
Two Lessons of Logic†

Brian Cantwell Smith*
University of Toronto

 1 Background
Modem logic is most reasonably dated to 1879.1 This means that
logicians have had more than a century to study a particular fam-
ily of so-called formal systems. Not surprisingly, much of the
enormous amount they have learned is peculiar to their specific
assumptions about the foundations of mathematics. Some of their
insights, however, are universal, holding for any system of signs,
symbols, or sentences.

McDermott has come to see that many of logic’s particular as-
sumptions are not applicable to general human reasoning. By and
large 1 think he is right, and I agree that the consequences are a
little appalling. But McDermott goes on to imply that we must
therefore reject logic as a whole, at least as a basis for artificial in-

†Original published in Computational Intelligence, 3(33), 214–18 (1987), in
response to Drew McDermott, “A critique of pure reason.” Computa-
tional Intelligence 3(33), pp. 151–60, 1987.

*Coach House Institute, Faculty of Information, University of Toronto
90 Wellesley St W, Toronto, Ontario M5S 1C5 Canada

†© Brian Cantwell Smith 2009 Last edited: November 14, 2009
Please do not copy or cite Comments welcome
Draft only (version 0.80) brian.cantwell.smith@utoronto.ca

1The year 1879 was the publication date of Frege’s Begriffsschrift, the first
step in his life-long attempt to develop a logical foundation for mathemat-
ics. Although I will argue that we should retain the rigour and precision of
the enormous tradition that Frege’s work inspired, I believe that the intui-
tions and insights of various earlier writers on symbolic systems, especially
Charles Sanders Peirce, are at least as relevant to AI’s concerns. From our
point of view it is unfortunate that the vast majority of logical development,
during this century, has been devoted to the narrower, purely “mathemati-
cal,” case.

2L · 2 Indiscrete Affairs

telligence (AI). It is time, he suggests, to end the love affair between
A1 and logic.

Now I do not care too much about the term “logic”—whether we
should use it, broadly construed, for the full range of rational be-
lief revision (roughly, what you should or are likely to believe next,
if you believe P now), or whether we should follow traditional
mathematical logic in confining it to the entailment relation
(roughly, what follows, if P is true), and adopt a more general
term for the human case. (As I say, I do not care, in some ultimate
sense, but in what follows I will use “logic” for the narrow, entail-
ment sense, and “thought” for what we do.)

What I do care about is this: that we learn everything we can
from those hundred years of intellectual history. More specifi-
cally, I worry that McDermott, in rejecting logic’s particular as-
sumptions, is also discarding some of its universal lessons. Two
lessons, in particular.

 1.1 Lesson one: the irreducibility of content to form
The first lesson I take to be the deepest truth that logicians have
uncovered: that there is more to a symbol system than can be
gleaned from its rules and representations. In particular cases this
can be made quite concrete (incompleteness results for arithmetic,
for example), but the lesson itself is general. For discussion, I will
call it the irreducibility of content to form. To get at it, we need to
distinguish two somewhat independent aspects or dimensions of
any symbol system.

What I will call the first factor of a symbol system involves the
shapes of the symbols, the ways they can be put together and taken
apart, and the behaviour or operations defined over them. Expres-
sions, predicate letters, and modus ponens in logic; abstract data
types and corresponding operations in computer science—that
sort of thing. You can think of this whole package as a representa-
tional system’s mechanics: a combination of its static structures
and dynamic operations defined over them. The first factor is also
what must be directly realized in a physical substrate, if the system
is going to do any work.

The second factor has to do with what the symbols mean,
what they are about—their content. Interpretation (in the logi-
cian’s sense!) is a second factor phenomenon, as are truth and ref-

 Two Lessons of Logic

 2L · 3

erence, the latter in the sense of the relation between the name
‘McDermott’ and a person who works at Yale. Shades of the old
declarative/procedural distinction (but only shades; see Smith
1987).

