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1. I n t r o d u c t i o n  

l"or three reasons,  bi.';p's self-refi;rential properl.ies have not  
led to a general  un(h:rst.auding of what  it is fro" a cmuputa t ional  
sys tem to reason, in subs tan t ia l  way~, about  its; owe operat ions 
a,ul s t ructures .  First., there  is more to reasoning than  reference; 
one also needs a theory, in terms of which to make  .,~ense of the  
referenced domain.  A comln, ter sys tem able to reason about  
i t . : ; e l f -  what  I will call a reflective sys t em - -  will therefore 
need an account  of i tself  embedded within  it. Second, there  
mos t  he a sys temat ic  relat ionship between tha t  embedded 
account and the sys tem it describes. Wi thou t  such a connection, 
the account  would be useless  - -  as disconnected an the  words of 
a haple~;s drunk who carries on about the evils of inebriation,  
without  reali~iug tha t  his  story applies to himself .  Tl 'aditional 
embeddiugs  of IAsp in Lisp are inadequate  in jus t  this  way; they 
provide no m e a n s  for the implicit s ta te  of the  Lisp process to he 
reflected, momen t  by moment ,  in the  explicit t e rms  of the  
embecbled account. Tlaird, a reflective sys tem n m s t  be given an  
appropriate van tage  point a t  which to s tand,  far enough  away to 
have itself in focus, and  ye t  close enough to see the impor tan t  
details.  

This  paper presents  a general  archi tecture,  called 
procedurcd refh'ctio,, to support  sell 'directed reosoning in a 
serial p rogramming  lmaguage. Tim architecture,  i l lustrated in a 
revamped dialect called 3-Lisp, solves all  three problems with a 
single mechanism.  The basic idea is to define an infinite tower 
of procedural self-nmdels, very much  like mctaci rcular  
in terpreters  [Steele and S u s s m a n  1978b], except connected to 
each other  in a s imple but  critical way. In such an  archi tecture,  
any aspect  of a procc~s's s ta te  tha t  can be described in t e rms  of 
One theory can be rendered explicit, in program accessihle 
s t ructures .  Fur thermore ,  as we will see, this  apparent ly  infini te 
archi tecture can be finitely implemented.  

The archi tecture allows the user  to define complex 
p rogramming  constructs  {such as escape operators,  deviant  
var iableqmssing protocols, and dehugging  primitives),  by wri t ing 
direct analogues  of those meta l inguis t ie  semant ica l  express ions  
tha t  would normally be used to describe them.  As is a lways  
true in semant ics ,  the  metatheoret ie  descript ions m u s t  be 
phrased in te rms  of some part icular  se t  of concepts; in this  case 
I have  used a theory of Lisp ba:;ed on env i ronmen t s  and  
continuations.  A 3-Lisp program, therefore, a t  any  point  dur ing  
a computation,  can obtain representa t ions  of the  env i ronmen t  

Permission to copy without fee all or part of this material is granted 
provided that the copi~ are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1983 A C M  0 - 8 9 7 9 1 - 1 2 5 - 3 / 8 4 / 0 0 1 / 0 0 2 3  $ 0 0 . 7 5  

and cont inuat ion char;wtcris ing the  s ta te  of the computat ion at  
tha t  pui,~t. Thus ,  such constructs  as t tmow and C,~TCII, which 
mus t  otherwise be providt,d primitively,  can in 3-Lisp be easily 
defined a:; user  procedures (and defined, fur thermore ,  in code 
tha t  is ~,!most isomorphic to the ~-calculus. equat ions  one 
normally writes, in the metalal'$,3~a!,'c, to describe them). And 
all this  can be dolte wi lhout  wri t ing the ent ire  program in a 
centinuation-pas:;iz~g :~tyle, o!' the  sort  illu,;trated in [Steele 
197til. The  point is no!. to decide at  the  outse t  what  should and 
what  should not  be explicit (in Steele 's example,  con t inua t ions  
mus t  be passed arouml explicitly from the hcgim, ing). Rather ,  
the retlective archi tecture provides a method of mak in g  some 
aspects of the computat ion explicit, r ight  in the midst  of a 
computat ion,  even if they were implicit a m o m e n t  earlier. It  
provides a mech 'mism,  in other wo~'ds, of reaching up and 
"pull ing information out  of the  sky" when unexpected 
c i rcumstances  war ran t  it, wi thout  hav ing  to worry about  it  
otherwise.  

The overall claim is tha t  retlection is s imple to build on a 
semant ica l ly  sound hase, where  ' semant ica l ly  sound '  m e a n s  
more than  tha t  the  semant ics  be earefl~lly formulated.  Rather,  I 
a s sume  th roughout  tha t  computa t ional  s t ruc tu res  have  a 
semant ic  significance tha t  t ranscends  their  behavioural  import  
- -  or, to put  th is  another  way, tha t  cmnputa t inna l  s t ruc tu res  are  
about something,  over anti above the effects they have on the  
sys tems  they inhabit .  Lisp's Nft. for example ,  not only 
ev~tluates to itself forever, but  also (and somewhat  
independently)  s t ands  for Falsehood. A reconstruct ion of Lisp 
semant ics ,  therefore, mus t  deal explicitly with both declarat ive 
and procedural ospects of the  overall  significance of 
computat ional  s t ructures .  This  dist inction is different from 
(though I will coutras t  it with)  the  dis t inct ion between 
operalional and denotat ional  semant ics .  It is a reconstruct ion 
has  boca developed within a view tha t  p r o g r a m m i n g  l anguages  
are properly to be understood in the  same  theoretical  te rms  used 
to ana lyse  not only other  computer  languages ,  but  even na tu ra l  
languages .  

This  approach forces us  to d i s t inguish  between a s t ruc ture ' s  
wdue and wha t  it re turns ,  and to discr iminate  enti t ies,  like 
numera l s  and numbers ,  t ha t  are isomorphic but  not  identical 
(both ins tances  of the  general  intel lectual  hygiene  of avoiding 
use /men t ion  errors). Lisp's basic notion of evaluat ion,  I will 
argue,  is confused in th is  regard,  and should be replaced with 
independent  notions of designat ion and  simplification. The 
resul t  is i l lustrated in a semantically rationalised dialect, called 
2-Lisp, based on a s implifying (designat ion-preserving)  term- 
reducing processor. The point  of defining 2-Lisp is tha t  the  
reflective 3-Lisp can be very s imply defined on top of it, whereas 
defining a reflective version of a non-rat ionalised dialect would 
be more cmnplicated and more difficult to unders tand .  

The s t ra tegy of present ing  a genera l  archi tecture  by 
developing a concrete ins tance  of it was selected on the  grounds  
tha t  a gemfine theory of reflection (perhaps analogous to the  
theory of rccursion) would be difficult to mot iva te  or defend 
without  t ak ing  this  first, more pragtnatic,  step. In  section lO, 
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however, we will sketch a general  "recipe" for adding reflective 
capabili t ies to any serial language;  3-Lisp is the  resul t  of 
applying this  conversion process to the  non-reflective 2-Lisp. 

It is somet imes  said tha t  there are  only a few con'~truc~.s 
fi'om which l anguages  are a,~sembled, ihcluding for example  
predicates, terms,  functions,  composition, recursion, abstract ion,  
a branching eulnctor, end quantif icat ion.  Though  differellt from 
Ihe:~e notions (and not  definable iJ~ t e rms  of them),  reflection is 
perhaps  best viewed as a preposed addition to tha t  family.  
Given this view, it  is helpfid to unders tand  relleci.ion by 
compar ing it, ia part icular ,  with L'ecursion - -  a construct  with  
which it sha res  m a n y  features.  Specifically, recursion can seem 
viciously circldar to the  unini t ia ted,  and can lead to confused 
implementa t ions  if poorly understood. The  ma themat i ca l  theory 
ef recursion, however,  underwri tes  our ability to usa reeursion 
in p rogrammiug  l anguages  without  doubt ing  i ts  f undamen ta l  
soundness  (in thct, for many  programmers ,  w i t h o u t  
under s t and ing  much  about  the  formal theory at  all). Reflective 
sys tems,  s imilar ly,  init ial ly seem viciously circular (or a t  leas t  
infinite), and are  difficult to implement  wi thout  an  adequate  
unders tanding .  The in ten t  of th is  paper, however,  is to a rgue  
tha t  reflection is as well-tamed a concept as recursion,  and  
potentially as efficient to use.  Tim long . range  goal is not  to 
force p rog rammers  to unders tand  the intricacies of des ign ing  a 
reflective dialect, bu t  ra ther  to enable them to use  reflection and  
recursion with equal abandon.  

2. M o t i v a t i n g  I n t u i t i o n s  

Before t ak ing  up technical details ,  it will help to lay out  
seme mot ivat ions  and assumpt ions .  First ,  by 'reflection'  in its 
most  general  sense,  I mean  tire ability of an agen t  to reason not  
only introspectively, about  its self and in ternal  t hough t  
processes, bu t  ~.lso external ly ,  about  its behaviour  and s i tua t ion  
in the  world. Ordinary  reasoning is ex te rna l  in a s imple sense; 
the point of reflection is to give an  agen t  a more sophist icated 
s tance from which to consider its own presence in tha t  
embedd:,ng world. There  is a growing consensus  I t ha t  reflective 
abilities underl ie much  of the  plasticity with which we deal with 
the world, both in l anguage  (such as when one says  Did you 
understand uhat I meant?) and in "thought (such as when one 
wenders  how to deliver bad news compassionately).  Common  
sense sugges ts  tha t  reflection enables  u s  to mas te r  new skills, 
cope with incomplete knowledge, define terms,  examine  
assumpt ions ,  review and distill our experiences,  learn  from 
unexpected s i tuat ions,  plan, check for consistency, and recover 
from mistakes .  

In spite of working with reflection in formal l anguages ,  
most of the  dr iving in tu i t ions  about  reflection are  grounded in 
h u m a n  rat ional i ty  and  language.  Steps towards reflection, 
however, can also be found i,l much  of cur ren t  computa t ional  
practice. Debugging sys tems,  trace packages,  dynamic  code 
optimizers, run- t ime compilers,  macros, metaci rcular  
interpreters ,  error handlers ,  type declarations,  escape operators,  
cerements ,  and a variety of other  p rogramming  const ructs  
involve, in one way or another ,  s t ruc tu res  tha t  refer to or deal 
with other ourts  of a computat ional  sys tem.  These  practices 
st~ggest, as a first  step towards a more general  theory,  def in ing 
a l imited and ra the r  intro~,pcctive notion of 'procedural  
reflection': self-referential  behaviour  itJ procedural languages ,  in 
which expressions a re  pr:.marily used iu.,~tructionally, to 
engender  behaviour ,  ra ther  than  assert ional ly,  to make  claims.  
It is the hope tha t  the lessons learned in this  smal le r  task  will 
serve well in the  larger account.  

