NMUSZI - csoc- [4-4 15t

IN THIS ISSUE

Message from the Chairperson
From the Editor

The Electronic Cottage: Old Wine in
New Bottles (Elia T. Zureik)

Teaching Public Administrators About
Computers (Brian Stipak)

Computer Security—For the People?
(Jay BloomBecker)

High School Hackers: Heroes or Criminals?
(David Bellin)

The Limits of Correctness
(Brian Cantwell Smith)

The Parnas Papers (David L. Parnas)

Trip Report: Computing in Support of
Battle Management (J. J. Horning)

SIG Financial Report

MESSAGE FROM THE CHAIRPERSON

With this issue of the Hewsletter, we are
resuming regular quarterly publication under the
direction of the new editor, Dr. Richard Rosenberg
of Dalhousie University. The main function of
the Hewsletter is to provide a forum for discussion
of the social impacts of computing. This means we
welcome working papers, news items, comments on
previously published material, and announcements of
general interest to SIGCAS members. To make the
Newsletter successful we need your help. Please
communicate items you would 1ike to have included
in the Newsletter to Dr. Rosenberg.

SIGCAS is continuing to be active at ACM
conferences. I am chairing two SIGCAS sponsored
panels at ACM '85 (October 14-16, 1985) in Denver.
One is "Computers in the Workplace" featuring
panelists Dr. Robert Kraut (Bell Communications),
Mr. Bradley Shaw (0ffice of Technology Assessment),
and Professor Murray Turoff (New Jersey Institute
of Technology); the other is "Computers and the
Future of Work" with panelists Professor Richard
Rosenberg (Dalhousie University), Dr. Jeremy
Shapiro (Fielding Institute), and Professor Elia
Zureik {Queens University).

Planning is now underway for a SIGCAS con-
ference on social issues in computing. This will
take place in late 1986 or early 1987. More about
this in the next MNewsletter.

Comments and suggestions on SIGCAS activities
are most welcome. Support your Special Interest
Group!

Abbe Mowshowitz
Chairperson

FROM THE EDITOR

Let me reiterate Abbe Mowshowitz's appeal for
newsletter material. After a year's absence, the
newsletter will be published on a reqular, quart-
erly basis but it will be necessary for you, our
readers, to help.

To serve as a forum for debate, discussion,
and information, a continual stream of articles,
reports, commentaries, queries, announcements,
and letters are required. Continuity of publi-
cation is important to encourage interest and to
foster debate. The range of tonics is broad and
growing.

The current issue contains papers on the
electronic cottage, computer crime, and for the
first time, the Strategic Defense Initiative,
commonly called, the Star Wars project. This last
topic hasreceived considerable publicity during
the past year. For the purposes of SIGCAS, the
Star Wars debate is of considerable interest,
raising such crucial issues as the role of com-
puting in the implementation of public policy,
the professional responsibility of computer
scientists and the relation of computing to the
ongoing controversey overnuclear strategic plans.

My appreciation is extended to the authors of
the papers in this issue and to Computer
Professionals for Social Responsibility for their
cooperation. My expectation is that such co-
operation will continue and indeed be extended to
other groups and organizations with similar
interests. I would encourage vou to submit letters
or responses to any of the current papers.
Suggestions for future issues based on snecific
themes are also welcome.

This is your forum; olease help to make it
interesting, lively, and informative.

Richard Rosenberg
Editor

THE LIMITS OF CORRECTNESS'lL

Brian Cantwell Smith*

1. Introduction

On October 5, 1960, the American Ballistic
Missile Early-Warning System station at Thule,
Greenland, indicated a large contingent of Soviet
missiles headed towards the United States.* For-
tunately, common sense prevailed at the informal
threat-assessment conference that was immediately
convened: international tensions weren't particu-
larly high at the time. The system had only recent-
1y been installed. Kruschev was in New York, and all
in:all a massive Soviet attack seemed very unlikely.
As a result no devastating counter-attack was
Taunched. What was the problem? The moon had
risen, and was reflecting radar signals back to
earth. Needless to say, this lunar reflection
hadn't been predicted by the system's designers.

Over the last ten years, the Defense Depart-
ment has spent many millions of dollars on a new
computer technology called "program verification” -
a branch of computer science whose business, in its
own terms, is to "prove programs correct". Pro-
gram verification has been studied in theoretical
computer science departments since a few seminal
papers in the 1960s¢, but it has only recently
started to gain in public visibility, and to be
applied to real world problems. General Electric,
to consider just one example, has initiated
verification projects in their own laboratories:
they would Tike to prove that the programs used in
their latest computer-controlled washing machines
won't have any "bugs" (even one serious one can
destroy their profit margin).3 Although it used
to be that only the simpiest programs could be
“proven correct" - programs to put simple lists
into order, to compute simple arithmetic functions -
slow but steady progress has been made in extending
the range of verification techniques. Recent papers
have reported correctness proofs for somewhat more
complex programs, including small operating
systems, compilers, and other material of modern
system design.4

rPrepared for the Symposium on Unintentional
Nuclear War, Fifth Congress of the International
Physicians for the Prevention of Nuclear War,
‘Budapest, Hungary, June 28 - July 1, 1985.