In mathematical logic the two stories are called proof theory and
model theory, respectively; semantics is taken to be the study of the
latter. Furthermore, semantics—the story about content—is what
really matters about these systems; in this sense it is “more equal”
than the first factor account. There is a reason for this asymmetry:
without some second factor aspects you could not be sure you have
a symbol system at all. Everything has a mechanical nature, to put
this another way; it is metaphysically prior (that is why I called it
first). Having content, on the other hand, and therefore being
amenable to a second factor analysis, is what distinguishes sym-
bolic or representational (what philosophers call intentional) sys-
tems like languages and computers from ordinary physical objects
like hockey pucks and oil refineries.

The first lesson of logic, then, can be stated in terms of the “sec-
ond factor”: the content of a symbol, at least in general, is not an
intrinsic or causally proximate property of it, but arises as a rela-
tion between the system and some other domain. For example, the
meaning or reference of the symbol PLANE1, in an axiomatization
of this morning’s air traffic over LaGuardia. would involve some
actual airplane, two thousand feet up. No amount of investigating
how the symbol PLANE1 is used within the air traffic control sys-
tem could ever tell you what plane it refers to. To get to the plane
itself you would have to look outside the system, to see how it was
connected up to, and used in, its environment. Or imagine trying
to determine the truth of a report claiming that 70% of all doctors
recommend Crest toothpaste. You would not bring out your mi-
croscope to study the paper that the report was written on, or sub-
mit it for typographic analysis; you would drive around and ac-
tually talk to doctors.

Content, in other words, does not hang around a symbol sys-
tem like a nervous teenager afraid to leave the house; it is out there,
in the world. Nor can the second factor be deduced from the first.
Furthermore (this is perhaps the most surprising thing of all) this
externality of content does not arise only for realtime systems, like
air-traffic control systems. It holds even for as abstract, circum-

2L · 4 Indiscrete Affairs

stantially independent, causally inert, and completely disembod-
ied a system as formal arithmetic.

It is a major corollary to this first lesson that content relations
are not computed. If I use the name ‘Povungnituk’ to refer to a
small town on Hudson’s Bay, for example, a content relation
holds between my utterance and a major source of Inuit stone
carvings. But, just like the property of being the average age in a
collection of people, this relation just is; no work needs to be done
in order for it to hold. Admittedly, in interpreting my utterance,
you may “compute” something, but the purpose of your computa-
tion will only be to arrange yourself to stand in something like the
same kind of (non-computed) content relation to the town that I
did when I said its name. The town itself, which is a part of the
content relation, is not a part—not what the philosophers call a
“proximate” cause—of any computational activity of saying or
understanding.

In contrast with the first factor, to put this another way, the sec-
ond factor of a symbol system does not need direct physical reali-
zation. There is no way the Inuit could deploy a sensor in
Povungnituk to detect whether their town was being referred to by
an arbitrary speaker in an arbitrarily remote location.

It should be admitted that how this all works—how symbols
“reach out and touch someone,” to use AT&T’s phrase—remains an
almost total mystery. Some people (Winograd, for example) argue
that they do only through human use; others (I am in this cate-
gory) believe that human interpretation is sufficient, but not nec-
essary.a But whatever one’s view, the facts that these views have to
deal with are impressive. To start with, reference outstrips causal-
ity, at least locally; with four simple letters I can refer to a com-
poser who has not existed for more than 200 years—not to a set-
theoretic model of him, to his name, or to your comprehension of
him, but to his very heart and soul (even though, unlike Povung-
nituk, he does not exist any more). Reference relations are not even
constrained by the light-cone; as Church once put it, “semantics
travels at the ‘speed of logic’.”2 In fact reference almost outstrips
comprehension; if we did not know that language works, we

a«Yikes; figure out what to say, here»
2«Ref CSLI seminar, May 3, 1984».