We ment ioned a t  the outset  t ha t  the  general  task.  in 
defining a reflective system,  is to embed a theory of the  sys tem 
in the  sys tem,  so as  to support  smooth shif t ing be tween 
reasuning directly about  the worhl and  reasoning about  t imt  
reasoning.  Because we are ta lk ing  ef reasoning,  not merely of 
language,  we added aa  additional r equ i r emen t  on this  embedded 
theory, beyond i ts  being descriptive aml true: it m u s t  also be 
what  we will call ca,sally conm,ch.d, so tha t  accounts of objects 
anti events  are tied directly to those objects and events.  Tim 
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causal  relat ionship,  htr therinore,  m u s t  go both ways: fi'om event  
to description, and  from description back to event .  (It is as if we 
were crea t ing  a magic kingdom, where fl'om a cake you could 
automat ica l ly  ge t  a recipe, and  from a recipe you could 
automat ica l ly  ge t  a cake.) In ma thema t i ca l  cases of self- 
reference, inc luding both self-referential  s t a t ement s ,  and  models  
of syn tax  and proof theory, there  is of course no causat ion  a t  all, 
since there is no temporal i ty  or behaviour  (ma themat i ca l  
sys t ems  don't  run).  Causa t ion ,  however,  is cer ta inly par t  of any  
reflective agent.  Suppose, for example,  t ha t  you capsize while 
canoeing th rough  dit/icult rapids,  and swim to the shore to 
figure out wha t  you did wrong. You need a description of wha t  
you were doing a t  the  momen t  the  m i s h a p  occurred; merely  
hav ing  a n a m e  for yoursell ,  or even a genera l  description of 
yourself,  would be use l e~ .  Also, your t h ink ing  m u s t  be able to 
have some effect; no good will come from your mere ly  
con templa t ing .a  wonderful  theory of an  improved you. As well 
as s tepping back and being able to th ink  about  your  behaviour ,  
in e the r  words, you m u s t  also be able to t ake  a revised theo ry .  
and  "dive back in under  it", ad jus t ing  your  behaviour  so as to 
sat isfy the new account.  And finally, we ment ioned  t h a t  when  
you take  the  s tep backwards,  to reflect, you need a place to 
~tand with jus t  the r ight  combination of connection and  
de tachment .  

Computa t iona l  reflective sys tems ,  s imilar ly,  m u s t  provide 
both directions of  causal  connection, and  an appropriate  van tage  
point. Consider, for example,  a debugging  sy s t em tha t  accesses 
stack f rames  and  other  implementa t ion-dependen t  
representa t ions  of processor s tate ,  in order to give the  user  an  
account of what  a program is up to in the  mids t  of a 
computat ion.  First ,  slalck-l'rames and implementa t ion  codes a re  
really jus t  descriptions, in a ra ther  ine legan t  language ,  of the  
state of the  process they  describe. Like any  description, they  
make  explicit some ef  what  was implicit in the  process i tself  
(this is one reason they are useful  in debugging).  Fur the rnmre ,  
because of the na tu re  of implementa t ion ,  they  are a lways  
available,  and  a lways true.  They have  these  propert ies because 
they play a causa l  role ia . .~hever¥ existence el' the  process they  
implement ;  they  therefore au tomat ica l ly  solve the  "event-to- 
description" direction of causal  connection. Second, debugging  
sys tems  m u s t  solve the  "description to real i ty" problem, by 
providing a way of m a k i n g  revised descript ions of the process 
true of tha t  process. They carefully provide facilities for 
a l ter ing the under ly ing state,  based on the  user ' s  description of 
what  tha t  s ta te  should be. Wi thout  this  direction el: causal  
connection, the  debugging  sys tem,  like an  abs t rac t  nmdel, could 
have no effect on the process it  was examining .  And finally, 
p rogrammers  who write debugging  sy s t ems  wrestle wi th  the  
problem of providing a proper van tage  point. In th is  case, 
practice has  been part icular ly atheoretical ;  it is typical to 
ar range,  very cautiously,  fur the debugger  to tiptoe around i ts  
own stack frames,  in order to avoid var iable  c lashes  and  other  
unwanted  interact ions.  

As we will see in developing 3-Lisp, all  of these  concerns  
can be dealt  with in a reflective l anguage  in ways tha t  a re  both 
simple and implementa t ion- independent .  The procedural code in 
the  metac i rcular  processor serves  as the " theory" discussed 
above; the  causal  connection is provided by a m e c h a n i s m  
whereby procedures at  one level in the  reflective tower are  run  
in the  process one level above (a clean way, essent ia l ly ,  of  
enabl ing a program to define subreu t ines  to be rux~ in i ts own 
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Figure 2: A Simple Seman.tic lntepretalion Function 

m~plemeutation). In one sense it is all straightforward; the  
subtlety of 3-Lisp has to do not so much with the power of such 
a mechanism, which is evidi~nt, but with how such power can be 
finitely provided - -  a question we will examine in section 9. 

Some final assumptions. I assume a simple serial model of 
computation, illustrated in Figure 1, in which a computational 
process as a whole is divided into an internal assemblage of 
program and data s tructures collectively called the structural 
field, coupled with an internal  process tha t  examines  and 
manipulates these structures. In computer science this inner  
process (or 'homunculus') is typically called the intelpreter; in 
order to avoid confusion with semantic notions of interpretat ion,  
I will call it  the processor. While models of reflection for 
concurrent systems could undoubtedly be formulated, I claim 
here only that  our particular architecture is general  for calculi 
of this serial (i.e., single processor) sort. 

I will use the term 's tructure '  for e lements  of the structural  
field, all of which are inside the machine, never for abstract  
mathematical  or other "external" enti t ies  like numbers,  
functions, or radios. (Although this terminology may be 
confusing for semanticists  who think of a s t ructure as a model, I 
want  to avoid calling them expressions, since the  la t ter  term 
connotes linguistic or notational entities. The aim is for a 
concept covering both data s t ructures  and internal  
representations of programs, with which to categorize what  we 
would in ordinary English call the structure of the overall 
process or agent.) Consequently, I call metastructural any 
structure that  designates another  structure,  reserving 
metasyntactic for expressions designating linguistic enti t ies or 
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expressmns.- Given our interest  in internal  self-reference, it is 
clear that  both structural  field and processor, as well as 
numbers  and functions and the like, will be par t  of the semantic  
domain. Note tha t  metast ructaral  calculi must  be dist inguished 
from those that  are higher-order, in which terms and arguments  
may designate functions of any degree (2-Lisp and 3-Lisp will 
have both properties). 3 

3. A F r a m e w o r k  for  C o m p u t a t i o n a l  S e m a n t i c s  

We turn, then, to questions of semantics. In the simplest  
case, semantics is taken to involve a mapping, possibly 
contextually relativized, from a syntactic to semantic domain, as 
shown in Figure 2 . . T h e  mapping (,1)) is called an interpretation 
function (to be distinguished, as noted above, from the s tandard 
comlmter science notion of an interpreter). It  is usually specified 
inductively, with respect to the compositional structure of the 
elements of the syntactic domain, which is typically a set of 
syntactic or linguistic sorts of entities. The semantic  domain 
may be of any type whatsoever, including a domain of 
behaviour; in reflective systems it will often include the 
syntactic domain as a proper part. We will use a variety of 
different terms for different kinds of semantic relationship; in 
the general case, we will call s a symbol or sign, and say tha t  s 
signifies d, or conversely that  d is the significance or 
interpretation of s. 

In a computational setting, there are several semantic  
relationships - -  not different ways of characterizing the same 
relationship (as operational and denotational semantical  
~ coun t s  are sometimes taken to be), for example, but  genuinely 
distinct relationships. These different relationships make for a 
more complex semantic framework, as do ambiguit ies in the use 
of words like 'program'. In many settings, such as in purely 
extensional functional programming languages, such distinctions 
are inconsequential. But when we turn  to reflection, self- 
reference, and metastructural  processors, these otherwise minor 
distinctions play a much more important  role. Also, since the 
semantical  thi~ory we adopt will be a t  least  partially embedded 

within 3-Lisp, the analysis will aflbct the formal design• Our 
approach, therefore, will be s tar t  with basic and simple 
intuitions, and to identify a finer-grained set  of distinctions than 
are usually employed. We will consider very brielly the issue of 
how current  programming language semantics  would be 
reconstructed in these terms, but  the complexities involved in 
answering that  question adequately would take us beyond the 
scope of the present  paper. 

At the outset, we distinguish three things: a) the objects 
and events in the world in which a comlmtational process is 
embedded, including both real-world objects like cars and caviar, 
and set-theoretic abstractions like numbers  and functions (i.e., 
we "ldopt a kind of pan-platonic idealism about mathematics}; b) 
the internal  elements, structures, or processes inside the 
computer, including data structures,  l~rogram representations,  
execution sequences and so forth {these are all formal objects, in 
the sense that  computation is formal symbol manipulation}; and 
c) notational or communicational expressions, in some externally 
observable and eonsensually established medium of interaction, 
such as str ings of characters, s t reams of words, or sequences of 
display images on a computer terminal .  The last  set are the 
consP.ituent3 of the communication one has with the 
computational process; the middle are the ingredients of the 
process with which one interacts,  and the first  (at least 
presumptively) are the elements  of the world about which that  
communication is held. In the human case, the three domains 
correspond to world, mind, and language. 

It is a t ruism that  the third domain of objects 
communication elements - -  are semantic. We claim, however, 
that  the middle set are semantic as well (i.e., that  s t ructures  are 
bearers of meaning, information, or whatever). Dist inguishing 
between the semautics of communicative expressions and the 
semantics of internal structures will be one of main features of 
the framework we adopt. It should be noted, however, that  in 
spite of our endorsing the reality of internal structures, and the 
reality of the embedding world, it is nonetheless true tha t  the 
only things that  actually happen with computers (at least  the 
only thing we will consider, since we will ignore sensors and 
manipulators} are communicative interactions. If, for example, I 
ask my Lisp machine to calculate the square root of  2. wha t  I do 
is to type some expression like (SQRr Z.0) at  it, and then receive 
back some other expression, probably quite like I. 414, by way of 
response. '['he interaction is carried out entirely in te rms of 
expressions; no structures, numbers,  or functions are  par t  of the 

• interactional event. The participation or relevance of any of 
these more abstract  objects, therefore, must  be inferred from, 
and mediated through, the communicative act. 

We will begin to analyse this complex of relationships 
using the terminology suggested in Figure 3. By O, very simply, 
we refer to the relationship between external  notational 
expressions and internal structures; by ,1, to the processes and 
behaviours those structural tield e lements  engender  ( thus I, is 
inherently temporal), and by ,1, to the enti t ies  in the world that  
they designate. The relations 4, and t, are named, for mnemonic 
convenience, by analogy with philosophy and psychology, 
respectively, since a study of ,I, is a study of the relationship 
between structures and the world, whereas a study of ,1, is a 
study of the relationships among symbols, all of which, in 
contrast, are "within the head" (of person or machine). 

Computation is inherently temporal; our semantic analysis,  
therefore, will have to deal explicitly with relationships across 
the passage of time. In Figure 4, therefore, we have unfolded 
the diagram of Figure 3 across a unit  of time, so as to get  at a 
full configuration of these relationships. The expressions n I and 
n2 are intended to be linguistic or communicative entities,  as 
described above; Sl and s2 are internal  s t ructures  over which 
the internal processing is defined. The relat ionship o, which we 
will call internalisation, relates these two kinds of object, as 
appropriate for the device or process in question (we will say, in 
addition, that  nl  ,otates sl)• For example, in first-order logic nl  
and n2 would be expressions, perhaps wri t ten with let ters and 
spaces and '3" signs; st  and s2. t~ '~he extent  they can even be 
said to exist, would be something like abstract  der ivat ion tree 
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Figure 3: Sem~lntic Relationships in a Computollonal Process 

types of the  corresponding first-order formulae, hi Lisp, as we 
will see, n I and n 2 would be the input  and output expressions, 
wri t ten with let ters  and parent.hoses, or perhaps with boxes and 
arrows; sl and s2 would be the cons-cells in the s-expre,q.qion 
heap. 

