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Abstract

In a procedurally reflective programming language, all pro-
grams are executed not through the agency of a primitive and
inaccessible interpreter, but rather by the explicit running of
a program that represents that interpreter. In the correspond-
ing virtual machine, therefore, there are an infinite number
of levels at which programs are processed, all simultaneously
active, It is therefore a substantial question to show whether,
and why, a reflective language is computationally tractable.
We answer this question by showing how to produce an ef-
ficient implementation of a procedurally reflective language,
based on the notion of a level-shifting processor. A series of
general techniques, which should be applicable to reflective
variants of any standard applicative or imperative program-
ming languages, are illustrated in a complete implementation
for a particular reflective Lisp dialect called 3Lisp.

1 Introduction
As described in (Smith 1982a; Smith 198&),f a reflective com-
putational system is one in which otherwise implicit aspects
of the system’s structure and behavior are available for explicit
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gramming language is a particular architecture for reflection
in which all programs are executed not through the agency
of a primitive and inaccessible interpreter, but rather by the
explicit running of a program that represents that interpreter.
Since the latter program, which we call the reflective proces-
sor program (rp)," is written in the same reflective language
as the user program, it too must be executed by the explicit
running of a copy of itself. And so on ad infinitum. In the ab-
stract or virtual machine, in other words, no program is ever
run directly, but instead is run indirectly through the explicit
action of the running of the rep.

In the virtual machine, therefore, there are an infinite
number of levels at which programs are processed, all simul-
taneously active (in exactly the same way that a traditional
program written in some language L and the program that
implements language L are simultaneously active). Each level
has its own local state distinct from the state of neighbour-
ing levels (i.e., there is one “control stack” per level). The ar-
chitecture resembles an infinite tower of continuation-passing
metacircular interpreters,Jr except that (again as discussed in
(Smith 1984) [ch. 4]) there are crucial causal connections be-
tween the levels. Specifically, a program running at one level
can provide code to be run at the next higher level—i.e., at
the level of the original program’s processor—thereby gaining a1.5
explicit access to the formerly implicit state of the computation.

The situation is analogous to one where a user program is
allowed to insert code into the implementation, except that in
the reflective case the implementation is written in the same
language as the original user program. This facility enables the
user to define new control constructs, implement debuggers,
etc., without requiring special hooks into the actual implemen-

1. We use processor’ in place of ‘interpreter’ in order to avoid confu-
sion with the semantic (model-theoretic) notion of interpretation. See

tMcCarthy (1965), Steele & Sussman (1978b).
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tation. The technique is so powerful that large classes of con-
trol structures can be straightforwardly defined in a reflective
language in terms of primitive data-manipulation procedures.

Reflection is an important tool to add to any language
designer’s toolbox. Even if one decides that reflection is too
powerful to make generally available to users, a designer may
find that the task of producing a correct and complete imple-
mentation (e.g., including debugging facilities) is simplified by
adopting a reflective architecture as an underlying model. As
this paper will show, the issues that arise in implementing a
simple reflective language are remarkably similar to the issues
that arise in implementing complex non-reflective languages
containing primitive debugging facilities and fancy control
constructs. Also, reflection has interesting (and unique) prop-
erties that are a direct effect of making it possible to view a
computation from more than one vantage point at the same
time. For example, a purely functional procedurally reflective
language, entirely lacking side effects in its primitive functions
or special constructs, can nevertheless use reflection to define
an assignment statement.” In general, reflection is a technique
whereby a theory of a language embedded within a language
can convey otherwise unavailable power.

Given a virtual machine consisting of an infinite number of
levels of processing, it is clear that one of the most important
questions to ask about a reflective language is whether, and
why, it is computationally tractable. This paper addresses that
problem by considering the general question of producing an
efficient actual implementation of a procedurally reflective
language. We show, in other words, how to construct a finite
program to simulate an infinite tower of reflective levels. After

2. Exactly the same principle is employed when giving a denotational
semantic account of a programming language that has assignment state-
ments: the state of the computation that was implicit at the level of the
program is made explicit at the level of the mathematical metalanguage
in which the account of the language is formulated.
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presenting general principles and techniques that should apply
to reflective variants of any standard applicative or imperative
programming languages, we present an efficient implementa-
tion of a particular reflective Lisp dialect called 3Lispfr

2 Towers of Processing
We start by numbering each reflective level: o for the level at
which the user’s program is processed, 1 for the level at which
the program that runs the user’s program is processed, and
so on. In general, the structures (programs and data and so
forth) at any given level represent the state of the computation
one level below; thus level n+1 is one level “meta” to level n.> a3

This arrangement, which we call a tower, is depicted in fig-

ure 1. Finite heterogeneous towers of processing (i.e., a finite
number of different languages) are commonplace—a Lisp
program running at level o, run by the Lisp processor (inter-
preter) which is a machine language program running at level
1, which, in turn might be run by an emulator, a microcode
program running at level 2.* What distinguishes procedurally
reflective architectures is that the processing tower is infinite
and homogeneous. The user’s program (at level o) is run by
the rpp (running at level 1), which is in turn run by another
incarnation of that same rpp (at level 2). And so on.”

The claim that a user’s program runs at level o is in fact a

tSmith (1984) (included here as ch. 4), des Riviéres & Smith (1084).

3. Though it is not quite required by the underlying notion, it is natural
to have structures at one level designate (name) structures at the level ad
below. Again, see (Smith 1982a) and (Smith 1984).

4. In a finite tower, there is one level which is run “by the hardware’, at
which point there is no further program, and therefore no question of
who runs it. See (Smith 1982b).

5. Throughout, we assume that a level implements the level below it, so
the sense of direction is opposite from common practice, where one
normally thinks of an implementation of a language as being below the
language implemented. Our usage, however, is in line with the custom-
ary view that a name or designator is above the referent or designation
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lie: the whole point of procedurally reflective languages is to
allow user code also to run at level 1 or higher, thereby giving
user programs explicit access to the data structures encoding
their own state, and therefore power to direct the course of
their own computation. What we are calling the actual imple-
mentation (that process that mimics the virtual infinite tower)

- must therefore be able to pro-

. vide explicit structures encoding
. the otherwise implicit state of the
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Figure 1 — Processing Levels in a

Reflective Tower The first step in providing such

an implementation is to dis-
charge the threat of the infinite. The key observation is that
the activity at most levels—in fact at all but a finite number of
the lowest levels—will be monotonous: the rep will primarily
be used to process the same old expressions, namely those that
make up the rep itself. From some finite level k all the way to
the “top,” in other words, the tower will just consist of the pro-
cessor processing the processor. Identify as kernel those ex-
pressions in the Rpp that are used in the course of processing
the rep which is running one level below.® Call a processing
level boring if the only expressions that are processed at that
level (in the course of a computation) are kernel expressions.
Define the degree of introspection (A) of a program to be the
least m such that when the program is run at level o, all levels

6. There are three classes of expressions that one might think of as the
relevant base for the induction: those that are primitive, those that are
simple (i.e., do not involve reflection), and those that are kernel. In 3Lisp

kernel ones that are key to a correct implementation.
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numbered higher than m are boring.