 Two Lessons of Logic

 2L · 5

would spurn rumours of its long distance capabilities.
What is more, the little we do know is not reassuring—at least

for AI. To take just one example, it seems that the axioms of arith-
metic must be connected to the numbers (rather than to other non-
standard interpretations) not by anything intrinsic to them, but
by us humans. It seems, that is, that agents are what matter, for
semantical connection. But that only shifts the mystery—squarely
onto AI’s subject matter: cognitive agents, interpreters (again, in
the philosophical sense!) of the symbols and signs.

But if we d not know how reference and content work, at least
we know that they work, and that there is more to it all than proof
theory. Furthermore, I take it to be the job of semantics, at least as
classically understood, to explain, in as systematic and rigorous a
way as possible, the interplay between “formal” (i.e., first factor’)
properties, on the one hand, and these relatively more mysterious
second-factor relations of meaning and content, on the other.
Admittedly, in the face of considerable ignorance, we cannot yet
fill in all the details (though we do what we can—which, to date,
mostly means enumerating the relata, but someday more should
be possible). What matters—what logic’s first lesson really tells
us—is that the second factor content story must be told.

 1.2 Lesson two: a single theoretical stance
Logic’s second lesson is a theoretical one, in the sense of being
about theory—about how symbolic systems should be explained.
Related to the first, it arises from the recognition that the two fac-
tors (proof theory and model theory, in the traditional case) must
be related, in spite of being conceptually distinct. This is the role,
in logic’s case, played by completeness proofs, notions of sound-
ness and validity, etc. In contrast, you could also argue that there
are two stories to be told about money: one about its physical em-
bodiment, one about its social and economic import. But, at least
on the surface, there is no obvious reason why the stories should
relate; engineers at the Franklin Mint designing new dollar bills
probably do not need to know Gresham’s law (that bad money
drives out good). In logic, however, the connection is more direct.
You could not really claim to have a (first-factor) inference regi-
men if you could not relate it pretty directly to (second-factor) se-
mantic interpretation.

2L · 6 Indiscrete Affairs

Because of this global but crucial connection, logicians have de-
veloped a single theoretical stance from which to tell both stories.
The stories, furthermore, overlap in vocabulary: the same theoreti-
cian’s grammar that spells out the linguistic regularities of logical
formulae is used by proof theoretician and model theoretician
alike. And the overlap is necessary. That logic’s two factors are
relatively independent (more on this in a moment), and yet must
ultimately be related, can only be said from a vantage point from
which they can both be seen.

In laying these things out it is important not to confuse the con-
ceptual distinctness of factors, or the singleness of theoretical
standpoint, with the question of how related the two factors are.
By analogy, geometry distinguishes length and area, but then
goes on to tie them strongly together, in the familiar way. Simi-
larly, both classical and relativistic mechanics view time and space
as conceptually distinct; the two theories differ in what they then
say about the notions—whether they are independent (the classi-
cal case) or intimately related (relativistic). In the next section I
will claim that the first and second factors of thought should be
intimately and constantly related, but it does not follow that I
think they are the same thing.

How, then, does the second lesson relate to the first? Because we
are now talking about theories of logic, not just about logic itself,
things get a little bit complicated. In particular, since these theories
(like the logical systems they are about) are themselves intentional
phenomena, we have two symbol systems to consider, not just one.
Lots of people have wrestled with how they relate: from Tarski, in
setting up preconditions on satisfying convention T, to Quine,
worrying about the radical indeterminacy of translation. But the
overall structure of the connection is clear enough. The second fac-
tor content of the theoretical accounr (for example, the content of
Kripke’s 1963 paper3) must include the complete first and second fac-
tor dimensions of the system under investigation (the syntax. proof
relations, and model structures of modal logic, in Kripke’s case).
That is just what it is to say that the theory is about the system
under investigation.

Enough intricacies. What matters here is that a single, unified

3«Ref»

 Two Lessons of Logic

 2L · 7

theory must provide accounts of both factors. I take this recogni-
tion of the need for a single theoretical vantage point to be the sec-
ond of logic’s great contributions.