In contrast,  d l  and d 2 are elements  oz" fragments  of the 
embedding world, and 4, is the relat ionship tha t  in ternal  
s tructures bear to them. q~, in other words, is the interpretat ion 
function t h s t  makes explicit what  we will call the designation of 
intern,d s t ructures  (not the designation of linguistic terms, 
which would be described by ~,oO). The relationship between my 
mental  token for T. S. Eliot, for example, and the poet himself,  
would be formulated as par t  of ~, whereas the relat ionship 
between the public name ~I'. S. Eliot" and the poet would be 
expressed as  4~(O("T.S.EI.IOT')) • T.S.I.:I.IOT. Similarly, 4, would 
relate an internal "numeral"  s tructure (say, the numeral  3) to 
the corresponding number.  As mentioned at the outset, our 
focus on ,1, is evidence of our permeat ing semantical  assumption 
tha t  all s t ructures  have designations - -  or, to put  it  another  
way, tha t  the structures are all symbols. 4 

The ~1, relation, in contrast  to O and ~, always (and 
necessarily, becau~  it dosen' t  hove access to anyth ing  else) 
relates some internal  s t ructures  to others, or a t  least  to 
behaviours over them. To the extent  tha t  it  would make sense 
to talk of a '¢ in logic, it  would approximately be the formally 
computed derivability relat ionship (i.e., I-); in a na tura l  
deduction or resolution ~hemee ,  ,I, would be a subset  of the 
derivability relationship, picking out the particular inference 
procedures those regimens adopt. In a computational setting, 
however, ,l, would be the function computed by the  processor 
(i.e., * is evaluation in Lisp). 

The relationships O, ,I,, and q have differeat  relative 
importances in different linguistic disciplines, and different 
relationships among them have been given different names.  For 
example, O is usually ignored in logic, and there is little 
tendency to view the study of ~', called proof theory, as  
semantical,  al though it is always related to semantics,  as in 
proving soundness and completsner~ (which, incidentally, can be 
expressed as  the equation ~,(Sl,S 2) m [ dl  ~ d2 ]. if one takes ,If 
to be a relation, and <, to be an inverse satisfaction relationship 
between sentences and possible worlds tha t  satisfy them). In 
addition, there  are a variety of "independence" claims tha t  have 
arisen in different fields. That  ,I, does not uniquely determine 4,, 
for example, is the "psychology narrowly construed" and 
col~comitant methodological solipsism of Putnam,  Fodor, and 
others [Fodor 19801. That  O is usually specifiable 
compositionally and independently of 4, or • is essentially a 
s ta tement  of the autonomy thesis  for language. Similarly, when 
0 cannot be ~pecified indepently of ,I,, computer science will say 
tha t  a programming language "cannot be parsed except a t  
runt ime" (Teco and the first  versions of Small talk were of this  
character). 

A thorough analysis  of these semantic  relationships, 
however, and of the relationships among them, is the subject of 
a different paper. For present  purposes we need not  take a 
stand on which of O, q', or • has a prior claim on being 
semantics, but  we do need  a little terminology to make sense of 
it  all. For discussion, we will refer to the  "~" of a s t ructure as 
its declaratit~e import, and to its "q," as i ts  procedural 

Figure 4: A Fra mework for Computational Semantics 

consequence. It is also convenient to identify some of the 
situations when two of the six enti t ies (nt,  n2, s l ,  s2, all, and 
do) are  identical. In particular, we will say tha t  sl  is self- 
referential if dl  • sl,  tha t  ,I, de-references s! if  s2 ffi dr,  and tha t  
• is designatioa.preser~iag (at s t )  when d t • d 2 (as it  always is, 
for example, in the ~,-calculus, where t, - -  a- and #-reduction 
do not a l t e r  the interpretation in the s tandard model). 

I t  is natural  to ask what  a program is, what  programndng 
language semantics  gives an account of, and how (this is a 
related question) • and ,Z, relate in the programming language 
case. An adequate answer to this, however, introduces a maze 
of complexity tha t  will be considered in future work. To 
appreciate some of the difficulties, note tha t  there are two 
different ways in which we can conceive of a program, 
suggesting different semantical  analyses. On the one hand, a 
program can be viewed as a linguistic object tha t  de~riboa or 
signifies a computational process consisting of the data  
structures and activities that  result  from (or arise during) its 
execution. In this sense a program is primarily a 
communicative object, not so much playing a role within a 
computational process as exist ing outside the process and 
representing it. Put t ing aside for a moment  the  question of 
whom it is mean t  to communicate to, we would simply say tha t  
a program is in the domain of O, and, roughly, tha t  ~oO of such 
an expression would be the computation described. The same 
characterization would of course apply to a specification; indeed, 
the only sal ient  difference might  be tha t  a specification would 
avoid using non-effective concepts in describing behaviour. One 
would expect specifications to be stated in a declarative 
language (in the sense defined in footnote 4), since specifications 
aren' t  themselves to be executed or run, even though they speak 
about behaviours or computations. Thus, for program or 
specification b describing computational process c, we would 
have (for the re levant  language) something like ~(O(b) l  - c. If 
b were a program, there would be an additional constraint  tha t  
the program somehow play a causal role in engendering the 
computational process c tha t  i t  is taken to describe. 

There is, however, an al ternat ive conception, tha t  places 
the program inside the machine as a causal part icipant  in the 
bchsviour that  results.  This view is closer to the one implicitly 
adopted in Figure 1, and it is closer (we claim) to the way in 
which a Lisp program must  be semantically analysed, especially 
if we are  to understand Lisp's emergent  reflective properties. In 
some ways this different view has  a yon Neuman character,  in 
the sense of equating program and data. On this view, the more 
appropriate equation would seem to be ¢/(O(b)) --e,  since one 
would expect t he  .processing of the program to yield the  
appropriate behaviour. One would seem to have to reconcile 
this equation with tha t  in the  previous paragraph; something i t  
is not clear it  is possible to do. 

But  this will require fur ther  work. What  we can say here 
is tha t  programming language semantics seems to focus on 
what,  in our terminology, would be an  amalgam of q' and @. 
For our purposes we need only note tha t  we will have to keep q, 
and • strictly separate,  while recognising (because of the context 
relativity and nonlocal effects) tha t  the two parts  cannot be told 
independently. Formally, one needs to specify a general 
significance function Z, that  recursively specifies • and 
together. In particular,  given any structure Sl, and any state  of  
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the  processor and  the  rest of the  field (encoded, say, in an  
envi ronment ,  continuat ion,  and perhaps a store), ~ will specify 
the  s t ructure ,  configuration, and s tate  tha t  would resul t  (i.e., i t  
will specify the use of st) ,  and also the relat ionship to the  world 
tha t  Sl signifies. For example,  given a I,isp s t ruc ture  o£ the  
form (÷ I (PRO~ (SZTQ A 2) A)), X would specify tha t  the  whole 
s t ruc ture  designated the  number  three,  tha t  it would re turn  the  
numera l  3, and tha t  the  machiue  would be left in a s ta te  in 
which the binding of the  variable A was changed to the  n u m e r a l  
z. 

Before leaving semant ics  completely, it  is ins t ruct ive  to 
apply our various dist inct ions to tradit ional  Lisp. We said 
above tha t  all interaction with computat ional  processes is 
mediated by cmnmunicat ion;  this  can be s ta ted in th is  
terminology by not ing  tha t  O and  O "t (we will call the  la t te r  
e.rternalisation) are a par t  of any interaction. T h u s  Lisp's "read- 
eval-print" loop is mirrored in our ana lys i s  as an  i terated 
version of O'1o*oO (i.e., if n j  is an  expression you type a t  Lisp, 
then  n 2 is o ' l ( * ( O ( n l l ) ) ) .  The Lisp s t ruc tura l  field, as it  
happens,  has  an  extremely s imple compositional s t ructure ,  based 
on a binary directed graph  of atomic e l emen t s  called cons-cells, 
extended with atoms,  numera ls ,  and so forth. The l inguist ic  or  
communicat ive expressions tha t  we use to represent  Lisp 
programs - -  the  formal language  objects t ha t  we edit with  our  
editors and pr int  in books and on t e rmina l  screens  - -  is a 
separate  lexicai (or somet imes  graphical)  object, with i ts  own 
syntax  (of parentheses  and identif iers in the  lexical case; or 
boxes and arrows in the graphical).  

There is in Lisp a relatively close correspondence between 
expressions and s t ructures;  it  is one-to-one in the  graphical  case, 
but  the  s tandard  lexical notat ion is both ambiguous  (because of  
shared tails) and incomplete (because of its inabil i ty to 
represent  cyclical s t ructures) .  The correspondence need not  
have been as close as it is; t he  process of conver t ing from 
external  syn tax  or notat ion to in terna l  s t ruc ture  could involve 
arbi t rary amoun t s  of computat ion,  as evidenced by read macros  
and other  syntactic or notat ional  devices. But  the impor tan t  
point is t ha t  it is s t ruc tura l  field e lements ,  not  notat ions,  over 
which most  Lisp operations are  defined. If you type 
(RPLACA '(A . e I ' e l ,  for example,  the  processor will change  the  
CAR of a field s t ructure;  it will not  back up your  t e rmina l  and  
erase the  eleventh character  of your  im~ut exvreseion.  
Similarly,  Lisp a toms are  field element% not to be confused with 
their lexical representa t ions  (called P .names) .  Again,  quoted 
forms like (QUOTE AOC) designate  s t ruc tura l  field e lements ,  not  
input  s t r ings.  The  form (QUOrE ...), in other  words, is a 
s t ruc tura l  quotat ion operator; notat ional  quota t ion  is different,  
usual ly  notated with s t r ing  quotes  ('ABe'). 5 

4. E v a l u a t i o n  C o n s i d e r e d  H a r m f u l  

The claim tha t  all three  re la t ionships  (O, ~, and  ,v) f igure 
crucially in :m account of Lisp is not  a formal one. It m a k e s  a n  
empirical claim on the minds  of programmers ,  and  cannot  be 
sett led by point ing to any cur ren t  them'ies or implementa t ions .  
Nonetheless ,  it  is una rguab le  tha t  l , isp's numera l s  des ignate  
numbers ,  and  tha t  the  a toms T and NIL (at  leas t  in predicative 
contexts) des ignate  t ru th  and  falsi ty - -  no one could learn  Lisp 

"l~ree "lhrce Tmthl  x 

Falsityl a th nction 

Figure 5: L I S P  Evaluation vs. Designation: Some Examples 
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Figure 6: LISP's "De-reference I f  You Call" Evalunlion Protocol 

without  learn ing  Lhis fact. Similarly,  (EQ 'A '8) des igna tes  
falsity. Fur thermore ,  the s t ruc ture  (CAR '(A . n i l  des igna tes  
the a tom A; this  is manifes ted by the fact t ha t  people, in 
describing Lisp, use expressions such as "i£ the  C^lt of the  list  is 
I At~nOA, tl~cn it 's a procedure", where the  te rm "the CAR of the  
list" is used as an  Engl ish referring expression,  not as  a quoted 
f ragment  of Lisp (and English,  or na tura l  l anguage  general ly,  is 
by definition the  locus of what  des ignat ion is). (ouorE A), or 'A, 
is ano ther  way of des ignat ing  the atom A; tha t ' s  j u s t  wha t  
quotat ion is. Finally,  we can take a toms  like CAR and ÷ to 
designate  the obvious functions. 