All programs consisting entirely of kernel expressions have
A=o. Normal programs (i.e., standard user programs that
do not use any reflective capabilities) will have A=1, meaning
that no out-of-the-ordinary processing is required at level 1.

Terplew e tion prsoser_ €5 e o et el §
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Figure 2 — How to run a A=n program

The processing of the level
o program, in other words,
will not entail running non-
kernel code at level 1. A=2
would be assigned to pro-
grams that involve running
non-kernel user code at
levels o and 1, but not at the
second reflective level. And
so on. Just as a correct im-
plementation of recursion
is not required to terminate

with a black-box processor when a procedure recurses
that can handle only A=1 indefinitely, a correct imple-
programs mentation of a procedur-

ally reflective system need
terminate only on computations having a finite degree of in-
trospection. Tractable reflective programs, in other words, are
those with a finite degree of introspection (A).

We can now formulate a general plan for implementing a pro-
cedurally reflective system. Suppose that one has an imple-
mentation processor G (a real, active, processor—not just a
program for a processor) that engenders the behavior of the
processor for the language provided that the program it is given
to run has A=1. The existence of such a G is a reasonable pre-
sumption, since G is essentially just a processor for the lan-
guage in question stripped of its reflective capabilities. A pro-
cedurally reflective language minus the ability for the user to
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use reflection is likely to be conventional. 3Lisp minus reflec-
tion, for example, is a simple Scheme-like language that will
succumb to standard implementation techniques.”

Given G, we can show why any reflective program is trac-
table by induction. The crucial observation is that the overall
degree of introspection (A) of an rpp that is running some
A=n program is itself A=n—1 (this follows directly from the
definition of A). So, if instead of having the user program run
directly by G, it is run indirectly by the rep which itself is run
directly by G, then any A<2 user program will be processed
correctly. In general, any A<n program can be run correctly
by G provided that n—1 levels of genuine rpp are placed in be-
previously only about a program’s running at a given level; after
introducing G we have described it—an active process, not a
program—as running at some level as well. The relationship is
this: if G is running at level k, we mean that a program at level k
is run by G directly, without any higher levels of rep.) A5

Since it is unlikely that a program’s A can be determined
without processing it, the tractability argument just given does
not lead directly to a very useful implementation strategy. But
based on its insight, we can design a series of implementations,
the final version of which is actually reasonably efficient. The
first approach is simply to start out with G running at some
level, and then to restart the computation at the beginning
with G at a higher level if the previous try does not succeed.

More formally, assume initially that A=1, and give the pro- a6
gram to G to run directly. If G detects that the program that it
is running has A>1, start the whole computation over again,
but this time run the user program indirectly, with one more
level of intervening rpp. Repeat this last step until G does not
protest. This procedure is guaranteed to terminate for any
computation with a finite degree of introspection; it requires
only that G be able to recognize, at some point during its process-

tAllen (1978), Steele (1977a), and Henderson (1980).
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ing, that a computation has a A>1, and that the computation
be re-startable.” Both of these assumptions are theoretically
reasonable, even though this whole approach is not practically
recommended.

It would be far better, of course, if there were some computa-
tionally tractable way of inferring the instantaneous state of
the level n+1 rPP from the instantaneous state of the level n
one. This suggestion, which would mean that computations
would not need to be restarted, is not as unlikely as it might
first seem. The processing that goes on at adjacent levels is al-
ways strongly correlated (since, after all, level n+1 essentially
“implements” level n). Adjacent levels are related by “meta’-
ness; it is not as if different levels have “minds of their own.’
If it were possible to make such a step, one could refine the a7
implementation strategy so as not to restart the computation
when an impasse was reached, but rather to “manufacture” the
state that would have existed one level up, had the implemen-
tation been explicitly running at that level from the beginning.
In other words, the overall strategy would be improved if
the actual implementation processor could make an instanta-
neous shift up, when needed, to where it would have been had
an extra level of explicit Rpp been in effect since the start. Call
such a modified implementation processor G@. Thus a A=n
program would be run directly by GEl until it was discovered

7. The re-startability of a computation does not imply that external
world side effects (e.g., input/output) would be out of the question for
a procedurally reflective system run in this way. All that would be re-
quired is for all interactions with the external world to be remembered
by G. Since the restarted computation will retrace its steps up to the
point that G detected the problem, except now mediated by an extra lev-
el of reflective processor program, the replayed computation is guaran-
teed to be the same as it was the last time. The replay up until this point
could therefore be performed without external world interaction—i.e.,
by blocking output and using remembered inputs instead. Then when it
reaches this same point, interaction can be resumed in a normal fashion.
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that #n>1, at which time the internal state of ¢l would be used
to create the explicit state that would be passed to the explicit
rpp that would take over running the user program. After
modifying its own internal state to reflect what would have
been the state one level up, GA could devote its attention to
running the rRpp. This means that the original program will
now be run indirectly. It will continue to be run that way until
such time as it is revealed that n>2, at which time @ would
shift up again, and will start running the base-level program
double-indirectly. And so on.®

Over the course of the computation, in other words, &
will gradually climb to higher and higher reflective levels. Al-
though its strategy for shifting levels is not very sophisticated,
G exemplifies the fundamentally important idea of a level-
shifting implementation. All of the implementation proces-
sors we will discuss in the rest of the paper are level-shifting as
well; they merely have more complex shifting strategies.

Invariably, each additional level of indirection will degrade the
system’s performance with respect to the bottom level of the
user program. This is not a minor concern, given that proces-
sor overhead is typically measured in orders of magnitude.
What we would really like is an implementation processor
that will never run at any higher level than necessary. Not only
should the implementation be able to shift up easily, in other
words; it should also be able to shift back down whenever it
discovers that things are getting boring—i.e., when it starts
processing kernel expressions again.

To make this formal, we have to define local, rather than
global, notions of boredom and introspective degree, but
those are relatively straightforward extensions. That is, when
it appears that the program that the implementation proces-

8. We are assuming (not unreasonably) that the point at which it is de-
termined that A>1 is a point at which all upper levels would have been
boring so far, even if they had been run explicitly. A more formal treat-
ment would make this explicit.
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sor is running directly has a local A=o, the implementation
processor should compensate by absorbing the explicit state

of the rpp it was previously running directly, and proceed a8
to take direct responsibility for running of the computation
formerly one level below. This ensures maximum utilization

of the capability of the implementation processor to directly
run arbitrary A=1 computations. An actual implementation
will be called optimal if it never processes a kernel expression
indirectly.