Copyright (c) 1985 Brian Cantwell Smith

18

What, we do well to ask, does this new
technology mean? How good are we at it? For

example, if the 1960 warning system had been
proven correct (which it was not), could we have
avoided the problem with the moon? If it were
possible to prove that the programs being written
to control automatic launch-on-warning systems
were correct, would that mean there could not be
a catastrophic accident? In systems now being
proposed computers will make launching decisions
in a matter of seconds, with no time for any human
intervention (let alone for musings about
Kruschev's being in New York). Do the technigues
of program verification hold enough promise so
that, if these new systems could all be proven
correct, we could all sleep more easily at night?
These are the questions I want to look at today.
And my answer, to give away the punch-Tine , is no.
For fundamental reasons - reasons that anyone can
understand - there are inherent limitations to
what can be proven about computers and computer
programs. Although program verification is an
important new technology, useful, like so many
other things, in its parficular time and place,
it should definitely not be called verification.
Just because a program is “proven correct”, in
other words, you cannot be sure that it will do
what you intend.

First some background.
2. General Issues in Program Verification

Computation is by now the most important
enabling technology of nuclear weapons systems:
it underlies virtually every aspect of the defense
system, from the early warning systems, battle
management and simulation systems, and systems
for communication and control, to the intricate
guidance systems that direct the missiles to their
targets. It is difficult, in assessing the chances
of an accidental nuclear war, to imagine a more
important question to ask than whether these per-

*Xerox Corporation: Intelligent Systems Laboratory,
Palo Alto Research Center, 3333 Coyote Hil1l Road,
Palo Alto, California 94304 USA; Stanford Univer-
sity: Department of Philosophy, and Center for
the Study of Language and Information, Ventura
Hall, Stanford, California 94305 USA; and Compu-
ter Professionals for Social Responsibility:

P.0. Box 717, Palo Alto, California 94301 USA.

vasive computer systems will or do work correctly.

Because the subject is so large, however, I

want to focus on just one aspect of computers

relevant to their correctness:

the use of models

in the construction, use, and analysis of computer

systems.

I have chosen to look at modelling

because I think it exerts the most profound and,
in the end, most important influence on the systems

we build.
of important questions.

But it is only one of an enormous number
First, therefore,- in order

to unsettle you a 1ittle - let me just hint at some
of the equally important issues I will not address:

1.

Complexity: At the current state of the art,
only very simple programs can be proven correct.

~ Although it is terribly misleading to assume

that either the complexity or power of a com-
puter program is a linear function of length,
some rough numbers are illustrative. The
simplest possible arithmetic programs are mea-
sured in tens of lines; the current state of
the verification art extends only to programs
of up to several hundred. It is estimated that
the systems proposed in the Strategic Defense
Initiative (Star Wars), in contrast, will re-
quire at least 10,000,000 1ines of code.5 By
analogy, compare the difference between re-
solving a two-person dispute and settling the
political problems of the Middle East. There's
no a priori reason to believe that strategies
successful at one level will scale to the other.

Human interaction: Not much can be "proven",
let alone specified formally, about actual
human behaviour. The sorts of programs that

~have so far been proven correct, therefore, do

not include much substantial human interaction.
On the other hand, as the moon-rise example
indicates, it is often crucial to allow enough
human intervention to enable people to over-
ride system mistakes. System designers,
therefore, are faced with a very real dilemma:
should they rule out substantive human inter-
vention, in order to develop more confidence
in how their systems will perform, or should
they include it, so that costly errors can be
avoided or at least repaired? The Three-

Mile Island incident is a trenchant example

of just how serious this trade-off can get:
the system design provided for considerable
human intervention, but then the operators
failed to act “"appropriately". Which strategy
leads to the more important kind of correct-
ness?

A standard way out of this dilemma is to
specify the behaviour of the system relative
to the actions of its operators. But this, as
we will see below, pressures the designers to
specify the system totally in terms of inter-
nal actions, not external effects. So you end
up proving only that the system wi11 behave in
the way that it will behave (i.e., it will

19

raise this Tine level 3 volts), not do what
you want it to do (i.e., launch a missile only
if the attack is real). Unfortunately, the
latter is clearly what is important. Systems
comprising computers and people must function
properly as integrated systems; nothing is
gained by showing that one cog in a misshapen
wheel is a very nice cog indeed.

Furthermore, large computer systems are
dynamic, constantly changing, embedded in com-
plex social settings. Another famous "mis-
take" in the American defense system happened
when a human operator mistakenly mounted a
training tape, containing a simulation of a
full-scale Soviet attack onto a computer that,
just by chance, was automatically pulled into
service when the primary machine ran into a pro-
blem. For some tense moments the simulation
data were taken to be the real thing.® What
does it mean to install a "correct" module in-
to a complex social flux?

Levels of Failure: Complex computer systems
must work at many different levels. It fol-
Tows that they can fail at many different

levels too. By analogy, consider the many
different ways a hospital could fail. First,
the beams used to frame it might collapse. Or
they might perform flawlessly, but the operating
room door might be too small to Tet in a
hospital bed (in which case you would blame the
architects, not the lumber or steel company.)