What ,  then,  is the relat ionship he tween the declarat ive 
import  (,I,) of Lisp s t ruc tures  and their  procedural  consequence 
(,v)? Inspection of the  da ta  given in Figure  5 shows t ha t  Lisp 
obeys the following constra int  (more m u s t  be said about  * in 
those cases for which ~ ( * ( s ) )  = ,P(s), since the  identi ty funct ion 
would sat isfy this  equation): 

VS E ,S'[ i f  [~P(SlC S ]  then [¢ / (S)  = 4b(S) ] (1) 
else [ '~ (¢ / (S) )  = 4) (S) I ]  

All Lisps, including Scheme [Steele and  S u s s m a n  1978a], in 
other words, dereference any  s t ruc ture  whose des ignat ion  is 
another  s t ructure ,  bu t  will re tu rn  a co-designat ing s t ruc ture  for 
any whose designat ion is outside of the mach ine  (Figure  6). 
Whereas  evaluat ion is often though t  to correspond to the  
semant ic  interpretat ion function q,, in other  words, and  
therefore to have type EXeRESSIONS -~ VALUES, evalua t ion  in Lisp 
is often a designat ion-preserving operation. In fact no computer  
can evalua te  a s t ruc ture  like (~ 2 3), if t ha t  m e a n s  r e tu rn ing  
the designat ion,  any  more than  it can eva lua te  the  n am e  
Ilesperus or peanut b, t ter.  

Obeying equat ion ( t )  is h ighly  anomolous.  It  m e a n s  t h a t  
even if one knows what  Y is, and knows X eva lua tes  to Y, one 
still doesn' t  know what  X designates .  It l icences such semant ic  
anomal ies  as  (÷ I ' z ) ,  which will eva lua te  to 3 in all ex t an t  
Lisps. Informally,  we will say  tha t  Lisp's eva lua te r  crosses 
semantical levels, and therefore o h ~ u r e s  the  difference between 
simplification and  designat ion.  Given t ha t  processors cannot  
a lways de-reference (since the  co-domain is l imited to the  
s t ruc tura l  field), it serous they should a lways  simplify, and  
therefore obey the  following cons t ra in t  (d iagrammed in Figure  
7): 

VS E S [ , b ( * ( s ) )  : ,P(S) A NOIINAL-FORM(~P(S))] (2) 

The content  of this  equat ion clearly depends  ent irely on the  
content of the predicale'NonHAL-rOaN (if ~ORĤ L-rOnN were kx. true 
then * could be the identi ty function). In the  k-calculus, the  

~ / normal form 

Figure 7: A Normalisat ion Protocol 
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notion of normal- formedness  is defined in t e rms  of the  
processing protocols (~- and p-reduction), bu t  we cannot  use  t h a t  
definit ion here,  on th rea t  of circularity.  Instead,  we say  tha t  a 
s t ruc ture  is in normal  iorm if and only if it sat isf ies  the  
following three  independent  conditions: 

1. It is context-independent, in the  sense  of hav ing  the  s ame  
declarat ive (,I,) and procedural (,1,) import  independent  of 
the context  of use; 

2. It is side-effect-free, implying tha t  the  processing of the  
s t ruc ture  will have  no effect on the  s t ruc tura l  field, 
processor s tate ,  or external  world; and 

3. It is stable, mean i ng  tha t  it m u s t  normal ise  to i tself  in all  
contexts,  so tha t  * will be idempotent .  

We would then  have  to prove, given a l anguage  specification, 
t ha t  equat ion (2) is satisfied. 

Two notes. First ,  I won't  use the  t e rms  ' eva lua te '  or 
'value '  for expressions or s t ruc tures ,  referr ing ins tead to 
normalisation for *,  and designrttion for ¢. I will somet imes  call 
the resul t  of normul is ing  a s t ruc ture  its result or what  it  
retur~ts. There  is also a problem with the t e rms  'apply'  and  
'application';  in s t andard  Lisps, APPLY is a funct ion from 
s t ruc tures  and a r g u m e n t s  onto values,  bu t  i ts  use,  l ike 
"evaluate' ,  is rife with u se /men t ion  confusions.  As i l lus t ra ted in 
Figure 8, we will use  'apply'  for ma thema t i ca l  funct ion 
application - -  i.e., to refer to a relat ionship between a function,  
some a rgumen t s ,  and the  value of the function applied to those  
a r g u m e n t s  --- and the  te rm 'reduce'  to relate the  three  
expressions tha t  des ignate  functions,  a rgumen t s ,  and values,  
respectively. Note tha t  I still use the  te rm 'va lue '  (as for 
example in the  previous sentence),  bu t  only to name  t ha t  ent i ty  
onto which a function maps  its a rgumen t s .  

Second, the  idea of a normal i s ing  processor depends  on the  
idea tha t  symbolic s t ruc tures  have  a semant ic  significance prior 
to. and independent  at: the  way in which they are  t reated by 
the processor. Wit lmut  th is  a s sumpt ion  we could not even ask  
about  the  semant ic  charac ter  of the  Lisp (or any  other)  
processor, let alone sugges t  a cleaner  version. Wi thout  such an  
assumpt ion,  more generally,  one cannot  say tha t  a given 
processor is correct, or coherent,  or incoherent;  it is merely wha t  
it is. Given one account of what  it does (like an  
implementat ion) ,  one c~n compare tha t  to ano ther  account (like 
a specification). One can also prove t ha t  i t  has  cer ta in  
properties, such as tha t  it a lways  te rmina tes ,  or uses  resources  
in certain ways. One can prove properties of programs wri t ten  
in the l anguage  it r uns  (from a specification of the  ALGOL 
processor, for example,  one mi gh t  prove tha t  a par t icu lar  
t)rogram sorted its input).  However none of these  ques t ions  deal  
with the  fundamen ta l  quest ion about  the  semant ica l  na tu re  of  
the processor itself. We are not looking for a way in which to 
say tha t  the  semant ics  of (CA~ ' (a  . s ) )  is A because t h a t  is how 
the language  is defined; ra ther ,  we wan t  to say  tha t  the 
l anguage  was defined t ha t  way because A is wha t  (CAR ' (^  . 8)) 
designates .  Semantics ,  in other words, can be a tool with which 
to judge sys tems ,  not  merely a method of describing them. 

5. 2-Lisp: A S e m a n t i c a l l y  R a t i o n a l i s c d  Dia l ec t  

Since we lmve torn apar t  the notion of ewduat ion  into two 
cons t i tuent  notions, we mus t  s t a r t  at  the  beginning  and  build 
Lisp over again.  2-Lisp is a proposed result .  Some s u m m a r y  
comments  can be made.  Firs t ,  I have  reconstructed wha t  I call 
the  category structure of Lisp, requi r ing  tha t  the categories into 
which Lisp s t ruc tures  are sorted, for var ious  purposes, l ine up 
(giving the  dialect  a property called category alignment). More 
specifically, Lisp expressions are  sorted into categories by 
notat ion,  by s t ruc ture  (atoms, cons pairs, numera ls ) ,  by  
procedural t r e a tmen t  (the "dispatch" inside EVAL), and  by 
declarat ive semant ics  (the type of object designated).  
Tradit ionally,  as i l lustrated in Figure  9, these  categories are  not  
aligned; lists,  a derived s t ruc ture  type, include some of the  pairs  
and one a tom (Nzt); the  procedural  reg imen  t reats  some pairs  
(those with LAMSDA in the  CAR) in one way, most  a toms (except T 
and ~It) in another ,  and so forth. In  2-Lisp we require  the  
notational,  s t ruc tura l ,  procedural,  and  semant ic  categories to 
correspond one-to-one, as  shown in Figure  l0 (this is a bit  of an  
oversimplification, since a toms and pairs  - -  r epresen t ing  
arbi t rary  var iables  and  arbi t rary  funct ion application s t ruc tu res  
or redexes - -  can des ignate  ent i t ies  of any  semant ic  type). 

A s u m m a r y  of 2-Lisp is given in Figure  11, bu t  some 
comments  can be made  here. Like most  ma themat i ca l  and  
logical l anguages ,  2-Lisp is a lmost  entirely declarat ively 
extensional .  T h u s  (+ 1 z), which is an  abbreviat ion for 
(+ . [ t  2]), des igna tes  the  value of the  application of the  
function des ignated  by the a tom + to the  sequence of n u m b e r s  
designated by the  rail  f l  2]. In other words (+ I z) des igna tes  
the n u m b e r  three,  of whici~ the n u m e r a l  3 is the  normal-form 
designator;  (÷ 1 2) therefore normel ises  to the numera l  3, as  
expected. 2-Lisp is also usua l ly  call-by-value (what  one can  
th ink  of as "procedurally extensional"),  in the  sense  tha t  
procedures by and  large  normal ise  the i r  a rgumen t s .  Thus ,  
(+ ! (BLOCK (PnZNT "hel lo' )Z)  will normal i se  to 3, p r in t ing  
'hello ° in the  process. 

Many properties of Lisp tha t  m u s t  normal ly  be posited in 
an  ad hoc way fall ou t  directly from our analysis .  For example,  
one m u s t  normally s ta te  explicitly tha t  some atoms,  such as v 
and NZL and the  numera l s ,  a re  self-evaluating;  in 2-Lisp, the  fact 
t ha t  the  boolean cons tan ts  a re  se l f -normal is ing follows directly 
from the  fact t ha t  they  are normal  form designators .  Similarly,  
closures are  a na tu ra l  category, and  d is t inguishable  from the  
functions they des igna te  ( there is ambigui ty ,  in Scheme, as to 
whether  the  value  of + is a function or a closure). Finally,  
because of the  category a l ignment ,  if x des igna tes  a sequence of 
the  first three  number s  (i.e., it is bound to the  rail  [z 3]), then  
(+ . x) will des ignate  five and  normal i se  to 5; no metatbeoret ic  
m.'zchinery is needed for this  "uncur ry ing"  operation (in regular  
Lisp one m u s t  use (APPLY '+ X); in Scheme, (aPPLY ÷ X)). 

'[ 'here are numerous  properties of 2-Lisp tha t  we will 
ignore in th is  paper. The  dialect is defined (in [Smith 82]) to 
izmlude side-effects, in te | | s ional  procedures ( tha t  do not  
uot~nalise thei r  a rguments ) ,  and a var ie ty  of o ther  somet imes-  
shunned  properties, in par t  to show tha t  our semant ic  
reconstruction is compatible with the  full g a m u t  of fea tures  
found in real  p rog ramming  languages .  Reeursion is handled 
with explicit fixed-point operators. 2-Lisp is an  eminen t ly  ' 
usable dialect (it s u b s u m e s  Scheme bu t  is nmre  powerful, in 
par t  because of the  me t^s t ruc tu ra l  access to closures), a l though  
it is ru th less ly  semant ica l ly  strict.  