There are two subtleties here. First, it is not necessarily rea-
sonable to expect that every rpp will permit the appropriate
determination of local boredom. Once the user has been able
to run code at a meta level, there would seem to be no telling
what might have been done there. Some sort of “time bomb”
might have been planted that will detonate at some later point
in time. If, however, the local notion of boredom just cited can
be used to say that a local portion of a program is boring, even
if some of its embedding context is not, then the implementa-
tion can depend on the fact that it is safe to turn its back on an
arbitrary number of boring levels of processing, just so long as
it can turn around and shift back up the moment any of them
becomes interesting again. In other words, it would seem in
general to be very difficult to determine whether it is safe to
shift down. On the other hand, as the 3Lisp example will show
in some detail, there are some reasonable assumptions and
techniques that enable optimality at least to be approached.

Second, we said above that, when shifting down, the imple-
mentation should absorb the explicit state of the rpp it was
previously running directly. It takes some care to determine
just what it is to absorb this state in such a way that it can later
be rendered explicit, should the need arise, as the discussion
of 3Lisp will show.

In broad terms, these considerations lead to an adequate
implementation strategy. A correct implementation is one that
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engenders the same computation as that specified by the limit,
as n@oo, of a tower of n reflective processor levels run at the
top (nth) level by an actual processor. The base case for an efli-
cient but correct processor requires an independent specifica-
tion of the capabilities of an implementation processor capa-
ble of running only A=1 programs. The induction step shows
that adding an extra level of processing engenders exactly the
same computation while increasing by one the maximum de-
gree of introspection that can be handled. In order to produce
a level-shifting implementation we also need computationally
effective rules for determining when and how to shift up and

back down.

3 3.Lisp: a Reflective Dialect of Lisp

Before we can make this all more precise, we need a specific
reflective language to use as an example. 3LispJr is a reduction-
based, higher-order, lexically scoped dialect of Lisp whose
closest ancestor is Scheme. Other than its reflective capa-
bilities (described below), the most significant way in which
3Lisp differs from its ancestors is that the notion of evaluation
is rejected in favour of a rationalized semantics based on the
orthogonal notions of:

1. Reference: what an expression designates, stands for, re-
fers to, names); and

2. Simplification: how an expression is handled by the
3Lisp processor; what is returned.

Specifically, all 3Lisp expressions are taken as designating
something; the 3Lisp processor then embodies a particular
form of simplification called normalisation, in which each
expression is reduced to a normal-form codesignator. The mo-
tivation for and semantics of such a language are discussed in
(Smith 1984)."

In 3Lisp, T designates truth and sF designates falsity. Ex-

t,# See chs. 3 and 4.
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pressions of the form [X X, ... x,] designate the abstract se-
quence of length n consisting of the objects designated by the
X in the specified order. Expressions of the form (F . A) des-
ignate the value that results from applying the function des-
ignated by F to the argument designated by A. The common
case of applying a function to a sequence of n (>0) arguments
(F . [X; X5 ... X,]) is abbreviated (F x; X, ... x,). The standard
sequence operations are named EMPTY, 1ST, REST, PREP, and
SCONs (corresponding to Lisp 1.5's NULL, CAR, CDR, CONS, and
LIST, respectively).

As is clearly indicated for any reflective language, 3Lisp con-
tains numerous facilities for quotation and general reference
to other program structures. In general, if X is any expression,
the quoted expression 'X is used to designate x (' is a primi-
tive notation; it is not an abbreviation for (QUOTE X)). When
one deals with quotation, one needs names for expressions of
various types. We say that '100 designates the numeral 100
(which in turn designates the number one hundred); 'sT desig-
nates the boolean sT; '[1 2] designates the rail [1 2]; 'Foo des-
ignates the atom FOO; '(X . Y) designates the pair (x . ). There
are also normal form function designators called closures,
which have no adequate printed representation. The expres-
sions '"FOO, ""[1],and ""'sF designate the handles 'Foo, '[1], and
"'sF, respectively. The standard functions NUMERAL, BOOLEAN,
RAIL, ATOM, PAIR, CLOSURE, and HANDLE are characteristic func-
tions for the seven kinds of expressions just listed.

The standard operations on sequences are polymorphic,
applying equally to rails. The additional standard operation
RCONS can be used to construct new rails: (RCONs) designates
the empty rail []. The standard operations on pairs are named
PCONS, CAR, and CDR; (PCONs 'A 'B) designates the pair (A . B);
(cAR '(A . B)) designates the atom A; and (CDR '(A . B)) desig-
nates the atom B. The standard operations on closures are
named CCONS, ENVIRONMENT, REFLECTIVE, BODY, and PATTERN. The
standard composite expression used to designate functions is
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of the form

(lambda type pattern body)

where TYPE is usually either siMPLE (for non-reflective proce-
dures) or ReFLECT (for reflective procedures). Thus

(lambda simple [n] (+ n 1))

designates the successor function.

Despite the many minor differences between the languages,
readers familiar with Scheme should have little difficulty un-
derstanding 3Lisp programs. The reader is referred to (Smith
LQSA;)T for a more complete introduction to both the language
and to the intuitions that guided its development. Very much
like the metacircular interpreters discussed in Sussman &
Steele’s “Lambda papers,"jE we present in figure 3 (next page)
the continuation-passing 3Lisp rpp.

As mentioned above, 3Lisp is based on a notion of expres-
sion reduction, rather than evaluation: the processor (NOR-
MALISE, in place of the more standard EVAL) returns a co-desig-
nating normal-form expression for each expression it is given.*
We write “X B Y” to mean that X normalises to Y. For example:

(+12) 3
(pcons 'a 'b) '(a.b)
((lambda simple [x] (* x x)) 4) 16

The code for the 3Lisp rpp is given in figure 3. All the proce-
dures in the rpP code, other than those explicitly defined, are
straightforward, side-effect-free, data manipulation functions.
None have any special control responsibilities (except COND,
DEFINE, and BLOCK, whose definitions have been omitted only to
shorten the presentation). PROMPT&READ and PROMPT&REPLY is-
sue the system’s ‘level>" and ‘level=" prompts, and perform input

*Sussman & Steele (1975); Steele & Sussman (1976, 19783, 1978b, 1080);

Steele (1976, 1977a,1977b).