Or the operating room might be fine, but the
hospital might be located in the middle of the
woods, where no one could get to it (in which
case you would blame the planners). Or, to take
a different example, consider how a letter

could fail., It might be so torn or soiled

that it could not be read. Or it might Took
beautiful, but be full of spelling mistakes.

Or it might have perfect grammar, but disastrous
contents.

Computer systems are the same: they can
be "correct" at one level - say, in terms of
hardware - but fail at another (i.e., the systems
built on top of the hardware can do the wrong
thing even if the chips are fine). Sometimes,
when people talk about computers failing, they
seem to think only the hardware needs to work.
And hardware does from time to time fail,
causing the machine to come to a halt, or
yielding errant behaviour (as for example when
a faulty chip in another American early warning
system sputtered random digits into a signal of
how many Soviet missiles had been sighted, ;
again causing a false a1ert7). And the connec-
tions between the computers and the world can
break: when the moon-rise problem was first
recognized, an attempt to override it failed
because an iceberg had acgidenta11y cut an
undersea telephone cable.” ~But the more impor-
tant point is that, in order to be reliable, a
system has to be correct at every relevant level:
the hardware is just the starting place {(and
by far the easiest, at that). Unfortunately,
however, we don't even know what all the rele-
vant levels are. So-called "fault-tolerant”
computers, for example, are particularly good
at coping with hardware failures, but the soft-

ware that runs on them is not thereby im-

proved.

4, Correctness and Intention: What does correct
mean, anyway? Suppose the people want peace,
and the President thinks that means having
a strong defense, and the Defense department
thinks that means having nuclear weapons
systems, and the weapons designers request
control systems to monitor radar signals, and
the computer companies are asked to respond
to six particular kinds of radar pattern, and
the engineers are told to build signal
amplifiers with certain circuit character-
istics, and the technician is told to write
a program to respond to the difference between
a two-volt and a four-volt signal on a parti-
cular incoming wire. If being correct means
doing what was intended, whose intent matters?
The technician's? Or what, with twenty years
of historical detachment, we would say should
have been intended?

With a Tittle thought any of you could extend this
1ist yourself. And none of these issues even
touch on the intricate technical problems that
arise in actually building the mathematical models
of software and systems used in the so-called
"correctness" proofs. But, as I said, I want to
focus on what I take to be the most important
issue underlying all of these concerns: the
pervasive use of models. Models are ubiquitous
not only in computer science but also in human
thinking and language; their very familiarity
makes them hard to appreciate. So we'll start
simply, looking at modelling on its own, and come
back to correctness in a moment.

3. The Permeating Use of Models

When you design and build a computer system,
you first formulate a model of the problem you
want it to solve, and then construct the computer
program in its terms. For example, if you were
to design a medical system to administer drug
therapy, you would need to model a variety of
things: the patient, the drug, the absorption
rate, the desired balance between therapy and
toxicity, and so on and so forth. The absorp-
tion rate might be modelled as a number propor-
tional to the patient’s weight, or proportional
to body surface area, or as some more complex
function of weight, age, and sex.

Similarly, computers that control traffic
lights are based on some model of traffic -
of how long it takes to drive across the inter-
section, of how much metal cars contain (the
signal change mechanisms are triggered by metal-
detectors buried under each street). Bicyclists,
as it happens, often have problems with automatic
traffic lights, because bicycles don't exactly
fit the model: they don't contain enough iron to
trigger the metal-detectors. I also once saw a
tractor get into trouble because it couldn't move
as fast as the system "thought" it would: the
cross-1ight went green when the tractor was only
half-way through the intersection.

To build a model is to conceive of the world
in a certain delimited way. To some extent you

20

must build models before building any artifact at
all, including televisions and toasters, but com-
puters have a special dependence on these models:
you write an explicit description of the model
down inside the computer, in the form of a set

of rules or what are called representations -
essentially Tinguistic formulae encoding, in

the terms of the model, the facts and data
thought to be relevant to the system's behaviour.
It is with respect to these representations that
computer systems work. In fact that's really what
computers are (and how they differ from other
machines): they run by manipulating representa-
tions, and representations are always formulated
in terms of models. This can all be summarized
in a slogan: no computation without represen-
tation.

The models, on which the representations are
based, come in all shapes and sizes. Balsa models
of cars and airplanes, for example, are used to
study air friction and Tift. Blueprints can be
viewed as models of buildings: musical scores as
models of a symphony. But models can also be
abstract. Mathematical models, in particular, are
so widely used that it is hard to think of any-
thing that they haven't been used for: from whole
social and economic systems, to personality traits
in teen-agers, to genetic structures, to the mass
and charge of sub-atomic particles. These models,
furthermore, permeate all discussion and communi-
cation. Every expression of language can be
viewed as resting implicitly on some model of the
worid.

What is important, for our purposes, is that
every model deals with its subject matter at some
particular level of abstraction, paying attention
to certain details, throwing away others, grouping
together similar aspects into common categories,
and so forth. So the drug model mentioned above
would probably pay attention to the patients'
weight, but ignore their tastes in music. Mathe-
matical models of traffic typically ignore the
temperments of taxi drivers. Sometimes what is
ignored is at too "low" a level; sometimes too
"high": it depends on the purposes for which the
model is being used. So a hospital blueprint would
pay attention to the structure and connection of
its beams, but not to the arrangements of proteins
in the wood the beams are made of, nor to the
efficacy of the resulting operating room.