6. S e l f - R e f e r e n c e  i n  2 . l , i sp  

We tu rn  now to ma t t e r s  of ~elf-reference. 
Tradi t ional  I,isps provide names  U=V^L and APPLY) for the  

pr imit ive proce&~or procedures; the 2-Lisp ana logues  a re  
UORHALZSF and n[DUCE. Ignoring for a m o m e n t  context a rgument~  
such as env i ronmen t s  and continuat ions,  (I~OR~ALISE '(÷ Z 3) ) 
des ignates  the normal-form s t ruc ture  to which" (÷ z 3) 
normal iscs ,  and therefore r e tu rns  the  handle  '5. Similarly,  
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Figure I 1: A n Overview of  2-Li~p 

We begin with the objects. Ignoring i npu t / ou tpu t  
categories such as characters ,  s t r ings,  and  s t reams ,  the re  are  
seven 2-Lisp s t ruc ture  types, as  i l lus t ra ted  in Table 1. The  
numerals (notated as usual )  and  the  two boolean cons tan t s  
(notated 'ST' and '$f') are un ique  (i.e., canonical), atomic, 
normal-form designators  of n u m b e r s  and t ru th-va lues ,  
respectively. Rails (notated '[A~ Az ... AA]') des ignate  sequences;  
they resemble s tandard  Lisp lists, bu t  we d i s t ingu ish  t hem from 
pairs in order to avoid category confusion, and give t h e m  their  
own name,  in order to avoid confusion with sequences  (or 
vectors or tuples), which are  normal ly  t aken  to be platonic 
ideals. All atoms are  used as  var iables  (i.e., as  context- 
dependent  names);  as  a consequence,  no a tom is normal-form, 
and no a tom will ever be re turned  as the  resu l t  of  processing a 
s t ruc ture  (a l though a des ignator  of  it may  be). Pairs 
(somet imes also called redexes, and notated '(A~ . Az)') des igna te  
the value  of the  function des ignated  by the CAR applied to the  
a r g u m e n t s  designated by the  CDR. By t ak ing  the  nota t ional  
form '{A~ Az ... A~)' to abbrevia te  '(A 1 . I:A z Aa ... Akl)' ins tead  of 
'(A~ . (Az . ( ... (A~ .NIL).. .))) ' ,  we preserve the  s t andard  look 
of Lisp programs,  wi thout  sacrificing category a l ignment .  (Note 
tha t  in 2-Lisp there is no d is t inguished  a tom NIL, and  *()' is a 
notational error ~ corresponding to no s t ruc tura l  field e lement . )  
Closures (notated '(CLOSURE: ... }') are normal-form function 
designators, but they are not canonical, since it is not generally 
decidable whether two structures designate the same function. 
Finally, handles are unique normal-form designators of all 
structures; they are notated with a leading single quote mark 
(thus "'A' notates the handle of the atom notated 'A', "(A . St' 
notates the handle of the pair notated '(A . s)', etc.). Because 
designation and simplification are orthogonal, quotation is a 
structural primitive, not a special procedure (although a QUOTE 
procedure is easy to define in 3-Lisp). 

We turn next to the functions (and use '~' to mean 
'normalises to'). There are the usual arithmetic primitives (+, -, 
• . and /). Identity (signified with =) is computable over the fall 
semantic domain except functions; thus (- 3 (+ I z)) =* ST, but 
(= + (LAMOOA [X] (+ X X)))will generate a processing error, even 
though it designates truth. The traditionally unmotivated 
difference between E0 and EOUAL turns out to be an expected 
difference in granularity between the identity of mathematical 
sequences and their syntactic designators; thus: 

(= I t  2 3]  [-1 z 3 ] )  = ,  Sr 
(= ' [ I  Z 3] ' [1 2 3])  =~ $F 
(= (z z 3]  ' [ I  z 3 ] )  =~ $F 

(In the  las t  case one s t ruc ture  des igna tes  a sequence and  one a 
rail.) IST and REST are the CAR/CDR ana logues  on sequences  and 
rails; thus ,  ( t a t  It0 20 30]) ~ t0; (REST El0 20 30~]) ~ r20 30]. 
CAR and CaR are  defined over pairs; t hus  (CAR ' ( a  . S)) ~ 'A 
(because it designates A), and (COR '(+ 1 2)) = ' [1 z]. The  pair 
constructor  is called PC0NS ( thus  (PCONS 'A 'a)  ~ ' (A . a)); the  

corresponding constructors  for atoms,  rails, and closures are  
called AEONS, aeONS, and CC0NS. There  are 11 pr imit ive  
characterist ic  predicates, 7 for the in ternal  s t ruc tura l  types 

(AlOM, PAll|, RAIl., i;OOLEAN, NUMERAL, CLOSURE, and IIAFJDLE) and 4 fo~ 
the externa l  types (NUMBER, TRurtI-VALUE, SEOUENCE, and FuNcrIo~J). 
Thus:  

(NUMOER 3) ~ $T 
(NUMERAL '3 )  =~ ST 
(NUMBER '3 )  ~ Sf 
(FUNCTION +l ==> ST 
(FUBCTION '*)  =-~ Sf 

Procedurally intensional  IF and CONO are defined as  usual ;  BLOCK 
(as in Scheme) is like s tandard  Lisp's PROGN. BODY, PATTERN, and  
fNVta0NMENT are the  three selector funct ions on closures. 
Finally,  funct ions  are usua l ly  "defined" (i.e., convenient ly  
designated in a contextual ly  relative way) with s t ruc tu res  of the  
tbrm (LAM8OA SIMPLE AReS BOOY) (the keyword SIMPLE will be 
explained presently); thus  (LAMBDA SIMPLe IX]  (+ X Xl l  r e t u rn s  a 
closure tha t  des igna tes  a function tha t  doubles numbers ;  
((LAblBflA SIMPLE IX]  (+ X X)) 4) ~ 8, 

2-Lisp is h igher  order, and therefore lexically seeped, like 
the X-calculus and  Scheme. However, as  ment ioned earl ier  and;  
i l lustrated with the handles  in the  previous paragraph,  it  is also 
metas t ruc tura l ,  providing an  explicit abil i ty to name  in terna l  
s t ructures .  Two primit ive procedures, called uP and  DOWN 
(usual ly notated with the arrows %' and  "C) help to mediate  th i s  
metas t ruc tu ra l  h ie rarchy  (there is otherwise no way to add or 
remove quotes; ~z will normal ise  to "2 forever, never  TO z). 
Specifically, tSTAVC des igna tes  the normal~form des ignator  of the  
designat ion of SrRUC; i.e., tSreUC des igna tes  what  STRUC 
normalises  to (therefore t(+ z 3 ) ~  's). Thus:  

(LAMBDA SIMPLE IX] X) des ignates  a function, 
' (LAMaDA S I MPLE [ X ] X) des igna tes  a pair or redex, and  
t(LAMODA SIMPLE [xJ x) des ignates  a closure. 

(Note tha t  ' t '  is call-by-value but  not  declarat ively extensional . )  
Similarly, ~sTeuc des ignates  the des ignat ion of the  des ignat ion  
of STROC, providing the  designat ion of STRUC is in normal-form 
(therefore * '2 ==* z). ~,*STRUC is a lways equiva lent  to SrRoc, in 
terms of both designat ion and  result ;  so is t~.srRvC when it is 
defined. Thus  if 00URLE is bound to (the resul t  of normal is ing)  
(I^MBO^ IX] (* x x)), then (BODY OOURLE) generates an error, 
since BODY is extensional  and DOUBLE des igna tes  a function, b u t  
(RODe tDOUrJLE) will des ignate  the  pair (+ x x). 

Type Designq/ion Norm,d Canonical Notation 

Numera l s  Numbers  Yes Yes - -  digits 
Booleans Tru th -Va lues  Yes Yes - -  ST or SF 
Handles  S t ruc tures  Yes Yes - -  ' STRUC 
Closures Funct ions  Yes No CC0NS (closure} 
Rails Sequences Some No RC0NS [STRUC... srRv~ 
Atoms (,~ of Binding)  No - -  AC0NS alphamerics 
Pairs  (ValueofApp. )  No - -  PCONS (STRUC. STRUC 

Table 1: The 2-LISP(and 3-LISP) Categories 
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Figure 12: Meta-Circtdar Processors 
. !  

(NORgAL[SE '(CAR ' (A  . B ) ) )  ~ ' ' A  
(NORNALISE (PCONS '= ' [ 2  3 ] ) )  =~ '$1 r 
(REDUCE ' IST '[~10 20 30] )  =*, '10. 

More generally,  the basic idea is t ha t  ~(NOIIMALISE) • ~, tO be 
contrasted with o(~,), which is approximate ly  o, except t ha t  
because ,t is a part ial  function we have  @(~, o NORHALISE) = ~. 
Given these  equat ions,  the  behaviour  i l lus t ra ted in the  
foregoing examples  is forced by genera l  semant ica l  
considerations.  

In any  computat ional  formal ism able to model i ts  own 
syntox and  ~structures, 6 it is possible to cons t ruc t  wha t  a re  
commonly known as  metacircular interpreters, which we call 
, lelacireular processors (or MCPs) ~ "meta"  because they  
operate on (and therefore t e rms  wi th in  t hem des ignate)  o ther  
formal s t ructures ,  ~nd "circular" because they do not  const i tu te  
a definition of the  processor. They are  circular  for two reasons.  
First,  they have  to he run  by t ha t  processor in order to yield 
any  sor t  of behaviour  (since they are  programs,  not  processors, 
strictly). Second, the  behaviour  they would thereby engender  
can be known only if  one knows beforehand wha t  the  processor 
does. (Standard techniques  of fixed points, fu r thermore ,  are  of 
no help in d ischarging th is  circulari ty,  because th is  kind of 
modell ing is a kind of ~ l f -men t ion ,  whereas  reeurs ive  
definitions are more ~ l f -use . )  Nonetheless ,  such processors are  
pedagogically i l luminat ing ,  and play a critical role in the  
development  of procedural reflection. 

The  role of MCPs is i l lustrated in Figure  12, showing how, 
if we ever replace P in Figure  1 with a process tha t  resul ts  from 
P processing the  metaci rcular  processor MCP, it  would ~till 
correctly engender  the  behaviour  of any  overall  program.  
Tak ing  processes to be funct ions from s t ruc tu res  onto behaviour  
(whatever  behaviour  is - -  [ 'unctions from initial to final s ta tes ,  
say), and  call ing the  primit ive processor P, we should be able to 
prove that.  P(MCP) = P, where by '=" we mean  behavioura l ly  
equivalent  in some appropriate  sense.  The  equivalence is, of 
course, a global equivalence; by and large the  pr imit ive 
processor and  the  processor resu l t ing  from the  explicit  r u n n i n g  
of the MCP cannot  be arbi t rar i ly  mixed. If a variable is bound 
by the  under ly ing  processor P, it will not  be able to be looked up 
by the  metaci rcular  code, for example,  Similarly,  if the  
metaci rcular  processor encounters  :: control-s t ructure  pr imit ive,  
such as  a Till'tOW or a 0ni l ,  it wid not cause  the  metac i rcu la r  
processor itself to exit  p remature ly ,  o t t o  te rmina te .  The  point, 
ra ther ,  is t ha t  if an  ent ire  computa t ion  is run by the  process 
tha t  resu l t s  from the  explicit prece.~qing of the  MCP by P, the  

resul ts  will be tbe same  (modulo t ime) as i f  tha t  ent i re  
computat ion had been carried out  directly by P. MCPs are  not  
causal ly  connected with the sys t ems  they model. 