*By convention, variable names ending inl’ are used to indicate that they
will always designate normal-form structures.
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and output, respectively, but are otherwise innocuous. 0 and

0 mediate between a structure and what it designates. Some

examples: A9
0(+ 2 2) '
o(+ 2 2) g
04 '4
0'(+22) (+22)

There are no hidden procedures; user programs may use
ccons (the closure constructor), BODY, NORMALISE, etc.—even
0and 0—with impunity.

By defining special reflective procedures, using

(lambda reflect ...))

the user may augment the processor just shown. These reflec-

1 (define READ-NORMALISE-PRINT

2 ...(lambda simple [level env stream]

3 e (normalise (prompt&read level stream) env

4 e (lambda simple [result] ; C-REPLY
5 e (block (prompt&reply result level stream)

6 e (read-normalise-print level env stream))))))

7 (define NORMALISE

8 ...(lambda simple [struc env cont]
[ T (cond [(normal struc) (cont struc)]
I0  ceeeieeeeeiins [(atom struc) (cont (binding struc env))]
I ceeeceeenieeenn [(rail struc) (normalise-rail struc env cont)]
12 ceeeeeeeens [(pair struc) (reduce (car struc) (cdr struc) env cont)]))

13 (define REDUCE

14 ...(lambda simple [proc args env cont]

I5 e (normalise proc env

16 ... (lambda simple [proc!] ; C-PROC!
I7 e (if (reflective proc!)

I8 i, (O(de-reflect proc!) args env cont)

b IR (normalise args env

20 e (lambda simple [args!] ; C-ARGS!
2T e (if (primitive proc!)

22 e (cont [(Oproc! . Dargs!))
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tive procedures are handled by line 18 of REDUCE:
(O(dereflect proc!) args eny cont)

Thus suppose FOO is bound to a reflective procedure. When
the level 1 processor encounters (FOO E ... E,) in the program it
is running, the reflective procedure associated with the name
FoO is called at the same level as the processor, with exactly
three arguments: a designator of the non-normalised argu-
ment structure '[E, ... E,], the variable binding environment,
and the continuation. In this way, the user’s program may gain
access to all of the state information maintained by the proces-
sor that is running it. From this unique vantage point, it is easy
to realize new control constructs, such as catcH and THROW, or
to implement a resident debugger.

The infinite tower appears to the user exactly as if the sys-

23 e (normalise (body proc!)

24 i (bind (pattern proc!) args! (environment proc!))
25 e cont))))))))

26 (define NORMALISE-RAIL

27 ...(lambda simple [rail env cont]

28 ... (if (empty rail)

29 e (cont (rcons))

30 e (normalise (1st rail) env

£3 S (lambda simple [first!] ; C-FIRST!
32 eeeeeeeeiine (normalise-rail (rest rail) env

33 eeereeeeenines (lambda simple [rest!] ; C-REST!
34 e (cont (prep first! rest!)))))))))

35 (define LAMBDA
36 .. (lambda reflect [[kind pattern body] env cont]
37 ....(cont (ccons kind Oenv pattern body)))))

38 (define IF

39 .. (lambda reflect [[premise c1 c2] env cont]

40 ... (normalise premise env

41 ... (lambda simple [premise!] ; C-IF!
42 (normalise (ef Opremise! c1 c2) env cont)))))

Figure 3 — The 3Lisp Reflective Processor
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tem had been initialized in the following manner:’

4> (read-normalise-print 3 global)
3> (read-normalise-print 2 global)
2> (read-normalise-print 1 global)
1>

The user can verify this by defining a QUIT procedure that re-
turns a result instead of calling the continuation, thereby caus-
ing one level of processing to cease to exist:

1> (define QuIT (lambda reflect [args env cont] 'DONE))

1= QuUIT

1> (quit) ; QUIT is run as part of the level 1
2="'DONE ; processor, which it kills

2> (+ 2 (quit)) ; This time QUIT terminates the
3="'DONE ; level 2 processor

3> (read-normalise-print 1 global) ; Levels can be re-
created

1> (read-normalise-print 2001 global) ; at will; level numbers
2001> (quit) ; are arbitrary.
1="DONE

1> (quit)

3="DONE

The following code defines (as a user procedure) the Scheme
escape operator CATCH:

(define SCHEME-CATCH
(lambda reflect [[tag body] catch-env catch-cont]
(normalise

body

(bind tag
O(lambda reflect [[answer] throw-env throw-cont]

(normalise answer throw-env catch-cont))

catch-env)

catch-cont)))

tItalics are used to indicate user input.
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For example, the following expression would return 17:

(let [[x 1]

(+ 2 (scheme-catch punt
(*3(/4(if(=x1)
(punt 15)
Cx1)))N)

To some extent, a metacircular processor or RPP can be viewed
as an account of a language (or at least of how it is processed)
expressed within that language. As such, it “explains” various
things about how the language is processed, but depending on
the account, it can account for more or less of what is the case.
In particular, it is important to realize what the above 3Lisp
rpP does and does not explain.

The 3Lisp reflective processor was designed to be similar
to standard Scott-Strachey continuation-based semantic ac-
counts of A-calculus based languages.T Its primary purpose
is to explain the variable binding mechanisms and the flow
of control in the course of error-free computations. The ac-
count intentionally does not say anything about how errors
are processed, nor does it shed any light on how the field of
data structures are implemented, nor on how input/output
is carried out. These details are buried in the primitive pro-
cedures, and the reflective processor carefully avoids account-
ing for what they actually do. A different theory that did ex-
plain these aspects of the language could be written, yielding
a different rpp, and a different reflective dialect—all of which
would require a different implementation. But the basic ar- a10
chitecture and strategies we employ would generalize to such
other circumstances.

One of the many things that Scheme demonstrated was
that lexical scoping and the treatment of functions as first
class citizens resulted in a cleaner Lisp that no longer need-
ed to quote its LAMBDA expressions. 3Lisp goes a step further a11

+E.g., Stoy (1977), Muchnick (1980
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by showing how to incorporate, in a semantically principled
way, some of the other hallmarks of real systems, including;
constructing programs on-the-fly; making explicit use of EvaL
and ApPLY; FEXPRs and NLAMBDAS; and implementing a debugger a12
within a system.

4 Levels and Level-Shifting Processors
We explained in section 2 how an implementation of reflec-
tion might work; in this section we present the architecture
for such an implementation in much more detail. Although
we will use 3Lisp as a motivating example, our dependence
on its idiosyncrasies will not be crucial; the actual code for a
3Lisp implementation is deferred until section 5.