Models #ave to ignore things exactly because
they view the world at a level of abstraction
('abstraction' is from the Latin abstrahere, 'to
pull or draw away'). And it is good that they do:
otherwise they would drown in the infinite rich-
ness of the embedding world. Though this isn't
the place for metaphysics, it would not be too
much to say that every act of conceptualization,
analysis, categorization, does a certain amount
of violence to its subject matter, in order to
get at the underlying regularities that group
things together. If you don't commit that act of
violence - don't ignore some of what's going on -
you would become so hypersensitive and so over-
come with complexity that you would be unable to
act.

To capture all this in a word, we will say

that models are inherently partial. A1l thinking,
and all computation, are similarly partial. Fur-
thermore - and this is the important point -
thinking and computation Aave to be partial:
how they are able to work.

that's

&, Full-blooded Action

Something that is not partial, however, is
action. When you reach out your hand and grasp a
plow, it is the real field you are digging up, not
your model of it. Models, in other words, may
be abstract, and thinking may be abstract, and
some aspects of computation may be abstract, but
action is not. To actually build a hospital, to
clench the steering wheel and drive through the
intersection, or to inject a drug into a person's
body, is to act in the full-blooded world, not in
a partial or distilled model of it.

This difference between action and modelling
is extraordinarily important. Even if your every
thought is formulated in the terms or some model
to act is to take leave of the model and partici-
pate in the whole, rich, infinitely variegated
world. For this reason, among others, action plays
a crucial role, especially in the human case, in
grounding the more abstract processes of modelling
or conceptualization. One form that grounding can
take, which computer systems can already take
advantage of, is to provide feedback on how well
the modelling is going. For example, if an indus-
trial robot develops an internal three-dimensional
representation of a wheel assembly passing by on
a conveyor belt, and then guides its arm towards
that object and tries to pick it up, it can use
video systems or force sensors to see how well the
model corresponded to what was actually the case.
The world doesn't care about the model: the claws
will settle on the wheel just in case the actuali-
ties mesh.

Feedback is a special case of a very general
phenomenon: you often learn, when you do act, just
how good or bad your conceptual model was. You
learn, that 1is, if you have adequate sensory ap-
paratus, the capacity to assess the sensed exper-
ience, the inner resources to revise and recon-
ceptualize, and the Tuxury of recovering from
minor mistakes and failures.

5. Computers and Models

What does all this have to do with computers
and with correctness? The point is that computers,
like us, participate in the real world: they take
real actions. One of the most important facts
about computers, to put this another way, is that
we plug them in. They are not, as some theoreti-
cians seem to suppose, pure mathematical ab-
stractions, living in a pure detached heaven. They
land real planes at real airports; administer real
drugs; and - as those of you here today know all
too well - control real radars, missiles and com-
mand systems. Like us, in other words, although
they base their actions on models, they have con-
sequence in a world that inevitably transcends the
partiality of those enabling models. Like us, in
other words, and unlike the objects of mathematics,
they are challenged by the inexorable conflict bet-
ween the partial but tractable model, and the

actual but infinite world.

And, to make the only too obvious point: we
in general have no guarantee that the models are
right - indeed we have no guarantee about much of
anything about the relationship between model and
world. As we will see, current notions of
"correctness"” don't even address this fundamental
question.

In philosophy and Togic, as it happens, there
is a very precise mathematical theory called
"model theory". You might think that it would be
a theory about what models are, what they are good
for, how they correspond to the worlds they are
models of, and so forth. You might even hope this
was true, for the following reason: a great deal
of theoretical computer science, and all of the
work in program verification and correctness,
historically derives from this model-theoretic
tradition, and depends on its techniques. Unfor-
tunately, however, model theory doesn't address
the model-world relationship at all. Rather,
what model theory does is to tell you how your
descriptions, representations, and programs
correspond to your model.

The situation, in other words, is roughly as
depicted in Figure 1, below. You are to imagine
a description, program, computer system (or even
a thought - they are all similar in this regard)
in the left hand box, and the very real world in
the right. Mediating between the two is the in-
evitable model, serving as an idealized or pre-
conceptualized simulacrum of the world, in terms
of which the description or program or whatever
can be understood. One way to understand the
model is as the gTasses through which the program
or computer Tooks at the worid: it is the world,
that is, as the system sees it (though not, of
course, as it necessarily is).

The technical subject of "model theory", as
I have already said, is a study of the relation-
ship on the left. What about the relationship on
the right? The answer, and one of the main points
I hope you will take away from this discussion; is
that, at this point in-intellectual history, we
have no theory of this right-hand side relation-
ship.

REAL WORLD

COMPUTER

B

1IN

~moOQg

NS

Figure 1: Computers, Models, and the Embedding
World

There are lots of reasons for this, some very
complex. For one thing, most of our currently
accepted formal techniques were developed, during
the first half of this century, to deal with mathe-
matics and physics. Mathematics is unique, with
respect to models, because (at least to a first
level of approximation) its subject matter is the
world of models and abstract structures, and there-
fore the model-world relationship is relatively
unproblematic. The situation in physics is more
complex, of course, as is the relationship
between mathematics and physics. How apparently
pure mathematical structures could be used to
model the material substrate of the universe is a
question that has exercised physical scientists
for centuries. But the point is that,. whether or
not one believes that the best physical models do
more justice and therefore less violence to the
world than do models in so-called "higher-level™
disciplines Tike sociology or economics, formal
techniques don't themselves address the question
of adequacy.