So much for background. Let’s turn to McDermott.

 2 Human cognition and logic’s assumptions
I have already indicated that I agree with much of what McDer-
mott says: that rationality is not pure deduction over passive logi-
cal formulae, that use is an inextricable aspect of knowledge, all
that stuff. But let us go a little slowly, to see just where these agree-
ments lead. In particular, let us go back to a bit in history.

As suggested at the outset, the originators of modem so-called
“formal” logic—Frege, Russell, Whitehead, Carnap, and so on—
were primarily exploring (or at least motivated by) issues in the
foundations of mathematics. All things considered, they did an
excellent job.

Unfortunately, they also died. We, their descendents, have been
so impressed by their achievement that we are in danger of think-
ing that they defined what semantics must be like. This raises a
two-stage problem, related to the question raised at the outset
about the relation between particular and universal insights. At
first blush, we are liable to accept their proposals too glibly, not
having them around to tell us why they made the decisions they
did. Then, once we discover that their particular choices are un-
tenable for our purposes, we are in danger of throwing the whole
thing away, baby cum bathwater.b

Rather than trying to canvass all the choices that were made, let
me simply list three assumptions underlying traditional formal
logic that I believe are untenable for AI. The following, in other
words, are tenets we must reject:

1. That use can be ignored. This premise leads logic to ignore
agents and processing, to set aside context, and to focus on
sentence types instead of tokens or individual utterances. It
also suggests that a sentence must represent its whole con-
tent explicitly, since no other resources are licensed that
could make other contributions. This is quite different

b «Point forwards to Rehabilitating Representation»

2L · 8 Indiscrete Affairs

from natural language, where dynamic and contextual fac-
tors often implicitly contribute to the content (the time of
utterance, for example, provides an interpretation for the
word ‘now’).

2. That locally the two symbolic factors can be treated inde-
pendently, even though (as suggested above) they must ul-
timately be globally related. In particular, proof theory or
inference (first factor) and model theory or semantics (sec-
ond factor) are tied together, in traditional logic, for any
given system, only “at the end,” with soundness and com-
pleteness theorems. From step to step, in a “formal” proof,
the (first-factor) inference procedure cannot depend on or
affect (second-factor) semantic interpretation. (In fact this
is what “formal” is taken to mean, by theorists as diverse as
Fodor and Martin-Löf.4)

3. That language and modelling (two species of representa-
tion, I take it) should be treated completely differently. The
linguistic reference relation—the primary subject matter—
is assumed to be strictly non-transitive, engendering such
familiar constructs as the use/mention distinction, hierar-
chies of metalanguages, and convention T. Modelling, on
the other hand (of the sort that treats Turing machines as
sets of quadruples, Truth and Falsity as 0 and 1. and so
forth) is not only taken to be transitive, but also to be “free,”
in the sense that you are allowed to use a model of X in
place of X itself (even to identify the two) with theoretical
abandon.

I do not know exactly what McDermott means by “Tarskian se-
mantics,” since he clearly intends it to be broad enough to include
denotational analyses of programming languages (on which more
below), but I take it to mean roughly a semantical account that
adopts all three of these assumptions. At any rate I will use that
definition here.

McDermott’s position can now be stated in terms of the first two
assumptions: he recognizes that logic makes them, that AI must re-

4 «Refs»

 Two Lessons of Logic

 2L · 9

ject them, and that the theoretical consequences of this rejection are
daunting.

I agree. I also have real sympathy for the strength of his reac-
tion: none of these assumptions can easily be “let go of” or altered,
as if that were a minor adjustment to what remains basically a
purely “logical” enterprise. These are foundational assumptions,
with all that that implies.