4a Level Shifting in Conventional Implementations

Although procedurally reflective architectures are new, the
idea of level shifting processors is not. Consider for example
an implementation of Lisp that supports both interpreted
and compiled procedures definitions. In such a system, the
non-compiled procedures will be defined by Lisp source code
(typically, LAMBDA expressions represented as list structure),
while the compiled ones will be represented by blocks of in-
structions acceptable to the machine on which the Lisp system
is implemented. Both kinds of procedures are represented as
code, but in different languages: the uncompiled source code,
which will be run by the implementation, is in Lisp, whereas
the compiled code, which will be run by the same processor
that runs the implementation (probably the cpu of the under-
lying machine—i.e., in machine language).

Given procedures in these two different languages, there
are complexities in having them interact properly—complexi-
ties that the whole system usually smooths over so well that
the user may never be aware of them. Consider in particu-
lar the procedure-call mechanism, where some procedure a
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calls another procedure B. In the simplest case, where both

A and B are represented by compiled code, the linkage is usu-

ally achieved directly using a machine language branch in-

struction to transfer control from A to the first instruction

of B (after arguments and the return address are loaded into

registers or pushed on a stack). On the other hand, when a

compiled procedure a calls a B

Gl for processiey o ook that has no compiled code associ-

ated with it, a machine-language

T
1
1

i transfer of control must be made
1

not from A to B, but from A to the
Ve codes Lm.‘ block of machine language code
that implements the explicit Lisp

processor (EVAL) that in turn can

Figure 4 — Simple level-shifting caused examine the list-encoded LAMBDA

by calls between compiled ) .
and non-compiled procedures expression repr'esentanon of 1.3. ‘
Once the Lisp processor is in
control, the situation is reversed. As long as neither A nor B is
compiled, everything is straightforward; the locus of control
at the machine language level remains within the Lisp pro-
cessor’s code, and that processor implements an appropriate
connection between the Lisp code for A and the Lisp code for
B. When a non-compiled a calls a compiled B, however, there
will have to be a machine-language level transfer of control
from the code for the Lisp processor to the code representing B.
As depicted in figure 4, this can be described as simple level
shifting between a level of direct processing (at the lower level,
where user code is run) and one of indirect processing (at the
upper level, where processors for user code are run). Shifting
up and shifting down both occur at times corresponding to
procedure-to-procedure calls (and returns). What controls
the level-shifting in this particular case is not the occurrence
of reflective procedures, but rather changes in language.
In particular, we are assuming that all user code is at the
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lower level—i.e., that all user code is run at level 0. Some of

that code is in Lisp; some is in machine language. At level 1

there is a program, written in machine language, that is a pro-

cessor program for Lisp; call this program M. In this simple

model, this is only one of four possible processor programs

one could have; the other three being a Lisp program to pro-

cess machine language (v ); a machine language program to

process machine language (m ), and a

e L .L15p program. to proc.ess Lisp (LL)—
ie, a metacircular interpreter for

Lisp in Lisp. The level shifting strat-

oo egy adopted by the implementation is

one that enables the implementation

Figure 5 — Level-shifting caused to get away with just (i) the one pro-

by calls to EvaL cessor program M, and (ii) a simple

underlying processor G that knows

only how to run machine language programs. If it adopted a

different level-shifting strategy, it might need some of those

other processor programs. For example, if the implementation

were not to shift down when it encountered a non-compiled

A to compiled B procedure call, it would need M —a machine

language program to interpret machine language. Similarly, if

it were to try to shift up on a non-compiled to non-compiled
procedure call, it would need L.

The analogy between standard implementations and imple-
mentations of reflection can be pushed even further by consid-
ering how matters are complicated when explicit calls to EvaL
are supported. Suppose that the expression (EvAL '(Foo 10)) is
found within the body of a (non-compiled) procedure named
FeE. When the implementation (specifically, the cpu running
the program m ) encounters this expression while processinga
call to FEg, control within the user’s program must pass to the
VAL procedure, which, we will assume for the moment, will
be defined via Lisp source code (i.e., we will assume that EvAL
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is bound to L, the metacircular processor program for Lisp).
The net effect will be that m_will process the code for Foo
indirectly specifically—m_will process 1 (the code for Eval),
which in turn will process Foo. So G (the cpu) will be two
levels away from the code for Foo.

It is a relatively simple change to the Lisp processor pro-
gram M_to have it recognize calls to evaL and treat them in
a special way that avoids this extra level of indirect process-
ing—in fact that is what most implementations of Lisp do
(see figure 5). This change also means that the code 1 need
not be kept in the system. Notice, however, that this change
is another form of level shift, not between compiled code and
the Lisp processor this time, but between the following two
different Lisp expressions:

(eval '(foo 10)) and  (foo 10)

It is no coincidence that there are strong similarities between
these two forms of level shifting—compiled vs. interpreted,
on the one hand, and ordinary expressions vs. arguments to
EVAL, on the other. The machine code for the Lisp processor
and the compiled code for EVAL are exactly the same thing: they
are both M —a program, written in machine language, to
process Lisp. The downward shift to avoid an extra level of
explicit processing on calls to EVAL is also the downward shift
to run the compiled code for EvAL In both cases, the relation-
ship between adjacent levels is the same: the computation that
happens implicitly at one level is being carried out explicitly
one level above it.

4b Analyzing a Processing Activity
While the simple level shifting techniques described above
might suffice to handle a non-reflective language with explicit
access to its processor, the task of implementing 3Lisp has
an additional complexity; viz., reflective procedures give the
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user a way of running procedures at arbitrary levels of the
program’s processor, including programs that are themselves
reflective. In effect, the user can get access into the middle
of NORMALISE (3Lisp’s counterpart to EVAL), making the job of
“‘compiling” NOrRMALISE more difficult than it would otherwise
be. Moreover, if you look carefully at the definition of 3Lisp
and at its RPP, several of the standard control constructs, such
as LAMBDA and IF, look dangerously circular, since they are both
defined as reflective procedures and also used in the account
of how the processor works. In order to implement a gener-
alised level-shifting processor of the sort suggested in the last
section, therefore, we first have to analyze the processing ac-
tivities that must go on with an eye to implementing some of
them directly, while allowing others to be carried out in virtue
of one or more levels of explicit processing.

In particular, we need to name various relationships be-
tween the code in a processor program and the code that such
a program processes.

First, if an expression or procedure to be applied is primitive,
or, more generally, if within the processor there is code that
corresponds exactly to the expression or procedure in question,
then that expression or procedure can be dealt with directly in
what amounts to a single processing step. We will call such
expressions and procedures directly implemented. Small in-
teger arithmetic, for example, is typically directly implemented
in Lisp implementations by the arithmetic capabilities of the
underlying machine language; primitive data structure opera-
tions (like cAR and cONs), at least in simple implementations,
are also directly implemented by special procedures.