The reason tha t  we cannot  mix code for the  under ly ing  
processor and cede for the  MCI ) and the r e a ~ a  tha t  we ignored 
context  a r g u m e n t s  in the defini t ions above both have  to do with 
the  s ta te  of  the processor P, In very s imple sys t ems  (unordered 
rewrite rule sys tems,  for example,  and hardware  archi tec tures  
).hat pu t  even the  p rogram counter  into a memory  location), the  
processor ha s  no in ternal  s tate ,  in the  sense  t ha t  it is in an  
identical configurat ion a t  every "click point" du r ing  the  r u n n i n g  
of a program (i.e., all information is recorded explicitly in the  

s t ruc tura l  field). But  in more complex c i rcumstances ,  there  is 
a lways a cer ta in  a m o u n t  of s ta te  t~) the  processor t ha t  affects i ts 
behaviour  with respect to any  part icular  embedded f ragment  of  
code. In wr i t ing  an MCP one m u s t  demonst ra te ,  more or less 
explicitly, how the proce.~qor s ta te  affects the  processing of 
object-level s t ruc tures .  By "more or less explicitly" we m e a n  
tha t  the  des igner  of the MCP has  options: the  s ta te  can be 
represented in explicit s t ruc tures  tha t  are passed around as  
a r g u m e n t s  within the  processor, or it can be absorbed into the  
state of the  processor r u n n i n g  the  MCP. (I will say tha t  a 
property or feature of an  object l anguage  is obsorbed in a 
me ta l anguage  or theory ju:;t in case the  mcta tbeory  uses  the  
very same  property to explain  or describe the  property of the  
object language.  T h u s  conjunction is absorbed in s t anda rd  
model theories of first-order logics, because the seman t i c s  of 
p A 0 is explained simply by conjoining the  explanat ion of  P and 
0 - -  specifically, in such a fornmla as: 'P A 0' is t rue jus t  in 
case 'P' is t rue and '0' is true.)  

The s ta te  of a processor for a recursively-embedded 
functional  language,  of which Lisp is an  example,  is typically 
represented in an  env i ronmen t  and  a cont inuat ion,  both in 
MCPs and in the  s tandard  meta theore t ic  accounts.  (Note tha t  
these are not ions tha t  arise in the theory of Lisp, net  in Lisp 
itself; except in self-referential  or self-modell ing dialects,  user  
programs don' t  traffic in such  entities.) Most MCPs m ak e  the 
env i ronmen t  explicit. The  control port  of the  s ta te ,  Imwever, 
encoded in a cont inuat ion,  m u s t  also be made  explicit in order 
to explain non-s tandard  control operations,  bu t  in ma n y  MCPs 
(such as in [McCarthy 1965] and Steele and  S u s s m a n ' s  vers ions 
for Scheme (see for example  [Sus sman  and  Steele 1978b}), it is 
absorbed. Two vers ions of the 2-Lisp metac i rcular  processor, one 
absorbing and one m a k i n g  explicit the cont inua t ion  s t ruc ture ,  
are presented in Figures  13 and  14. Note, however,  tha t  in both 
cases the under ly ing  agency or a # i m a  is not  reified; it r em a in s  
entirely absorbed by the  processor of the  MCP. We have  no 
mechan i sm  to des ignate  a process (as opposed to s t ructures) ,  
and no method of obta in ing causal  access to an independent  
locus of active agency (the reason,  of  course, being t ha t  we have  
no theory of wha t  a process is). 

7. P r o c e d u r a l  Re f l cc t l on  a n d  3-Lisp  

Given the met~tcircular processors defined above, 3-I,isp can 
be non-cffectively defined in a series of steps.  First ,  imagine  a 
dialect  of 2-[,isp, called 2-l,isp/1, where  use r  progr 'xms were not  
run  directly by the  pr imit ive  processor, bu t  by tha t  p ro ce s~ r  
r unn ing  a copy of an MCP. Next,  imagine  2-Lisp/2, in which the  
MCP in tu rn  was not  r un  by the  pr imit ive  processor, bu t  was  
run  by the  pr imit ive processor r u n n i n g  ano the r  copy of the  MCP. 
Etc. 3-Lisp is essent ia l ly  2-Lisp/Do, except t ha t  the  MCP is 
changed in a critical way in order to provide the  proper 
connection between levels. 3-Li..,p. in e ther  words, is what  we 
call a reflective lower, defined ad an infini te n u m b e r  of Ct)l)ies of 
an  MCP-like program,  run  a t  the  "top" by an  (infinitely fleet) 
processor. The claim tha t  3-Lisp is well-founded is the  c la im 
tha t  the  l imit  exists,  as  n-.oo, of 2-Lisp/n.  

We will look a t  the revised MCP present ly,  bu t  some 
general  properties of th is  tower archi tecture  can  he pointed out  
first. A rough idea of the levels of processing is given in F igure  
15: a t  each level the  processor code is processed by an  active 
process t ha t  interacts  with it (locally and serially,  as  usual) ,  bu t  
each processor is in tu rn  composed of a s t ruc tu ra l  field f r agmen t  
in tu rn  processed by a reflective processor on top of it. The  
implied infinite regress  is not  problematic,  and  the  archi tecture  
can be efficiently realised, since only a finite a m o u n t  of  
information is encoded in all bu t  a finite n u m b e r  of the  bot tom 
levels, 

There  are two ways to th ink  about  reflection. On the one 
hand,  one can th ink  of there  being a pr imi t ive  and  noticeable 
reflective act, which causes  the i)rocessor to shilZ levels r a the r  
markedly  (this is the explanat ion tha t  best  coheres with some of 
our pre-theoretic in tu i t ions  about  reflective th ink ing  in the  
sense of contemplation).  On the other  hand,  the  explanat ion  
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(define READ-NORHALISE-PRINT 
(lambda simple [env stream] 

(block (prompt&reply (normalise (prompt&road stream) env) 
stream) 

(road-normalise-prlnt one stream)))) 
(define NORMALISE 

(lambda simple [str'uc e.v]  
(rend [(normal struc) struc] 

[(atom sLruc) (binding sLruc env)] 
[ ( r a i l  struc) (normaltse-rai l  struc env)] 
[ (pa i r  struc) (reduce ( ca rs t ruc ) ( cd rs t ruc )  env) ] ) ) )  

define REOUCE 
(lambda slmple [proc args env] 

( le t  [ [proc! (normalise proc env)]]  
(selectq (procedure-type procl) 

[simple ( le t  [ [args! (eormaltse args env)] ]  
( i f  (pr imi t ive procl) 

(reduce-primit ive-simple 
proc! argsl env) 

(expand-closure procl a rgs l ) ) ) ]  
[ intensional ( i f  (pr imi t ive proc!) 

(reduce-primtttve-lntenslonal 
proc! targs any) 

(expand-closure procl targs)) ]  
[macro (normalise (expand-closure procl targs) 

env) ) ] ) ) ) )  
(define NORMALISE°RAIL 

(lambda simple [ r a i l  env] 
( I f  (empty r a i l )  

(rears) 
(prep (normalise ( l s t  r a i l )  env) 

(normaiise-rat l  ( rest  r a i l )  onv))) ) )  
define EXPAND-CLOSURE 
(lambda simple [proc! argsl ]  

(normalise (body, procl) 
(bind (pattern procl) 

argsi 
(environment p roc l ) ) ) )  

Figure 13:ANon-C(mtinuation-Passblg 2-LISPMCP 

given in the previous paragraph leads one to think of an infinite 
number of levels of reflective processors, each implementing the 
one below. 7 On such a view it is not coherent either to ask at  
which level the tower is running, or to ask how many retlective 
levels are running: in some sense they are all running at once. 
Exactly the same situation obtains when you use an editor 
implement, ed in APL. It is not as if the editor and the APL 
interpreter are both running together, either side-by-side or 
independently; rather, the one, being interior to the other, 
SUl)plies the anima or agency of /.he outer one. To put  this 
another way, when you implement one process in another 
process, you might want  to say that  you have two different 
processes, but you don't have concurrency; it is more a 
part /whole kind of relation. It is just  this sense in which the 
higher levels in our rcllective hierarchy are always running: 
each of them is in some sense within the processor at the level 
below, so that it can thereby engender it. We will not take a 
principled view on which account - -  a single locus of agency 
stepping between levels, or an infinite hierarchy of 
simultaneous processors - -  is correct, since they turn  out to be 
behaviourally equivalent. (The simultaneous infinite tower of 
levels is often the better way to understand processes, whereas 
a shi|!,ing-level viewpoint is sometimes the better way to 
understand programs.) 

3-Lisp, as we said, is an infinite reflective tower based on 
2-Lisp. The cede at each level is like; the continuation-passing 2- 
Lisp MCP of Figure 14, but extended to provide a mechanism 
whereby the user's program can gain access to fully articulated 
descriptions of that  program's operations and structures (thus 
extended, and located in a reflective tower, we call this code the 
3-Lisp reflective processor). One gains this access by using what  
are called reflective prncedures ~ procedures that, when 
invoked, arc run not at  the level at  which the invocation 
occurred, but one level higher, at  the level of the reflective 
processor running the program, given as arguments  those 
structures being passed around in the reflective processor. 

define READ-NORNALISE-PRINT 
(lambda simple lone stream] 

(normailse (prompt&read stream) oily 
(lambda simple [ resu l t ]  

(block (prompt&reply result  stream) 
(read-normalise-print env stream)))))) 

(define NORHALISE 
(lambda simple [s t rc  one cent] 

(rend [(normal struc) (cent s t rc ) ]  
[(atom sire)  (cent (binding strc env))] 
[ ( r a i l  strc) (normaltse-rai l  strut  env cont)]  
[ (pa i r  strc)(reduce ( ca rs t r c ) ( cdcs t r c )envcon t ) ] ) }  

(define REDUCE 
(lambda simple [proc args env coat] 

(normalise proc env 
(lambda slmpte [proc! ]  

(selectq (procedure-type procl) 
[simple 

(normaltse args any 
(lambda simple [args! ]  

( i f  (pr imi t ive procl) 
(redece-primtttve-stmple 

pratt args! env cent) 
(expand-closure proc! args! cos t ) ) ) ) ]  

[ intensional 
( i f  (pr imi t ive procl) 

(reduce-primit ive- intenslonal 
proc! targs env cent) 

(expand-closure procl ~args cont)) ]  
[macro (expand-closure pros! targs 

(lambda simple [ resu l t ]  
(normallse resul t  any c o n t ) ) ) ] ) ) ) ) ) )  

(define NORMALISE-RAIL 
(lambda simple [ r a i l  env cent] 

( i f  (empty r a i l )  
(cent (rcons)) 
(normalise ( l s t  r a i l )  env 

(lambda simple [ f t r s t l ]  
(normal ise-ral l  ( rest  rat1) env 

(iambda simple [ r es t ! ]  
(cent (prep f i r s t !  r e s t ! ) ) ) ) ) ) ) ) )  

define EXPAND-CLOSURE 
(lambda simple [proc! ergs! cent] 

(normalise (body procl) 
(bind (pattern proc!) args! (one procI))  
cent)))  

Figure 14: A Continaation-Passing 2-LISP MCP 

Reflective procedures are essentially analogues of subroutines b 
be run "in tile implementation", except that  they are in the 
same dialect as that  being implemented, and can use all the 
power o(' the implemented language in carrying out their 
function (e.g., reflective procedures can themselves use reflective 
procedures, without limit). There is not a tower of different 
languages - -  there is a single dialect (3-Lisp) all the way up. 

 L ve,,co .  l''l J 
Figure 15: The 3-LISP Reflective Tower 
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Rather, there is a tower of processors, necessary because there 
is different processor state at  each reflective level. 