To make that concrete, let me say a few more words about each.
To start with, the central intuition underlying the so-called “situ-
ated” language and computation project at the Center for the
Study of Language and Information (CSLI) at Stanford involves
replacing the first assumption with its exact opposite: a committed
and direct focus on language use. The goal is to develop new theo-
ries and semantical frameworks that analyze individual utter-
ances, and to embrace the crucial role of circumstance and context.
To take just one example, this involves diagnosing the relevant
structure of all pertinent contextual factors: relevant background
facts (such as the place where “It is 4:00 p.m.” was said), presuppo-
sitions, discourse structure (that help resolve pronouns, for exam-
ple), facts about the language being used, the structure of the sub-
ject matter or described situation with respect to which linguistic
and cognitive processes can in turn be structured, mutual belief
structures that explain what can and cannot be said, internal facts
about cognitive architecture that pertain to the interpretation of
internal structures, and so on and so forth. And this is just one set
of issues that have to be considered. CSLI has had dozens of people
working on this project for four years so far—and, from my biased
perspective, I think it is making good progress. In not more than
another four years there should be something substantial to
show.c

The second assumption—that first and second factors are lo-
cally independent—goes just as deep; I also think this is the one
that has so sobered McDermott. He claims that the culprit of logi-
cism is its notion of deduction (inference only to provable conse-
quences), but if a different semantical connection (say, abduction)
were semantically definable in such a way that the procedural role

c «Comment on how naïve that claim was…and say something about what
happened.»

2L · 10 Indiscrete Affairs

(first factor) could be cleft from semantical import (second factor),
then it would still make sense to write things down first, and build
programs second—the putative essence of the logicist enterprise.
But these are subtleties: logic does assume local independence [be-
tween the two factors], and I do not believe thought is like that.

My own strategy, in attacking this one, has been to use compu-
tationally-internal notions of reflection and introspection as a
crucible in which to work out viable alternatives. The point of 2-
Lisp,5 in particular, was to show that even warhorse programming
languages are best understood in terms of locally intertwined fac-
tors. As it happens, 2-Lisp ignored contextual aspects of use (by
design)—thereby drawing something of a distinction between the
first and second assumptions—but at the same time making its
architecture less generalizable than one might like. I hardly need
add that a great deal more work is necessary here.

Similarly the third—that language and modelling are cate-
gorically distinct. Although McDermott does not address this
premise explicitly, it stands in equal need of reconstruction.
Whole new theories of representation and correspondence will be
required.6 There are two reasons this revamping is urgent: partly
to explain computational practice (see below), and partly to clarify
our standard theoretical apparatus. In particular, although pro-
miscuous modelling may be helpful in answering large-scale and
hence rather coarse-grained questions (such as whether a given
formula is true, decidable, computable), it can be pernicious when
one asks fine-grained questions about control, intensional iden-
tity, and the use of finite resources. Also, current computational
systems involve representational structures of all kinds, ranging
continuously from linguistic expressions to virtually iconic iso-
morphisms like bit maps and simulation structures. This is a
large area where the particular assumptions of mathematical logic
have led to untenable methodological practices (for AI theorists),
as well as to untenable claims on our primary subject matter.

All in all, in other words, I agree with McDermott that the con-
sequences of rejecting these assumptions are enormous. And yes,
they certainly undermine the coherence of the “logicist” program.

5Smith (1984).
6See Smith (1987) for some initial analyses.

 Two Lessons of Logic

 2L · 11

Writing knowledge down in advance, without regard to use, is a
conceptual error doomed to failure.

 3 What then?
But—and this is really where I have been driving—what are we to
do instead? Instead of abandoning hope and reverting to uncon-
strained symbol mongering, surely the task is to develop alterna-
tive theoretical frameworks.

Now McDermott does not really argue for pure symbol mon-
gering, but he does suggest that the “proceduralist” paradigm is
the only other game in town, insinuating that there could not be
any others. Why should that be true? For example, why should
we not develop a full-scale theory of use—flesh out the project that
the philosophy of science has only just started, for example—and
uncover the regularities that must underlie integrated content and
behaviour? From the fact that use and content are inextricably
linked it does not follow that rationality is random. And if it is
not random, we can understand it (at least that seems like a plau-
sible intellectual creed).