Second, if an expression is not directly implemented, it can
usually be broken down into a series of constituent steps that
are either themselves directly implemented, or can be broken
down in turn, leading in the end to a long series of directly
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implemented expressions. Suppose for example we have the
following definition of the 3Lisp procedure 2nD:

(define 2nd
(lambda simple [x]
(1st (restx))))

Then the processing of (2ND [ 10 20]) can be broken down into
roughly the series of simpler processing activities correspond-
ing to the processing of (ResT [10 20]) and (15T [20]). We will
call this kind of processing decomposition engendered by the
standard compositional and recursive nature of programs a
horizontal decomposition, to correspond to the way we have
been depicting levels of processing. In procedure-based lan-
guages, procedure call boundaries usually serve as the most
convenient dividing lines or “click points” separating these
processing units. In general, a lengthy computation is carried
out in virtue of its horizontal decomposition into a series of
simple steps, each of which is directly implemented. (Hori-
zontal decomposition corresponds to the standard notion of a
computation tree, based on a compositional expression, with
the directly implemented steps as the leaves.)

As we have seen, the existence of a metacircular processor
program provides a third possible way of processing an ex-
pression. In particular, for any expression X, instead of pro-
cessing x we can do an upwards vertical conversion, and process
instead an expression that explicitly represents the processing of
x. For example, we can convert (2ND [10 20]) into (NORMALISE
'(2ND [10 20]) ... ). This upwards vertical conversion can then
in turn be horizontally decomposed, typically into more steps
than the original expression would have been decomposed
into. For example, the horizontal decomposition of

(normalise '(2nd [10 20]))

through NORMALISE and REDUCE, begins (roughly):
o1: (cond [(normal '(2nd [10 20])) ... ]
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02:
03:
04:
05:
06:
07:

08:
09:
10:
11:
128
13:
14:
15:

(normal '(2nd [10 20]))

; various internal steps within normal
(atom '(2nd [10 20]))
(rail '(2nd [10 20]))
(pair'(2nd [10 20]))
(reduce (car '(2nd [10 20]))

(cdr'(2nd [10 20]))

env

cont)
(car '(2nd [10 20]))
(cdr'(2nd [10 20]))
(normalise '2nd)
(normal '2nd)
; various internal steps within normal
(atom '2nd)
(binding '2nd ...")

Some expressions, like (NORMALISE '3 ... ), can be converted

down (to 3, in this case), although downwards conversion is

not always possible.

In sum, there are three ways in which an implementing pro-

cessor can attempt to perform any given processing activity:

1. It can implement it directly;

2. It can perform a horizontal decomposition, and pro-

cess the smaller steps; or

3. It can perform an upwards or downwards vertical con-

version, and then process the result at a different level.

Given this flexibility, we can make the following observations

concerning 3Lisp’s various kinds of procedures:

1. Primitive procedures, such as 1sT and up (or [, cannot
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metacircular processor shows:



(cont O(Oproc! . Oargs!))
and as common sense would suggest, every primitive
is used in the horizontal decomposition of every (up-
wards) vertical conversion of it. Hence the primitives
must be performed directly, or else be a part of some
larger activity that is performed directly.

2. Other simple (non-reflective) procedures can be de-
composed horizontally using the closure associated
with the procedure. However, simple procedures that
are part of the standard system and whose processing
can be completely decomposed a priori (this certainly
includes but is not limited to the kernel procedures)
are also candidates for being implemented directly; e.g.,
3Lisp’s BINDING and BIND.

3. Reflective procedure require one level of vertical con-
version (in some sense that is what reflective proce-
dures are), after which the (corresponding “de-reflect-
ed”) procedure can be decomposed horizontally using
the corresponding simple closure.

4c Tiling Diagrams
The notions of horizontal decomposition and vertical conver-
sion suggest an analogy. Imagine a simple tiling game, where
the objective is to find a continuous path from left to right
across an infinitely tall board consisting of rows of non-over-
lapping numbered tiles. You are only allowed to step on tiles
with certain numbers, and you are never allowed to “retreat”
(ie., to move to the left). As illustrated by the simple exam-
the row below. The best score is achieved by using the fewest
steps, so the general strategy is to stay as low as possible on the
board. On the other hand, there are two pitfalls that must be
avoided: (i) you do not want to end in a dead-end (no further
steps possible, necessitating a retreat, which is illegal); and (ii)
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you do not want to encounter a situation where you are climb-
ing a spike without a top.

The board shown in figure 6 was constructed according to
the following two rules:

1. Above every tile numbered x is a sequence of tiles y;

(listed in the form {x: y,}):

{2} {2034} {3015}  {4:35} {5014}

2. In constructing a path across the board, only odd-
numbered tiles may be stepped on.

Given these rules, the best successful path is illustrated by
(grey] tiles outlined with heavy lines.

In this example, given the particular way each tile is related
to the tiles above it, it is always possible to find a path, no mat-
ter what the bottom layer of tiles is chosen to be. Moreover,
it can be shown that no path ever need go higher than three
rows from the bottom (in order to
get over a 2-tile), and that the local
strategy of choosing the lowest pos-

1 2 - a - c sible path will always be optimal and
will never lead to a dead end. If the
rules were made more restrictive

by forbidding you to step on 3-tiles,

however, the game would still be
winnable; an optimal path under
these conditions is illustrated in fig-
ure 7"r However, the same cannot be said of either the 1-tile

Figure 6 — Tiling Game

To implement a reflective language is basically to play a tiling
game, where:

tFigures 7 and 8 were not included in the original version.
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1. Tiles correspond roughly to procedure calls;

2. Tiles above another tile are approximately (the hori-
zontal decomposition of) an upwards vertical conver-
sion of the lower tile;

3. Horizontal tiles represent horizontal decompositions;
and

4. Tiles that can be stepped on are procedures that have a
direct implementation.

Like the designer of a tiling game
that admits a winning strategy, there

is a twofold challenge: (i) you must
1 |2 |2|a4|2|E carefully select a collection of pro-

cessing activities that will be imple-

1 2 a mented directly (corresponding to

tiles that can be stepped on); and

(ii) for efficiency, you must play the
Figure 7 — No stepping on 3-tiles game well, which means coming
up with a near-optimal strategy for
achieving any A=n (» finite) computation that, by shifting ei-
ther up or down, avoids spikes and dead ends and crosses the
board in a minimum number of steps.