Some simple examples will illustrate. Reflective 
procedures are "defined" (in the sense we described earlier) 
using the form (LAMBOA REFLECT ARGS BODY), where ARG$ 
typically the rail fAnGS ENV coNr] - -  is a pattern that should 
match a 3-element designator of, respectively, the argument 
structure at the point of call, the enviromnent, and the 
continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 
working definition of Scheme's CATCH. Though simple, these 
definitions would be impossible in a traditional language, since 
they make crucial access to the full processor state at point of 
call. Note also that although Tlm0w and CMC, deal explicitly 
with continuations, the code that uses them need know nothing 
about such subtleties. More complex routines, such as utilities 
to abort or redefine calls already in process, are almost ns 
simple. In addition, the reflection mechanism is so powerful 
that many traditional primitives can be defined; C^MBOA, IF, and 
QUOTE are all non-primitive (user) definitions in 3-Lisp, again 
illustrated in the insert. There is also a simplistic break 
package, to illustrate the use of the reflective machinery for 
debugging purposes. It is noteworthy that no reflective 
procedures need be primitive; even LAHBDA can bc built up from 
scratch. 

The importance of these examples comes from the fact that 
they are causally connected in the right way, and will therefore 

run in the system in which they defined, ra ther  than being 
models of another system. And, since reflective procedures are 
fully integrated into the system design (their  names  are  not 
treated as special keywords), they can he passed around in the 
normal higher-order way. There is also a sense in which 3-Lisp 
is simpler than 2-I,isp, as well as being more powerful; there 
are fewer primitives, and 3-[,isp provides much more compact 
ways of dealing with a variety of intensional issues (like 
macros). 

8. The  3-Lisp Ref lec t ive  P r o c e s s o r  

3-Lisp can be understood only with a close inspection of the 
3-l,isp reflective processor (Figure 17). the promised modification 
of the continuation-passing 2-Lisp met~lcircular processor 
mentioned above. NOnMALISE (line 7) takes an structure,  
cnviromnent,  and con t inua t i on ,  re turn ing  the s t ructure  
unchanged (i.e., sending it to the continuation) if it  is in normal 
lbrm, looking up the binding if it  in an atom, normalis ing the 
elements i f  it is a rail (NORMALISE-RAIL is 3-I,isp's tail-recursive 
continuation-passing analogue of Lisp 1.5's EVilS). and otherwise 
reducing the CAR (procedure) with the CDIt (arguments).  REOUCE 
(line 13) first aormalises the procedure, with a continuation (C- 
I'ROC!) that  checks to see whether  it is reflective (by convention, 
we use exclamation point suffixes on atom names  used as  
variables to designate normal form structures).  If it is not 
rellcctive, C.PltOC~ normalises the arguments ,  with a 
continuation tha t  ei ther expands the closure (lines 23-25) if the 

Figure 16: Programming in 3-Lisp: 

For illustration, we will look at  a handful of simple 3-Lisp 
programs. The first merely coils thc Continuation with the 
numeral  3; thus it is semantically identical to the simple 
numeral: 

(define THREE 
(lambda reflect [ [1 env cent] 

(cent '3)))  
Thus ( three)  ~ 3; (+ It ( three))  ~ 14. The next  example is an  
intensional predicate, t rue if and only if its a rgument  (which 
must  be a variable) is hound in the current  context: 

(define BOUND 
(lambda rer lect [ [var ]  one cent] 

( t f  (bound-in-env ear one) 
(cent 'ST) 
(cent 'Of))))  

or equivalently 
(define SOUND 

(lambda reflect [[var] env cent] 
(cent t(bound-in-env vat envl})) 

Thus (LET [[X 31] (BOUND X)) ~ St, whereas (Donne x) ~ SF in 
the global context. The following quits  the computation, by 
discarding the continuation and simply "returning": 

(define QUIT 
(lambda ref lect  [ [ ]  env cont] 

'QUIT!)) 
There are a variety of ways to implement  a TtlROW/CATCH p a i r ;  
the following defines the version used in Scheme: 
(define SCHEME-CATCH 

(lambda ref lect  [ [ tag body] catch-ear catch-cent] 
(normalise body 

(bind tag 
t(lambda ref lect  [[answer] throw-env throw-cent] 

(normal tso answer throw-ear catch-cent)) 
catch-earl 

catch-cent))) 
For example: 

( le t  [ ix 111 
(+ 2 (scheme-catch punt 

(* 3 ( /  4 ( i f  ( :  x I) 

(punt 15) 
(- x l ) ) ) ) ) ) )  

would designate seventeen and return the numeral 17. 
In addition, the reflection mechanism is so powerful that 

many traditional primitives can be defined; LN4BDA, If,  and QUOTE 

are all non-primitive (user) definitions in 3-Lisp, with the 
following definitions: 

(define LNdBDA 
(lambda ref lect  [ [kind pattern body] env cent] 

(cent (coons kind tony pattern body)))) 

(define I f  
(lambda rer lect [[promise then else] env cent] 

(normal tse premise env 
(lambda stmple [preml:ol ]  

(normalise (or 4premtse! then else) env cent ) l ) ) )  
(define QUOTE 

(lambda ref lect  [[arg] nay cent] (cent targ)))  
Some comments.  First., the definition of tA..OA just  given is of 
course circular; a non-circular but  effective version is given in 
Smith and des Rivi&res [1984]; the one given in the text, if 
executed in 3-Lisp, would leave the definition unchanged, except 
that  it is an innocent lie; in real 3-Lisp kind is a procedure tha t  
is called with the arguments  and environment ,  allowing the  
definition of (lambda macro . . .  ), etc. COONS is a closure 
constructor that  uses SIMPLE and nEFLECT to tag the closures for 
recognition by the reflective processor described in section 6. ZF 
is an extensional conditional, tha t  normalises all of its 
arguments:  the definition of IF defines the s tandard intensional  
version tha t  normalises only one of the second two, depending 
on the result  of normalising the first. Finally, the definition of 
QUOTE will yield (QUOTE A) ~ 'A. 

Finally, we have a trivial break package, with ENV and 
C0Nr bound in the  break environment  for the user to see, and 
nFivnn bound to a procedure tha t  will normalise its a rgument  
and pass that  out as the result  of the call to SNEAK: 

(define BREAK 
(lambda ref lect  [ [a rg ]  env cent] 

Iblock (pr int  arg primary-stream) 
(read-normallse-prlnt ">>" 

(bind' [ 'env tenv] 
[ 'cent t rent ]  
[ ' re turn t(lambda re f lec t  [ [a2]  02 c2] 

(normaltse a2 e2 cent))] 
env) 

pr Imary-stream) ) ) ) 
If viewed 'as models of control constructs in a language being 
iinplemented, these definitions will look innocuous; what is 
important to remember is that they work in the very language 
in which they are defined. 

i 
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l ..... ( d e f i n e  READ-NOnMALISE-PRINT 
2 ........... (lambda simple [ l eve l  say stream] 
3 ................. (no~mi ise  (prompt&read level  stream) env 
4 ....................... (lambda simple [ r e s u l t ]  ;ContinuationCRElq,Y 
5 ............................ (block (prompt&reply resu l t  level stream) 
6 ............................................... ( read-normal tse-pr tn t  l eve l  env s~ream)))) ) )  

7 ..... ( d e f i n e  NORMALISE 
8 ........... (lambda simple [s t ruc  env coat] 
9 ................. (cond [(normal struc) (cent s t ruc ) ]  

IO ............................ [(atom struc)  (cent (binding struc env) ) ]  
I I  ............................ [ ( r a i l  s t ruc)  (no rma l i se - r s l l  struc env cont ) ]  
12 ............................ [ ( p a i r  s t ruc)  (reduce (car s t ru t )  (cdr struc) env c e n t ) i ) ) )  
13 ..... ( d e f i n e  REDUCE 
14 ........... ( lambda simple [proc args ear  c o a t ]  
15 ................. (normsl lse  proc env 
16 ........................ (lsmbda simple [ p r o c l ]  ;ContinuationC-PROC! 
[7 .............................. ( t r  ( r e f l e c t i ve  procl) 
18 ....................................... (4(de-reflect procl) ar~s env cont~ 
19 ...................................... (normaltse args e n v  

20 .............................................. (lambde simple [ a rg s l ]  ;Continuation C-ARGS! 
21 ................................................. ( I f  (prhnt t tvo  proci) 
22 .......................................................... (cent *lCprocl . $argsl)} 
23 .......................................................... (normsltse Ibody procl) 
24 .................................................................................. (bind (pat tern  proc!) args! (environment proc!) 
2S .................................................................................. c o a t ) ) ) ) ) ) ) ) )  
26 ..... ( d e f i n e  NORMALISE-RAIL 
27 ........... (lambda stmple t r a i l  env coat]  
28 ................. ( t f  (empty r a i l )  
29 .......................... (COOt ( teens))  
30 .......................... (normeltso ( l e t  rat1) env 
31 ................................ (lsmbds simple [ f l r s t l ]  ;ContinuatlonC-FIRST! 
32 ....................................... (normsl tso-ra i l  ( r e s t  r a i l )  e a r  

33 .............................................. (lambde simple [ r e s t ] ]  ;Continuation C-RESTI 
34 .................................................... (cent (prep f i r s t ]  r e s t l ) ) ) ) ) ) ) ) )  

Figure 17: The 3-Lisp Refleclive Processor: 

procedure is non-primit ,  ve, or else directly execut ing it i f  it  is 
pr imit ive (line 22). 

Consider  (REOUCE '+ ' i x  3] ENV IO), for example,  where  x is 
be, end to the  numera l  z and + to the  pr imit ive addition closure 
in [NV. At  the  point of line 22, PaOC! will des igna te  t ha t  
primit ive closure, and ARG$! will des ignate  the  normal- form rail 
[z 3]. Since addition is primitive,  we m u s t  s imply do the 
addition. (Peoc!. ARGS!) won't work, because PROC! and AflGSl 
are a t  the  wrong level; they designate  s t ruc tures ,  not funct ions 
or a rgumen t s .  So, for a brief  moment ,  we de-reference them 
(with ~), do the addition, and then  rega in  our me ta - s t ruc tu ra l  
viewpoint with the  ,.8 If the  procedure is reflective, however,  it  
is (as shown in line 18 of Figure 17) called directly, not  
processed, and given the  obvious three  a r g u m e n t s  (AnGS, [W, 
and CONI) tha t  are being passed around.  The  ¢(o[-nrFLECT 
PROC:) is merely  a mechan i sm  to purify the reflective procedure 
so t ha t  it doesn ' t  reflect again,  and  to de-reference it  to be a t  
the  r ight  level (we want  to use, not  ment ion,  the procedure t ha t  
is des ignated by PROCO. Note tha t  line 18 is the only place tha t  
reflective procedures can  ever be called; th is  is why they m u s t  
a lways be prepared to accept exactly those three a rgumen t s .  

Line 18 is the  essence of 3-Lisp; it  alone engenders  the  full 
reflective tower, for it  says  tha t  some par ts  of the  object 
language  - -  the  code processed by this  program - -  are called 
d~rectly in this  program. I t  is as  if an  object level f r agment  
were included directly in the  meta  language,  which ra ises  the  
question of who is processing the meta  language.  The  3-Lisp 
claim is t h a t  an  exactly equivalent  reflective processor can be 
processing this  code, wi thout  vicious th rea t  of infinite ascent .  

A reflective procedurc, . in sum,  arr ives  in the  middle of the  
processor context. It is handed env i ronmen t  and  cont inuat ion 
s t ruc ture  tha t  designat~ t h e  processing of the  code below it, bu t  
it is r un  in a different context, wi th  i ts  own (implicit) 
env i ronment  and continuat ion,  which in tu rn  is represented in 
s t ruc tures  passed around by the  processor one level above it. 
Thu~ it is given causal  access to the  s ta te  of the  process tha t  
was in progress  (answer ing  one of our  init ial  requirements) ,  and  
it can of course cause any  effect it  wants ,  since it  h a s  complete 

access to all fu ture  processing ot t ha t  code. Fur thermore ,  it has  
a safe place to s tand,  where it will not  conflict with the  code 
being run  below it. 