See, this is really what I think has “got McDermott’s goat.”
Computational practice—what our programs actually do, not
what we say about them—does not honour logic’s three assump-
tions laid out above; it mixes behaviour and content as richly and
thickly as we do. The only rigorous semantical theories we have,
on the other hand, do make those restrictive assumptions.
McDermott, [quite properly and insightfully,] sees that [logic’s]
assumptions are untenable, and correctly notes that there are not
any other proposals around (“…it must have a semantics; so it
must have a Tarskian semantics, because there is no other candi-
date”). So he is forced to laud practice. But then in virtually the
same breath he admits that that makes him uncomfortable. So he
ends up somewhat confused.

2L · 12 Indiscrete Affairs

What he should endorse (I claim) is not practice itself, but theo-
retical frameworks that do justice to that practice. That is, what we
want is a conceptual backdrop in terms of which to understand
Forbus’ work in the same way that logic and model theory form a
conceptual backdrop for Hayes’ research on the ontology of liq-

uids.7 This situation is
pictured in figure 1. To
be fair, McDermott says
a lot of things suggesting
that he agrees with the
general thrust of this
diagram: “there are large
classes of programs that
lack any kind of theo-
retical underpinnings,”
“AI programs are notori-
ous for being impenetra-

bly complex…but a model that we don’t understand is not a
model at all,” “what’s really bothering me is that these (diagnosis)
program embody tacit theories of abduction,” etc. What he does
not suggest, at least sufficiently explicitly, is that we need theories
to do justice to programs in just the way that logic provides theo-
ries that do justice to (mathematical) sentences.

The question, that is, is how we are going to fill in the missing
quadrant. It seems that there are two evident suggestions. We
could take logic and set theory, and try to modify them. Or we
could throw away logic and set theory, and simply study the prac-
tice itself, like entomologists studying bees.

With respect to modifying logic and set theory, I have already
said a little about what I think would be required (build in the
opposite of the three assumptions listed above). And I have said it
will be hard. I agree with Israel (and, I take it, McDermott) that
incremental variants like non-monotonic logic are nothing like
strong enough.8 The problem is that once you start revamping this
much of logic’s foundations, it is not clear what remains. It is easy
to say that one must understand just what aspects of classical logic

7«Refs»
8Israel (1980).

Figure 1 — Appropriate theoretical frameworks

 Two Lessons of Logic

 2L · 13

are particular (i.e., specific to metamathematics), which are univer-
sal—but that does not make it easy to do. So far I have suggested
only two lessons that I believe we should view as universal, and
hence as relevant to the AI case: external (non-computed!) content,
and a single theoretical vantage point. But there is a lot more work
to do.

I also have great respect for the other suggestion: studying and
reconstructing practice. We should certainly understand archi-
tecture, physical embodiment, resource allocation—all the usual
stuff. In fact this is where most of my own work has concentrated.
But it is also where my original worry comes back to roost: the
worry that logic’s two great lessons will be lost. In fact this worry
can be seen as a triple threat.

First, because it potentially confuses practice itself with theories
that do justice to such practice, I am afraid that McDermott’s pa-
per will lead people to discard logic’s theoretical stance completely,
and focus too much on the practical side. To be honest, I do not
expect McDermott himself to do this (he is too unremittingly theo-
retical), but a casual reader could easily mistake his intentions.

Second, if you just look at programs, and try to make sense out
of what they are doing, you will be liable to focus solely on first-
factor aspects of systems, for a simple reason: The first factor, as we
said above, is the one that needs to be realized in the machine.
And since the point of programs is to conjure up an otherwise un-
organized state machine into appropriate form to exhibit reason-
ing, the program only needs to concentrate on first-factor prob-
lems: structures, operations, behaviour. In general, as we saw at
the outset, the content is not in the machine at all.