4d Direct Implementation of Kernel Procedures
We said earlier that the kernel of a reflective language consists

of those parts of the rep that are

cendeeedal ol aldulalos, used in the course of processing the

| | LA 1 [ [ 1 1 1 L1 .
P rpp one level below. For 3Lisp, call
1fz|s]|afas|s]s[a]s]a]s the six procedures NORMALISE, REDUCE,
1 |2 [z |a |2 |¢E NORMALISE-RAIL, LAMBDA, IF, and READ-
NORMALISE-PRINT the primary proces-

1 2 a sor procedures (ppps), and call their
embedded continuations (the RepLy,
PROC, ARGS, FIRST, REST, and IF continu-

Figure 8 — Insurmountable 1-tiles ations identified on lines 4, 16, 20, 31,

5.27
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33, and 41 of the rpP) the primary processor continuations
(ppcs). The 3Lisp kernel then consists of:

1. The ppps;
2. The ppcs;
3. The utilities like BINDING, BIND, and NORMAL; and
4. The primitives such as CAR, CDR, [, 0 and RCONS.

If the implementation were directly implemented (i.e., had
“‘compiled” versions of ) all the kernel procedures, it would be
guaranteed that any A=n (» finite) expression could be nor-
malised (the analogous situation in the tiling game would be
one where any tile on rows » and above could be stepped on).
The tiling analogy makes it clear why it is the kernel proce-
dures, not the primitive procedures, for which we need direct
implementations: since all primitives are used in the horizon-
tal decomposition of every vertical conversion of them, primi-
tives will form spikes in the tiling diagram, over which no
shifting strategy will be able to climb.

As we will discuss later, an implementation can be slightly
more minimal (directly implement fewer procedures), but di-
rectly implementing the whole kernel makes for the simplest
processor code, and the simplest shifting strategies. As with
the tiling game, the choice of a basis set cannot be made inde-
pendently of the strategy for shifting up and down.

4e When and How to Shift Up
The next important problem is to determine (i) the criteria
by which the implementation processor will decide that it is
necessary to shift up, and (ii) the mechanisms for achieving
this transition. We begin by observing that the state explic-
itly maintained at each level of processing by the reflective
processor consists of the expressions, environments, and con-
tinuations that are passed as arguments among the ppps. Not
captured at any particular level are the global state of input/
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output streams and the structural field itself; fortunately, how-
ever, the RpP does not use side effects to remember state infor-
mation (except when the program that it is running forces it to
process a side effect),9 As a result, when a shift up occurs, only
an expression, an environment, and a continuation will have
to be “pulled out of thin air.”

Shifting up will have to occur when control would leave the
implementation code that represents the directly implement-
ed kernel. This can happen at only a handful of places in the
rPP: at one of the continuation calls, (CONT ... ), and on line
18, where reflective procedures are called using the expression:

(O(de-reflect proc!) args env cont)

The real question is where in the implementation processor
should the shift up take us? In other words, it is one thing to
know where one needs to leave the level below and shift up; it
is much less clear where, in the level above, one should arrive.

Four possibilities suggest themselves. First, it would seem
that the implementation processor could shift from process-
ing (CONT ExP) to processing the following upwards vertical
conversions of (cont exp):

(normalise '(cont exp) €? €?)

Second, on the other hand, inspection of the rpp shows that
this is equivalent to:

(reduce 'cont '[exp] €? c?)

And if we assume that Exp and CONT normalise to Ex! and the
simple (non-reflective) closure CONT!, respectively, both of
these are equivalent to:

9. Although 3Lisp has primitive procedures that “smash” structures, in
this paper we will pretend that there are not any. Without this simplify-
ing assumption, bothersome technicalities would tend to obscure the
otherwise straightforward solution. The interested reader is referred to
the Interim 3Lisp Reference Manual (Smith & des Riviéres 1084) which
contains a correct implementation for the unabridged language.
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(reduce Ocont! '[exp] €7 c?)
(reduce Ocont! Olexp!] €? c?)

Since the higher level will in general be finer-grained (go
through more identifiable steps) than the level below it, there
is not a definitive choice to made among these. Given our
particular choice of ppps, all four of these possibilities are ac-
ceptable. Pure efficiency would suggest the last, since it is the
“furthest along” in the processing,. This in turn suggests an even
more efficient answer, and a more natural seam, at line 23 in
the ARGS continuation at the instant NORMALISE is about to be
called on the body of the (simple) conT! closure:

(normalise (body Ocont!)
(bind (pattern [cont!)

Ofexp!]
(environment Ocont!))
c?)

Since exp! and cONT! are part of the state of the implementa-
tion, and since this expression does not use an environment,
only the continuation c¢? needs to be pulled out of thin air.
What should this continuation be? The (somewhat surpris-
ing) answer is that the appropriate continuation is not a func-
tion of the current level of processing; rather, it is a function
only of the last processing done at the next higher level!

Why is this the case? The real answer is that it is because
3Lisp's RPP can be processed directly by a finite state machine,
but it is important to see why this is so. There are two critical
things to realize.

First, the rpp implements a “tail-recursive” dialect of Lisp

(e.g., Scheme; see (Steele & Sussman 1976a)); it is not proce-
dure calls per se that cause the processor to accumulate state,
but rather only embedded procedure calls. For example, with
respect to a call to the procedure represented by (LAMBDA siM-
PLE [X] (F (G X))), the call (G x) is embedded in the first argu-
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ment position of (F (G X)), and therefore requires the proces-
sor to save state until (G X) returns, just as in a conventional
implementation of procedure calls. The call to F, on the other
hand, is not embedded with respect to the initial call (rather, it
substitutes for it), and can be implemented much like a GoTo
statement, except that arguments must be passed as well. The
fact that 3Lisp has a tail-recursive processor can be seen by
inspecting the rpP and observing that:

1. The number of bindings in an environment is a (more-
or-less) linear function of the static nesting depth of
programs; and

2. When a call to a simple procedure is reduced, the
continuation in effect upon entry to REDUCE is the one
passed to NORMALISE for the body of the called proce-
dure’s closure.

The key implication of this is that when one procedure calls
another from a non-embedded context, the continuation car-
ried by the processor upon entry to the called procedure is the
same as what it was upon entry to the calling procedure.

The second crucial property is that the ppps always call one
another in non-embedded ways. Together with the first ob-
servation, this implies the following property of the reflective
processor processing the rpp itself:

The continuation carried by the processor upon entry to any
PPP is always the same.

This assertion can be phrased more precisely:

The (level 2) reflective processor (RPP) processing the (level
1) rPP processing a (level 0) A=1 structure always carries
the same level 2 continuation at every trip through level 2
REDUCE when the level 2 PROC is bound to 'NORMALISE.

In other words, if one were to “watch” the level 2 state upon
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entry to REDUCE, one would find that cONT was always bound
to the same closure whenever PROC is bound to the atom 'NOR-
MALISE (or 'REDUCE, or 'CONT, etc.).