Another reason we don't have a theory of the
right-hand side is that there is very Tittle agree-
ment on what such a theory would Took like. In
fact all kinds of questions arise, when one studies
the model-world relationship explicitly, about
whether it can be treated formally at all, about
whether it can be treated rigorously, even if not
formally (and what the relationship is between
those two), about whether any theory will be more
than usually infected with prejudices and precon-
deptions of the theorist, and so forth. The inves-
tigation quickly leads to foundational questions
in mathematics, philosophy, and language, as well
as computer science. But none of what one learns
in any way lessens its ultimate importance. In the
end, any adequate theory of action, and, conse-
quently, any adequate theory of correctness,
will have to take the model-world relationship
into account.

6. Correctness and Relative Consistency

Let's get back, then, to computers, and to
correctness. As I mentioned earlier, the word
'correct' is already problematic, especially as
it relates to underlying intention. Is a program
correct when it does what we have instructed it
to do? or what we wanted it to do? or what history
would dispassionately say it should have done?
Analysing what correctness should mean is too
complex a topic to take up directly. What I want
to do, in the time remaining, is to describe what
sorts of correctness we are presently capable of
analysing.

In order to understand this, we need to
understand one more thing about building computer
systems. I have already said, when you design a
computer system, that you first develop a model of
the world, as indicated in the diagram. But you
don't, in . general, ever get to hold the model in
your hand: computer systems, in general, are based
on models that are purely abstract. Rather, if you
are interested in proving your program "correct",
you develop two concrete things, structured in terms
of the abstract underlying model (although these are
listed-here in logical order, the program is very
often written first):

1. A specification: a formal description in some
standard formal language, specified in terms
of the model, in which the desired behaviour is
described; and

2. The program: a set of instructions and repre-
sentations, also formulated in the terms of the
model, which the computer uses as the basis for
its actions.

How do these two differ? In various ways, of

which one is particularly important. The program
has to say how the bahaviour is to be achieved,
typically in a step by step fashion {and often in
excruciating detail). The specification, however,
is Tess constrained: all it has to do is to
specify what proper behaviour would be, independent
of how it is accomplished. For example, a specifi-
cation for a milk-delivery system might simply be:
"Make one milk delivery at each store, driving the
shortest possible distance in total." That's just
a description of what has to happen. The program,
on the other hand, would have the much more diffi-
cult job of saying how this was to be accomplished.
It might be phrased as follows: ‘“drive four blocks
north, turn right, stop at Gregory's Grocery Store
on the corner, drop off the milk, then drive 17
blocks north-east,...". Specifications, to use

use some of the jargon of the field, are essentially
declarative; they are 1ike indicative sentences

or claims. Programs, on the other hand, are
procedural: they must contain instructions that
Tead to a determinate sequence of actions.

What, then, is a proof of correctness? It
is a proof that any system that obeys the program
will satisfy the specification.

There are, as is probably quite evident, two
kinds of problems here. The first, often acknow-
ledged, is that the correctness proof is in reality
only a proof that two characterizations of some-
thing are compatible. When the two differ - i.e.,
when you try to prove correctness and fail - there
is no more reason to believe that the first (the
specification) is any more correct than the second
(the program). As a matter of technical practice,
specifications tend to be extraordinarily complex
formal descriptions, just as subject to bugs and
design errors and so forth as programs. In fact
they are very much like programs, as this intro-
duction should suggest. So what almost always
happens, when you write a specification and a pro-
gram, and try to show that they are compatible, is
that you have to adjust both of them in order to
get them to converge.

For example, suppose you write a program to
factor a number C, producing two answers A and
B. Your specification might be:

Given a number C, produce numbers A and
B such that A x B =2¢C .

This is a specification, not a program, because it
doesn't tell you how to come up with A and B. ATl
it tells you is what properties A and B should have.
In particular, suppose I say: ok, C is 5,332,114;
what are A and B? Staring at the specification
Just given won't help you to come up with the
answer. Suppose, on the other hand, given this

specification, that you then write a program - say,
by successively trying pairs of numbers until you
find two that work. Suppose further that you then
set out to prove that your program meets your spe-
cifications . And, finally, suppose that this
proof can be constructed (I won't go into details
here; 1 hope you can imagine that such a proof
could be constructed). With all three things in
hand - program, specification, and proof - you
might think you were done.

In fact, however, things are rarely that sim-
ple, as even this simple example can show. In par-
ticular, suppose, after doing all this work, that
you try your program out, confident that it must
work because you have a proof of its correctness.
You randomly give it 14 as an input, expecting 2
and 7. But in fact it gives you back the answers
A=1and B =14, 1In fact, you realize upon fur-
ther examination, it will always give back A = 1
and B = C. It does this, even though you have a
proof of its being correct, because you didn't make
your specification meet your intentions. You wanted
both A and B to be different from C (and also differ-
ent from 1), but you forgot to say that. In this
case you have to modify both the program and the
specification. A plausible new version of the
latter would be:

Given a number C, produce A and B such
that A # 1 and B# 1 and 4 X B = C.