The third problem arises from a curious fact about how practice
is currently understood. It is hard to tell exactly what McDermott
means, but the words ‘program’ and ‘denotational semantics,’
when uttered in one sentence, inevitably bring to mind the denota-
tional semantics tradition in computer science, as illustrated by
Gordon, Plotkin, etc.9 Now I firmly believe that all current compu-
tational systems—from Amord to Zetalisp10—blend both factors
we talked about earlier. The only factor of computational systems

9See for example Gordon (1979).
10«Refs»

2L · 14 Indiscrete Affairs

that computer science talks about, however, is the first: procedural
role. I believe this is true, curiously enough, even when people use

the term ‘semantics.’
What is called “deno-

tational semantics” in
computer science is in
fact a model-theoretic
analysis of first-factor
procedural role, for a rea-
son that depends on an
ambiguity in the use of
the word ‘program.’xxx As
discussed in Smith

(1987), in particular, theoretical computer science by and large
views programs specifications of computational behaviour, as
suggested in figure 2. In AI, however, it is more common—and
McDermott is clearly
of this view—to take
them to be constitu-
ents within compu-
tations, as suggested
in figure 3. On the
specificational view
espoused in computer
science, as indicated
in the diagram, the
semantic content of a
program is taken to
be the computation
specified; hence, the
computation itself is
what denotational semantics takes its subject matter to be. In AI, in
contrast, on the ingredient view, the semantics of the program lie
in the external task domain that the “AI program” (i.e,. the compu-

xxxFrom here through the end of this section the text has been mildly re-
written, for this version, to increase clarity. The introduction of a section
boundary for a conclusion (#4) is also new; though its content—the final
two paragraphs of the paper—are as in the original. See also “One Hun-
dred Billion Lines of C++.”»

Figure 3 — Programs in AI and cognitive science

Figure 2 — The computer science view of programs

 Two Lessons of Logic

 2L · 15

tation that results from running it) is reasoning about.
One can speculate as to why the two readings have developed—

perhaps because computer science more typically deals with lan-
guages which are compiled; AI programs are often (especially ini-
tially) written in languages such as Lisp, which are often “inter-
preted.” Whatever; the point is only that clarity in regards to how
programs are viewed is clearly a prerequisite to semantical clarity
(and unclarity, correlatively, is a reliable source of confusion). It
should also be noted that this diagnosis of ambiguity renders in-
telligible many computer science practices that can otherwise seem
odd or even inexplicable to theorists in AI, cognitive science,
and/or philosophy of mind:

1. The fact that computer science traditionally assumes a
specificational view of programs explains why program-
ming language theorists so often use term models, initial
algebras, and other such constructions in their semantic
analyses; they need to individuate their semantical models
(remember the third assumption!) extremely finely, because
what they are really modeling is (the behaviour of) the
computational processes themselves.

2. Since it is universally assumed, in both computer science
and AI, that one be able to produce or instantiate the com-
putation associated with a program (whatever one takes the
relation between them to be), programming language theo-
rists and other computer scientists tend to believe that se-
mantic relations must be constrained to be effective—in a
way that semantic relations for natural language, “mental-
ese,” and AI clearly are not (remember the first lesson!).
Programs, to use Nygaard’s phrase, are “prescriptions” as
well as “descriptions.”11

3. The analysis makes it clear why, from the point of view of
theoretical computer science, operational and denotational
semantics are taken to be two different kinds of analysis of
the same relation—and why it is standard to see equiva-
lence proofs between them. Computer science’s distinction
between operational and denotational semantics, in other

11«Ref»

2L · 16 Indiscrete Affairs

words, is fundamentally different from the one we have been
talking about between first and second factors—e.g., be-
tween proof theory and model theory in traditional logic.
(While it is perfectly standard to prove completeness, it
would at least be conceptually perverse, are more likely rep-
resent an outright misunderstanding, to attempt to prove
that inference and entailment were equivalent.)

