
	 5 · Implementation of Procedural Reflection

	 5 · 53

Draft Version 0.81 — 2018 · Mar · 3

			 Annotations1

a1
	

·1/-1/-3:-1	 It is striking that this characterization is expressed in terms of rei-
fication, which at least in the first instance appears to be an onto-
logical notion, rather than semantically, in terms of an ability for a
reflection system to reason “about” its own structures, operations,
and behavior. For purposes of this paper the semantical point was
relegated to a foonote (·4/n3; cf. a4, below). As discussed in §··· of
the Cover, however, I believe that reification, too, is fundamentally
a semantical phenomenon.

a1.5	·2/1/-2:-1	 Cf. annotation a… of ch. 4, at ·…/….
a3	 ·4/1/4:5	 In describing structures in terms of “programs and data” we were

imposing only a single serial reduction2 between the overall behavior
of a user’s program and the underlying language processor, rather
than two: one between the overall user process a and the process b
engendered by the user’s program dealing with their data structures,
and then a second, in turn, on b, describing it as constituted by the
program (i.e., the code as passive) and the active language proces-
sor. The reason for not imposing the more complex dual registra-
tion in the reflective case arose in part because of the complexities
that result in dealing with reflective code, which from one point of
view is data (to the reflective processor), and from another point of
view is “interior” to the process b that deals with the user’s object-
level data structures.

a4	 ·4/n3	 Cf. a1, above.
a5	 ·7/1/-3:-1	 It would have better if the last sentence of this paragraph had been

written: “The relationship is this: if we say that g is running at level
k, we mean that a program at level k is run by g directly, without the
intervention of any higher levels of rpp.”

a6	 ·7/2/-1	 The previous try would “not succeed” just in case g were to encoun-
ter a reflective request, which it would not be equipped to handle.

a7	 ·8/1/8:9	 Cf. the discussion in the ch. 2 «…where?…» of the constant theme,
which permeates 3Lisp and the presented model of reflection in
general, of eliding or even fusing semantical notions of description
and procedural notions of implementation.

a8	 ·10/0/3	 Absorption is introduced on p·· of §8 of “The Correspondence Con-
tinuum,” ch. 12; cf. also annotation a34 of “Reflection and Seman-

1. References are in the form page/paragraph/line; with ranges (of any type)
indicated as x:y. For details see the explanation on p.·
2. For an explanation of serial reductions see. ch. ··, §··, p. ··.

5 · 54	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

tics in Lisp,” ch. 4, re ·31/1/-9:-1 in that paper, where there is also
a brief introductory characterization. Note also the subsequent use
of the notion here in ·10/2.

a9	 ·14/0/3	 ‘↑’ and ‘↓’ are primitive (built-in) notational abbreviations for the
simple extensional procedures up and down, respectively.3 Thus

‘↑exp’ and ‘↓exp’ are fully equivalent—both procedurally and declar-

atively—to ‘(up exp)’ to ‘(down exp)’, respectively.
a10	 ·17/-2	 The issues of what otherwise implicit aspects of a computation

should be “explicitised” upon reflection, and of how to define dia-
lects in which some but not others could be rendered explicit in ways
that would dovetail with other reflective code that made different
aspects explicit, were background concerns throughout the work
on 3Lisp. Cf. the discussion in annotation a43 re passage ·47/0/-
5:-1 of “Reflection and Semantics in Lisp,” ch. 4, which talks about
discussions of this issue in my research group at Xerox Palo Alto Re-
search Center (parc) in the 1980s, and the subsequent emergence
of aspect-oriented programming from members of that group.

I believe that the issue remains open and appropriate for further
research, but also that treating it adequately will require something
on the order of the fan calculus discussed in the Introduction.

a11	·17/-1/3:4	 Lisp 1.5 and other standard Lisps do not need to quote lambda
expressions when used, as it might be said, “in function position”—
e.g., in such a construct as ((lambda (x) (+ x 1)). In all such dialects,
however,4 they do have to be quoted when they are passed as ar-
guments or results—e.g., in the expression (apply '(lambda (x) (+ x
1)) 3)—or, as a philosopher might put it, when the functions they
designate are mentioned or objectified.

a12	 ·18/0/4	 fexprs in MacLisp and nlambdas in Interlisp were so-called “special
forms,” used to define functions which did not automatically evalu-
ate their arguments. Cf.:4.5

http://www.nhplace.com/kent/Papers/Special-Forms.html

As indicated in the above report, fexprs and nlambdas were widely
disparaged—in no small part, I believe, because, while inchoately re-

3. up and down were called name and referent, respectively, in Smith

[1982], of which parts are included here in ch. 3.
4. I.e., in all dialects of Lisp—at least at the time this was written—other than
Scheme, 2Lisp, and 3Lisp.
4.5. «…cite; date…»

	 5 · Implementation of Procedural Reflection

	 5 · 55

Draft Version 0.81 — 2018 · Mar · 3

flective, they were not provided within a context in which reflective
or meta-level access to “code as data” was adequately understood,
disciplined, or controlled.

a13	·34/0/-3:-1	«…cite, describe, provide a pointer to, Jun’s Ruby implementation»
a14	 ·35/-1/-2	 In the technical report version of this paper (cf. p. ··), this line was

erroneously printed as

	 (&&call state cont ↑(↑proc! . ↑args!))

however the acm version was correct.
a15	 ·40/0/-3	 As mentioned earlier «…where?…», the implementation included

as an appendix in (Smith 1984), the original dissertation, did not
handle this issue properly. Cf. annotation a83, re ·136/0/-1, in ch.
3b.

a16	 ·45/-1/4	 An secd machine5 is an abstract virtual machine, originally designed
by Peter Landin, designed to evaluate λ-calculus expressions, which
became a standard target for compilers of functional programming
languages.

5. An acronym for “Stack, Environment, Code, Dump,” names of its internal
registers.