These  var ious  protocols i l lustrate  a general  point. As  
ment ioned a t  the  outset ,  par t  of des igning  an adequate  
reflective archi tecture involves a trade-off between being so 
connected tha t  one s teps all over oneself  (as in t radi t ional  
implementa t ions  of debugging  utilities),  and so disconnected (as 
with metacircular  processors) tha t  one has  no effective access to 
what  is going on. The  3-Lisp tower, we are suggest ing,  provides 
jus t  the  r ight  balance between these  two extremes,  solving the  
problem of van tage  point as  well as of causa l  connection. 

The 3-Lisp reflective processor unifies three t radi t ional ly  
independent  capabili t ies in Lisp: the  explicit avai labi l i ty of EVAL 
and APPLY, the  ability to support  metaci rcular  processors, and  
explicit operat ions (like Maclisp's RETFUN ~nd Interl isp 's  FRETURN) 
for debugging purposes. It is s t r ik ing  t ha t  the la t ter  facilities 
are required in t radi t ional  dialects, in spite of the  presence of 
the former, especially since they depend crucially on 
implementa t ion  details ,  violating portability and other na tu ra l  
aesthetics.  In 3-Lisp, in contrast ,  all information about  the  
s tate  of the processor is fully avai lable within the  language .  

9. T h e  T h r e a t  o f  In f in i ty ,  a n d  a F in i t e  I m p l e m e n t a t i o n  

The a r g u m e n t  as  to why 3-Lisp is finite is complex in 
detail,  bu t  s imple in outl ine and in substance.  Basically, one 
shows tha t  the  reflective processor is fully tail-recursive, in two 
senses: a) it  r u n s  p rograms  tail-recursively, in t ha t  it does not  
build up records of s ta te  for programs across procedure calls  
(only on a r g u m e n t  passing),  and b) it i tself is fully tail-  
recursive, in the  sense  tha t  all recursive calls within it  (except 
for u n i m p o r t a n t  subrout ines)  occur in tail-recursive position. 
The reflective processor, can be executed by a s imple finite s t a te  
machine.  In part icular ,  it can run  itself wi thout  us ing  any  s ta te  
at  all. Once the  l imit ing behaviour  of an  infinite tower of  
copies of th is  processor is determined,  therefore,  t ha t  ent i re  
chain  of processors can be s imulated by another  s ta te  machine ,  
of complexity only moderately greater  t han  tha t  of the  reflective 
processor itself. (It is an in teres t ing open research ques t ion  
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whether that  "implementing" processor can be algorithmically 
derived from the reflective processor code.) A full copy of such 
an implementing processor - -  about 50 lines of 2-Lisp - -  is 
provided in {Smith and des Rivi~res 1984J" a more substant ive 
discussion of tractability will appear in [Smith forthcoming]. 

10. Conclt~slons and  Mora ls  

Fundamentally, the use of Lisp as a language in which to 
explore semantics and reflection is of no great  consequence; the 
ideas shouhi hold in any similar circumstance. We chose Lisp 
because it is familiar, because it has rudimentary self- 
referential capabilities, and because there is a s tandard 
procedural self-theory (continuation-passing metacircular 
"interpreters"). Work has  begun, however, on designing 
reflective dialects of a side-effect-free Lisp and of Prolog, and on 
studying a reflective version of the X-calculus (the last being an 
obvious candidate for a mathematical study of reflection). 

Furthermore,  the technique we used in defining 3-Lisp can 
be generalised ra ther  directly to these other languages. In 
order to construct a reflective dialect one needs a) to formulate 
a theory of the language analogous to the metacircular 
processor descriptions we have examined, b) to embed this 
theory within the language, and c ) t o  connect the theory with 
the underlying language in a causally connected way, as we did 
in line 18 of the reflective processor, by providing reflective 
procedures invoeable in the object language but  run in the 
processor. It remains,  of course, to implement the result ing 
infinite tower; a discussion of general techniques is presented in 
[desRivi~res, forthcoming]. 

I t  is partly a consequence of using Lisp that we have used 
non-data-abstracted representations of functions and 
environments; this facilitates side-effects to processor s tructures 
without introducing unfamiliar machinery. It  is clear that  
enviromnenta could be readily abstracted, although it would 
remain open to decide what  modifying operations would be 
supported (changing bindings is one, but one might  wish to 
excise bindings completely, splice new ones in, etc.). In  
standard X-calculus-based metatheory there are no side effects 
(and no notion of processing); environment  designators mus t  
therefore be passed around ("threaded") in order to model 
environment side effects. I t  should be simple to define a side- 
effect-free version of 3-Lisp with an environment-threading 
reflective processor, and then to define s~rQ and other such 
routines as reflective procedures. Similarly, we assume in 3- 
Lisp that  the main structural  field is simply visible from all 
code; one could define an alternative dialect in which the field, 
too, was threaded through the processor as  an explicit 
argument,  as in standard metatheory. 

The representation of procedures as closm'es is troublesome 
(indeed, closures are failures, in the sense that they encode far 
more information than would be required to identify a function 
in intension; the problem being that  we don't yet know what  a 
function in intension might be.). 3-Lisp unarguably provides far 
too fine-grained (i.e., metastructural)  access to function 
designators, including continuations, and the like. Given an  
abstract notion of procedure, it would be natura l  to define a 
reflective dialect that  used abstract s t ructures to encode 
procedures, and then to define reflective access in such terms. 
We did not follow this direction here only to avoid taking on 

another  very difficult problem, bu t  we will move in this 
direction in future work. 

These considerations all illustrate a general point: in 
designing a reflective processor, one can choose to bring into 
v iew more or less of the state of the underlying process. It is 
all a question of what  you want  to make explicit, and wha t  you 
want  to absorb. 3-Lisp, as  currently defined, reifies the 
environment and continuation, making explicit what  was 
implicit one level below. It absorbs the structural  field (and 
lmrtly absorbs the global enviromnent); as  mentioned earlier, it 
completely absorbs the animating agency of the whole 
computation. If one defines a reflective procSssor based on a 
metacircular processor that  al.~o absorbs the representation of 

control (i.e., like the MCP in Figure 13, which uses the control 
structure of the processor to encode the control structure of the 
code being processed), then reflective procedures couhl not affect 
the control structure, In any real application, it would need to 
be determined jus t  what  parts  of the underlying dialect required 
reification. One could perhaps provide a dialect in which a 
reflective procedure could specify, with respect to a very general 
theory, what  aspects it wanted to get explicit access to. Then 
operations, for example, that  needed only environment access, 
like 9ouNo, could avoid having to traffic in continuations. 

A final point. I have talked throughout  about semantics, 
but  have presented no mathematical  semantical accounts of any 
of these dialects. To do so for 2-Lisp is relatively 
straightforward (see Smith [forthcoming J), but  I have not yet 
worked out the appropriate semantical equations to describe 3- 
Lisp. It would be simple to model such equations on the 
implementation mentioned in section 9, but  to do so would be a 
failure: rather, one should instead take the definition of 3-Lisp 
in terms of the infinite virtual tower (i.e., take the limit of 2- 
Lisp/n), and then prove that  the implementation strategies of 
section 9 are correct. This awaits further  work. In addition, I 
want to explore what  it would be to deal explicitly, in the 
semantical account, with the anima or agency, and with the 
questions of causal connection, that  are so crucial to the success 
of any reflective architecture. These various tasks will require 
an even more radical reformulation of semantics than has  been 
considered here. 
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Notes 

1. See ]Doyle 1980], ]Wcyrauch 1980], [Genesereth and Lenat 1980], and 
{Batali 1983]. 

2. In the dialects we consider, the metastructural capability must be provided 
by primitive quotation mechanisms, as opposed to merely by being able to 
model or designate syntax - -  something virtually any calculus can do, 
using Godel numbering, for exomple - -  for reasons of causal connection. 

3. Most programming languages, such as Fortran and Algol 60, are neither 
higher-order nor metastructura]; the ~,-calculus is the first but not the 
second, whereas Lisp 1.5 is the second but not the first (dynamic .seeping is 
n contextual protocol that, coupled with the mete-structural facilities, 
partially allows Lisp 1.5 to compensate for the fact that it is only first- 
order). At least soma incarnations of Scheme, on the other hand, are beth 
(although Scheme's metastructural imwers are limited). As we will see, 2- 
Lisp and 3-Lisp are very definitely both metastructural and higher-order. 

4. For what we might call declarative languages, there is n natural account of 
the relationship between linguistic expressions and in.the-world designations 
that need not make crucial.reference to issues of processing (to which we 
wiU turn in a moment). It is for such languages, in particular, that the 
composition ~PoO, which we might call ep,, would be formulated. And this, 
for obvious reasons, is what is typically studied in mathematical model 
theory and logic, since those fields do not deal in any crucial way with the 
active use of the languages they ~tudy. Thus, for example, 4J' in logic 
would be the interpretation function of standard model theory. In what we 
will call cnmpototionol languages, on the other hand, questions of 
processing do arise. 

5. The string '10tmTE Ae¢]' notates a structure that designates another 
structure that in turn could be notated with the string "ABe'. The string 
'"ABC"', on the other hand, notates a structure that designates the string 
'ABe' directly. 

6. Virtually any language, of course, has the requisite power to do this kind 
of modelling. In a language with mete-structural ahilities, the mete- 
circular processor can represent programs for the MCP as themsolsee - -  

this is always done in Lisp MCPs - -  but we need not define that to be an 
essential property. The term 'metocircular processor" is by no means 
strictly defined, and there arc various constraints that one might or might 
not put on it. My general approach has been to view as metacircular any 
non.causally connected model of a calculus within itself; thus the 3-Lisp 
reflective processor is nut mete-circular, because it does have the requisite 
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caused connl,ction~, and therelbrc an essential Imrt of the 3-Lisp 
architecture. 

7. Curiously, there are also intuition~ about conlemplative thinking, where 
one is both detoched and yet directly present, that fit more with this view. 

8. One way to undcr~tand thi~ is tn realize that the reflective processor simply 
asks its processor to do any primiHves that it encounters. I.e., i t  passes 
responsibility up to the processor running it. In other words, each time 
one level uses a primitive, its proceg~or runs around setting everything up, 
finally re~whing the point at which it must simply do the primitive action, 
whereup~n it asks its own processor for help. Bul of course the processor 
runnin~ that processor will else come racing towards the edge of the same 

cliff, and will similarly duck responsibility, handing the primitive up yet 
anolher level. In fact every primitive ever ex,~cutcd is handed all the way 
to the tap of the tower. There is a magic moment, when the thing actually 
happ~ms, and then the answer filters all the way back down to the level 
that stortt.d tile whole procedure. It is as if  tile deus ex mrwhina, living at  
the tap of the tower, sends a l ightning bolt down to some level or other, 
once every intervening level gets appropria~x~ly lined up (rather like the 
sun, at  the stonehenge and pyramids, reaching down through a long tunnel 
at just one particular moment during the year). Except, of course, that  
nothing ever h[Ippens, ultimately, except primitives. In other words tile 
enabling agency, which must flow down from the top of the tower, consists 
of an infinitely dense series of these l ightning bolts, with something like 
10% of the ones that reach each level being allowed through to the level 
below. All infinitely fast. 
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