4. Finally, note that, under the specificational view, a com-
puter really does interpret a program, in the logical or phi-
losophical sense!zzz

But enough about other people’s worries. The important point
here, with respect to the place of logic in Artificial Intelligence, is
that the content relation that AI needs to study, as opposed to that
in which theoretical computer science is interested, is the one that
holds between the computational process and the world outside
it—i.e., the one labeled b in figure 3. If one adopts an “ingredient”
view of programs, this is just the semantics of the program itself;
and so talk about the semantics of the program and the semantics of
the computation amount to essentially the same thing. From the
specificational perspective adopted in computer science, in con-
trast, the only way in which to name or identify the content rela-
tion in which AI is interested is with the phrase “the semantics of
the semantics of the program”—i.e., as something two semantic lev-
els away from the program itself.yyy

What ultimately matters, however, is the nature of relation b,
not how one refers to it. And in this regard, three things must al-
ways be kept in mind: (i) at least in general, it will reach outside
the machine; (ii) it will not (again, in general) be effective; and
(iii) it will never be computed.

 4 Conclusion
Return, finally, to McDermott. We had noted that a thoroughgo-
ing reconstruction from first principles was an enormous theoreti-
cal task, and were looking at the other way of proceeding—by
reconstructing practice. With respect to the latter alternative, I had

zzzThis in spite of the ironic fact that it is more common in AI than in other
parts of computer science to use “interpreted” languages.

yyy«Refer to the conversation with Plotkin, in which he smiled—but find
out where else I said that.»

 Two Lessons of Logic

 2L · 17

constructing practice. With respect to the latter alternative, I had
three worries. First, if (as a casual reader of McDermott) you
merely endorse practice, you are liable to remain [fatally] atheo-
retical. Second, if you try to reconstruct practice de novo, you are
not only faced with an enormous task, but are liable to see only
first-factor aspects, since those are the only ones that are imple-
mented (content, remember, [to repeat this point one final time,]
does not appear in the program at all). And then third, the twister:
if you borrow techniques from theoretical computer science, you
will [find yourself using semantical vocabulary, but in spite of
that fact focusing] on the wrong relation completely. Furthermore,
not only does [such an approach] fail to focus on the semantical
relation we are interested in; for somewhat gratuitous reasons (the
fact that programs are prescriptive), it also ignores logic’s first les-
son: the irreducibility of content to form.

No matter how you do it, in other words, there’s a danger that
you will miss out on logic’s two great lessons. And that—I hope
McDermott will agree—would be tragic.

 References

Gordon, Michael (1979). The Denotational Description of Programming Lan-
guages: An Introduction. New York: Springer-Verlag.

Israel, David (1980). What’s Wrong with Non-Monotonic Logic? Proceed-
ings of the First Annual National Conference on Artificial Intelligence, Stan-
ford, CA, pp. 99–101.

Kripke, Saul (1963). Semantical Considerations on Modal Logic. Acta Phi-
losophica Fennica, 16: 83–94.

Smith, Brian Cantwell (1984). Reflection and Semantics in Lisp. Conference
Record of the Eleventh Annual ACM Symposium on Principles of Programming
Languages, Salt Lake City, UT, pp. 23-35. Also available as Xerox Palo
Alto Research Center Intelligent Systems Laboratory Technical Report
ISL-5, Palo Alto, CA, 1984.

Smith, Brian Cantwell (1986). Varieties of Self-Reference. In Joseph
Halpern (ed.), Theoretical Aspects of Reasoning about Knowledge. Los Altos,
CA: Morgan Kaufman, pp. 19-43.

Smith, Brian Cantwell (1987). The Correspondence Continuum. CSLI
Technical Report CSLI-87-71, Stanford University, Stanford, CA.