And so one and so forth: the point, I take it, is
obvious. If the next version of the program

given 14, produces A = -1 and B ~ -14, you would
similarly have met your new specification, but

still failed to meet your intention. Writing "good"
specifications - which is to say, writing specifi-
cations that capture your intention - is hard.

It should be apparent, nonetheless, that
developing even straightforward proofs of "correct-
ness" is nonetheless very useful. It typically forces
you to delineate, very explicitly and completely, the
model on which both program and specification are
based. A great many of the simple bugs that occur
in programs, of which the problem of producing 1
and 14 was an example, arise from sloppiness and
unclarity about the model. Such bugs are not
identified by the proof, but they are often un-
earthed in the attempt to prove. And of course there
is nothing wrong with this practice; anything that
helps to erradicate errors and increase confidence
is to be applauded. The point, rather, is to show
exactly what these proofs consist in.

In particular, as the discussion has shown,
when you show that a program meets its specifica-
tions, all you have done is to show that two for-
mal descriptions, slightly different in character,
are compatible. This is why I think it is some-
where between misleading and immoral for computer
scientists to call this "correctness". What is
called a proof of correctness is really a proof of
the compatibility or consistency between two formal
objects of an extremely similar sort: program.and
specification. As a community, we computer scien-
tists should call this relative consistency, and
drop the word 'correctness' compietely.

What proofs of relative consistency ignore is

23

the second problem intimidated earlier., Nothing
in the so-called program verification process per
se deals with the right-hand side relationship:
the relationship between the model and the world.
But, as is clear, it is over inadequacies on the
right hand side - inadequacies, that is, in the
models in terms of which the programs and speci-
fications are written - that systems so commonly
fail.

The problem with the moon-rise, for example,
was a problem of this second sort. The difficulty
was not that the program failed, in terms of the
model. The problem rather, was that the model
was overly simplistic; 2¢ didn't correspond to
what was the case in the world. Or, to put it
more carefully, since all models fail to corres-
pond to the world in indefinitely many ways, as
we have already said, it didn't correspond to
what was the case in a erucial and relevant way.
In other words, to answer one of our original
questions, even if a formal specification had
been written for the 1960 warning system, and a
proof of correctness generated, there is no reason
to believe that potential difficulties with the
moon would have emerged.

You might think that the designers were
sloppy; that they would have thought of the moon
if they had been more careful. But it turns out
to be extremely difficult to develop realistic
models of any but the most artificial situations,
and to assess how adequate these models are. To
see just how hard it can be, think back on the
case of General Electric, and imagine writing
appliance specifications, this time for a refri-
gerator. To give the example some force, imagine
that you are contracting the refrigerator out to
be built by an independent supplier, and that
you want to put a specification into the contract
that is sufficently precise to guarantee that you
will be happy with anything that the supplier de-
Tivers that meets the contract.

Your first version might be quite simple -
say, that it should maintain an internal tempera-
ture of between 3 and 6 degrees Centigrade; not
use more than 200 Watts of electricity; cost less
that $100 to manufacture; have an internal volume
of half a cubic meter; and so on and so forth.

But of course there are hundreds of other pro-
perties that you implicitly rely on: it should,
presumably, be structurally sound: you wouldn't

be happy with a deliciously cool plastic bag.

It shouldn't weigh more than a ton, or emit loud
noises. And it shouldn't fling projectiles out

at high speed when the door is opened. In general,
it is impossible, when writing specifications, to
include everything that you want: Tlegal contracts,
and other humanly interpretable specifications,

are always stated within a background of common
sense, to cover the myriad unstated and unstatable
assumptions assumed to hold in force. (Current
computer programs;, alas, have no common sense, as
the cartoonists know so well.)

So it “is hard to make sure that everything
that meets your specification will really be a
refrigerator; it is also hard to make sure that
your requirements don't rule out perfectly good
refrigerators. - Suppose for example a customer

plugs a toaster in, puts it inside the refrigerator
and complains that the object he received doesn't
meet the temperature specification and must there-
fore not be a refrigerator. Or suppose he tries

to run it upside down. Or complains that it

doesn't work in outer space, even though you didn't
explicitly specify that it would only work within
the earth's atmosphere. Or spins it a 10,000 rpm.
Or even just unplugs it. In each case you would

say that the problem lies not with the refrigerator
but with the use. But how is use to be specified?
The point is that, as well as modelling the

artifact itself, you have to model the relevant

part of the world in which it will be embedded.

It follows that the model of a refrigerator as a
device that always maintains an internal temperature
of between 3 and 6 degrees is too strict to cover
all possible situations. One could try to model
what appropriate use would be, though specifications
don't ordinarily, even try to identify all the rele-
vant circumstantial factors. As well as there

being a background set of constraints with respect
to which a model is formulated, in other words, there
is also a background set of assumptions on which a
specification is allowed at any point to rely.

