial way with the
active use of the languages they study. Thus, for example, @' in logic
would be the interpretation function of standard model theory. In what we
will call computational languages, on the other hand, questions of
processing do arise.

. The string ‘(QuoTE asc)’ notates a structure that designates another

structure that in turn could be notated with the string ‘asc’. The string

‘~aBc*', on the other hand, notates a structure that designates the string

‘apc” directly.

Virtually any language, of course, has the requisite power to do this kind

of modelling. In a language with meta-structural abilities, the meta-

circular processor can represent programs for the MCP as themselves —
this is always done in Lisp MCPs -— but we need not define that to be an
essential property. The term ‘metacircular processor’ is by no means
strictly defined, and there are various constraints that one might or might
not put on it. My general approach has been to view as metacircular any
non-causally connected model of a calculus within itself; thus the 3-Lisp
reflective processor is not meta-circular, because it does have the requisite

o

&

causal connections, and thercfore an essential
architecture.
Curiously, there are alse intuitions about contemplative thinking, where
one is hoth detached and yet directly present. that fit more with this view.
. Onc way to understand this is to realize that the reflective processor simply
asks its processor to do any primitives that it encounters. le., it passes
responsibility up to the processor running it. In other words, each time
one Jevel uses a primitive, its processor runs around setting everything up,
finally reaching the point at which it must simply do the primitive action,
whereupon it asks its own processor for help. But of course the processor

running that processor will also come racing towards the edge of the same

part of (he 3-Lisp

=

m

clilf, and will similarly duck responsibility, handing the primitive up yet
another level. In fact every primitive ever exccuted is handed all the way
to the top of the tower. There is a magic moment, when the thing actually
happens, and then the answer filters all the way back down to the level
that started the whole procedure. It is as if the deus ex maching, living at
the top of the tower, sends a lightning bolt down o xome level or other,
once every intervening level gets appropriately lined up (rather like the
sun, at the stonchenge and pyramids, reaching down through a long tunnel
av just one particular moment during the year). Except, of course, that
nothing cver happens, ultimately, except primitives. In other words the
ennbling agency, which must flow down from the top of the tower, consists
of an inlinitely dense servics of these lightning bolts, with something like
10% of the ones that reach cach level being allowed through to the level
below. All iufinitely fast.

Refercnces

Batali, J., "Computational Introspection”,
Laboratory Memo AIM-I'R-701 (1983),

M.LT. Artificial Intelligence

desRivieres, J. "The Implementation of Procedurally Reflective Languages”,
(forthcoming).

Doyle, d., A Model for Deliborativn, Action, and Introspection, M.LT. Artificial
Intelligence Laboratory Memoe AIM-TR-581 (1980).

Fodor, J. "Methodological Solipsisin Considercd as a Research Strategy in
Cognitive Psychology”, The Behuvioural und Brian Sciences, 3:1 (1980) pp.
63-13; reprinted in Fodor, J., Representations, Cambridge: Bradford (1981).

Genesereth, M., and lenat, D. B, "Scil-Description and -Mudification in a
Knowledge Representation Language”, Heuristic Programming Project
Report HPI-80-10, Stanford University €S Dept., (1980),

McCarthy, J. ot al, LISP 1.5 Programmer's Manual. Cambridge, Mass.: The
MIT PRess (1965).

Smith, B., Reflection and Semantics in a Procedural Language,
Laboratory for Computer Science Report MIT-TR-272 (1982)

Smith, B. and desRivitres, J. "Interim 3-LISP Reference Manual®, Xerox
PARC Report CIS-nn, Palo Alie (1984. forthcoming).

Stecle, G., "LAMIADA: The Ultimate Declarative”, M.LT. Artificial Intelligence
Laboratory Memo AIM-379 (1976).

Steele, G., and Sussman, G. “The Revised Report on SCHEME, a Dialect of
LISP", M.L'T. Artificial Intelligence Laboratory Memo AIM-452, (1978a).

Steele, G., and Sussman, G. "The Art of the Intcrpreter, or, The Modularity
Complex (Parts Zero, One, and Two)”, M.LT. Artificial Intelligence
laboratory Memo AIM-453, (1978b).

Weyhrauch, R. W., "Prologemona to a Theory of Mechanized Formal
Rensoning”, Artificial Intelligence 13:1,2 (1980) pp. 133-170.

M.LT.

35