7. The Limits of Correciness

It's time to summarize what we've said so far.
The first challenge to developing a perfectly
"correct" computer system stems from the sheer
complexity of real-world tasks. We mentioned at the
outset various factors that contribute to this
complexity: human interaction, unpredictable fac-
tors of setting, hardware problems, difficulties
in identifying salient levels of abstraction, etc.
Nor is this complexity of only theoretical concern.
A December 1984 report of the American Defense
Science Board Task Force on "Military Applications
of New-Generation Computing Technologies" identifies
the following gap between current laboratory demon-
strations and what will be required for successful
military applications - applications they call
“Real World; Life or Death". In their estimation
the military now needs (and, so far as one can
tell, expects to produce) an increase in the power
of computer systems of nine orders of magnitude,
accounting for both speed and amount of information
to be processed. That is a 1,000,000.000-fold
increase over current research systems, equivalent
to the difference between a full century of the
entire New York metropolitan area, compared to one
day in the 1ife of a hamiet of one hundred people.
And remember that even current systems are
already several orders of magnitude more complex
that those for which we can currently develop
proofs of relative consistency.

But sheer complexity has not been our pri-
mary subject matter. The second challenge to
computational correctness, more serious, comes from
the problem of formulating or specifying an appro-
priate model. Except in the most highly artificial
or constrained domains, modelling the embedding
situation is an approximate, not a complete, endea-
vour. It has the best hopes of even partial suc-
cess in what Winograd has called "systematic
domains": areas where the relevant stock of objects,
properties, and relationships are most clearly and
reqularly pre-defined. Thus bacteremia, or ware-
house inventories, or even flight paths of air-

24

planes coming into airports, are relatively
systematic domains, at least compared to conflict
negotiations, any situations involving intentional
human agency, learning and instruction, and so
forth. The systems that land airplanes are hybrids
- combinations of computers and people - exactly
because the unforeseeable happens, and because what
happens is in part the result of human action,
requiring human interpretation. Although it is
impressive how well the phone companies can

model telephone connections, lines, and even
develop statistical models of telephone use, at a
certain level of abstraction, it would neverthe-
less be impossible to model the content of the
telephone conversations themselves.

Third, and finally, is the question of what
one does about these first two facts. It is
because of the answer to this last question that
I have talked, so far, somewhat interchangeably
about people and computers. With respect to the
ultimate limits of models and conceptualization,
both people and computers are restrained by the
same truths. If the world is infinitely rich and
variegated, no prior conceptualization of it, nor
any abstraction, will ever do it full justice.
That's ok - or at least we might as well say that
it's ok, since that's the world we've got. What
matters is that we not forget about that richness
- that we not think, with misplaced optimism, that
machines might magically have access to a kind of
“correctness" to which people cannot even aspire.

It is time, to put this another way, that
we change the traditional terms of the debate.
The gquestion is not whether machines can do things,
as if, in the background, Tlies the implicit assump-
tion that the object of comparison is people. Plans
to build automated systems capable of making a
"decision", in a matter of seconds, to annihilate
Europe, say, should make you uneasy; requiring a
person to make the same decision in a matter of
the same few seconds should make you uneasy too,
and for very similar reasons. The problem is
that there is simply no way that reasoning of any
sort can do justice to the inevitable complexity
of the situation, because of what reasoning is.
Reasoning is based on partial models. Which means
it cannot be guaranteed to be correct. Which means,
to suggest just one possible strategy for action,
that we might try, in our treaty negotiations,
to find mechanisms to slow our weapons systems
down.

It is striking to realise, once the comparison
between machines and people is raised explicitly,
that we don't typically expect "correctness" for
people in anything 1ike the form that we pre-
sume it for computers. In fact quite the opposite,
and in a revealing way. Imagine, in some by-gone
era, sending a soldier off to war, and giving him
(it would surely have been a "him") final instruc-
tions. "Obey your commander, help your fellow-
soldier", you might say, "and above all do your
country honour". What is striking about this is
that it is considered not just a weakness, but a
punishable weakness - a breach of morality - to
obey instructions blindly (in fact, and for rele-
vant reasons, you generally can't follow instruc-
tions blindly; they have to be interpreted to the
situation at hand). You are subject to court-

martial, for example, if you violate fundamental
moral principles, such as murdering women and
children, even if following strict orders.

In the human case, in other words, our social
and moral systems seem to have built in an accep-
tance of the uncertainties and Timitations inherent
in the model-world relationship. We know that the
assumptions and preconceptions built into instruc-
tions will sometimes fail, and we know that instruc-
tions are always incomplete; we exactly rely on
Jjudgment, responsibility, consciousness, and so
forth, to carry someone through those situations -
all situations, in fact - where model and world part
company. In fact we never talk about people, in
terms of their overall personality, being correct;
we talk about people being reliable, a much more
substantive term. It is individual actions, fully
situated in a particular setting, that are correct
or incorrect, not people in general, or systems.
What leads to the highest number of correct human
actions is a person's being reliable, experienced,
capable of good judgment, etc.

There are two possible morals here, for
computers. The first has to do with the notion
of experience. In point of fact, program verifi-
cation is not the only, or even the most common,
method of obtaining assurance that a computer
system will do the right thing. Programs are
usually judged acceptable, and are typically accep-
ted into use, not because we prove them "correct",
but because they have shown themselves relatively
reliable in their destined situations for some
substantial period of time. And, as part of this
experience, we expect them to fail: there always
has to be room for failure. Certainly no one
would ever accept a program without this in situ
testing: a proof of correctness is at best added
insurance, not a replacement, for real 1ife expe-
rience. Unfortunately, for the ten million lines
of code that is supposed to control and coordinate
the Star Wars Defense System, there will never,
God willing, be an in situ test.

One answer, of course, if genuine testing is
impossible, is to run a simulation of the real
situation. But simulation, as our diagram should
make clear, tests only the left-hand side relation-
ship. Simulations are defined in terms of models;
they don't test the relationship between the model
and world. That is exactly why simulations and
tests can never replace embedding a program in
the real world. All the war-games we hear about
and hypothetical military scenarios, and electronic
battlefield simulators, and so forth, are all
based on exactly the kinds of models we have been
talking about all along. In fact the subject of
simulation, worthy of a whole analysis on its own,
is really just our whole subject welling up all
over again.

I said earlier that there were two morals to
be drawn, for the computer, from the fact that we
ask people to be reliable, not correct. The second
moral is for those who, when confronted with the
fact that genuine or adequate experience cannot be
had, would say "oh, well, let's build responsibility
and morality into the computers - if people can
have it, there's no reason why machines can't have
it too." Now I will not argue that this is inhe-

rently impossible, in a metaphysical or ultimate
philosophical sense, but a few short comments are
in order. First, from the fact that humans some-
times are responsible, it does not follow that we
know what responsibility is: from tacit skills no
explicit model is necessarily forthcoming. We sim-
ply do not know what aspects of the human condition
underlie the modest levels of responsibility to
which we sometimes rise. And second, with respect
to the goal of building computers with even human
Tevels of full reliability and responsibility, I
can state with surety that the present state of
artificial intelligence is about as far from this
as mosquitos are from flying to the moon.

But there are deeper morals even than these.
The point is that even if we could make computers
reliable, they still wouldn't necessarily always
do the correct thing. People aren't provably "cor-
rect", either: that's why we hope they are respon-
sible, and it is surely one of the major ethical
facts is that correctness and responsibility don't
coincide. Even if, in another 1,000 years, someone
were to devise a genuinely responsible computer
system, there is no reason to suppose that it would
achieve "perfect correctness” either, in the sense
of never doing anything wrong. This isn't a failure
in the sense of a performance limitation; it stems
from the deeper fact that models must abstract, in
order to be useful. The lesson to be learned from
the violence inherent in the model-world relation-
ship, in other words, is that there is an inherent
conflict between the power of analysis and concep-
tualization, on the one hand, and sensitivity to
the infinite richness, on the other.

But perhaps this is an overly abstract way to
put it. Perhaps, instead, we should just remember
that there will always be another moon-rise.

Notes

1. Edmund Berkeley, The Computer Revolution,
Doubleday, 1972, pp. 175-177, citing news-
paper stories in the Manchester Guardian
Weekly of Dec. 1, 1960, a UPI dispatch pub-
lished in the Boston Traveller of Dec. 13,
1960, and an AP dispatch published in the
New York Times on Dec. 23, 1960.

2. McCarthy, John, "A Basis for a Mathematical
Theory of Computation", 1963, in P.Braffort
and D. Hirschbert, eds., Computer Programming
and Formal Systems, Amsterdam: North-Holland,
1967, pp. 33-70. Floyd, Robert, "Assigning
Meaning to Programs", Proceedings of Symposia
in Applied Mathematics 19, 1967 {also in F.T,
Schwartz, ed, Mathematical Aspects of
Computer Science, Providence: American Math-
ematical Society, 1967). Naur, P., “Proof of
Algorithms by General Snapshots", BIT Vol. 6
No. 4, pp. 310-316, 1966.

3. Al Stevens, BBN Inc., personal communication.
4, See for example R.S. Boyer, and Moore, J.S.,
eds., The Correctness Problem in Computer

Science, London: Academic Press, 1981,

5. Fletcher, James, study chairman, and McMillan,
Brockway, panel chairman, Report of the Study

()}
@

on Eliminating the Threat Posed by Nuclear
Ballistic Missiles (U), Vol. 5, Battle
Management, Communications, and Data Pro-
cessing (U), U.S. Department of Defense,
February 1984.

See, for example, the Hart-Goldwater report
to the Committee on Armed Services of the
U.S. Senate: "Recent False Alerts from the
Nation's Missile Attack Warning System"
(Washington, D.C.: U.S. Government Printing
O0ffice, Oct. 9, 1980); Physicians for
Social Responsibility, Newsletter,
"Accidental Nuclear War", (Winter 1982),

p. 1.
Ibid.

Berkeley, op. cit. See also Daniel Ford's
two part article "The Button", New Yorker,
April 1, 1985, p. 43, and April 8, 1985,

p. 49, excerpted from Ford, Daniel, The
Button, New York: Simon and Schuster, 1985.

In point of fact, developing software for

fault-tolerant systems is an extremely tricky

business.

26

	SIGCAS frontmatter
	Limits (SIGCAS) — Bare