Since the points in the rpp where the shift up will hap-
pen correspond to non-embedded calls within it—specifically,
either to ([(DE-REFLECT PROC!) ARGS ENV CONT) or to one of the
six (CONT ... ) expressions—the continuation that must be
reified is not a function of the current level of processing. In-
stead, it is the last continuation that was explicitly used at that
level, which will be the original RepLY continuation at the next
higher level, if user-defined code has never been run at that
level before.

4f When and How to Shift Down

Deciding when to shift down is similarly straightforward. The
implementation processor should shift down whenever it is
asked to process something that is directly implemented. In
practice, it is not necessary to shift down as soon as possible
(ie., full optimality need not be achieved); it suffices to recog-
nize only the situation where the implementation processor is
processing calls to ppps and ppcs, since all paths through the
rpP will pass through these procedures. The situation can be
detected in the code corresponding to the ARGs continuation
(i.e., is PROC! bound to the closure for a ppp or ppc?). It is also
essential that the arguments passed to the ppps be scrutinized,
to ensure that they are “reasonable” (of proper type and so
forth). If they are, the implementation processor can perform
a downwards conversion from (for example):

(normalise (body Onormalise)
(bind (pattern Onormalise)
args!
(environment [normalise))
cont)
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to

(normalise (1st [args!)
(2nd Oargs!)
(3rd [args!))

The continuation in effect prior to shifting down must be re-
corded in the absorbed state. Typically, it will be a RepLy con-
tinuation—the original one for that level of processing, born
within the call to READ-NORMALISE-PRINT that created that level
at the time of system genesis. However, since it is possible for
the user to write code that calls NORMALISE from an embed-
ded context, it is essential to save the continuation each time
a downward shift occurs so that it may be brought back into
play the next time the processor shifts up to this level.

How is it that we can store away a user-supplied continu-
ation and shift down, without knowing what behavior that
continuation will engender? The answer is simply that that
continuation will not be called—cannot come into play—un-
til such time as the computation at the lower level returns a
result. Since each pprp ends in a tail-recursive call, this chain
can break down only if some non-ppp is called which returns a
result instead of calling the continuation passed to it. But it is
precisely these calls that always cause a shift up (see the defini-
tion of &&CALL in the next section); hence, the implementation
processor will automatically find its way back to the appro-
priate level whenever a non-primary processor continuation

would be called at a higher level.

5 A 3:LISP Implementation Processor Program
The principal reason that the 3Lisp RpP cannot serve as a mod-
el for a real implementation (i.e., cannot be translated directly
into an appropriate implementation language like machine
language or c) is that it is not a closed program. As indicated
in line 18 of the rpp, the processing of reflective procedures
causes the locus of control to leave the ppps and venture off

5-.33
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into code supplied by the user. In the last section we gave a
general description of how to write a real implementation that
avoided this problem; in this section we use those strategies
and present a full closed program for a real implementation of
3Lisp. This program will be expressed in a conservative subset
of 3Lisp; no crucial use will be made of 3Lisps meta-struc-
tural, reflective, or higher-order function capabilities. We have
chosen to write this real implementation of 3Lisp in 3Lisp (i.e.,
to write a true metacircular processor for 3Lisp) because it al-
lows us to suppress many implementation details that would
necessarily surface if a different language were chosen. The
most important omissions are the memory representation of
the elements of the structural field, garbage collection, error
detection and handling, and all input/output. While impor-
tant, these concerns, which 3Lisp shares with other Lisp dia-
lects, are not germane to our particular topic of how to imple-
ment procedural reflection. What this program will do is to
discharge all of the salient issues having to do with reflection;
translating from the code presented here to an implementa- a13
tion in a more reasonable implementation language would be
straightforward.

5a The Basic Implementation Processor

As noted in earlier sections, the structure of the 3Lisp imple-
mentation processor program will be based on the structure
of the rep itself. Specifically, for each ppp there is a corre-
sponding implementation processor procedure bearing its
source’s name prefixed by ‘&&; e.g., &&NORMALISE implements
NORMALISE, As will be discussed later, each takes an additional
parameter named STATE that represents the absorbed state,
which is used only when shifting up or down (such shifts will
be indicated with underlined code). The following is the code
for the implementations of NORMALISE and REDUCE (&&NOR-
MALISE-RAIL and &&READ-NORMALISE-PRINT, derived in an analo-
gous manner, are given in the appendix):
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(define &&NORMALISE
(lambda simple [state exp env cont]
(cond [(normal exp) (&&call state cont exp)]
[(atom exp) (&&call state cont (binding exp env))]
[(rail exp) (&&normalise-rail state exp env cont)]
[

(pair exp)
(&&reduce state (car exp) (cdr exp) env cont)])))

(define &&REDUCE
(lambda simple [state proc args env cont]
(&&normalise state proc env
(make-proc-continuation proc args env cont))))

Similarly, for each type of ppc there is a corresponding im-
plementation processor procedure with names of the form
&8oXXX-CONTINUATION. E.g., &&PROC-CONTINUATION implements
the “PROC” type continuations (see lines 16—25 of the rep),
which field the result of normalising the procedure part of a
pair. While the Rpp continuations are closed in an environment
in which a handful of non-global variables are bound, their
implementation equivalents are passed these data as explicit
arguments (e'g., &&PROC-CONTINUATION 1is passed as arguments
the bindings of PROC, ARGS, ENV, and CONT from the incarnation
of &&REDUCE that spawned it). &&XEXPAND-CLOSURE (presented
below) implements the last clause of the “args” continuation,
although it does not correspond to a continuation on its own.
Again, two examples (the others are given in the appendix):

(define &&PROC-CONTINUATION
(lambda simple [state proc! proc args env cont]
(if (reflective proc!)
(&&call state [J(de-reflect proc!) args env cont)
(&&normalise state args env
(make-args-continuation proc! proc args env cont)))))

(define &&ARGS-CONTINUATION
(lambda simple [state args! proc! proc args env cont]
(if (directly-implemented proc!)
(&&call state cont O(Oproc! . Dargs!)) A14
(&&expand-closure state proc! args! cont))))
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Note that &&ARGS-CONTINUATION simply executes any proce-
dures which are implemented directly, using the same tech-
nique that is used in the rpp for primitives. If this code were
to be translated into a different implementation language, the
0(Oproc! . DARGS!) expression would be turned into appropri-
ate calls, for each directly implemented procedure, to the pro-
cedure that performs the direct implementation.

As well as defining these implementation procedures to
do the work of the ppcs, the implementation must also con-
tain code to create instances of the processor continuations
exactly as specified by the RpP—i.e., it must create the exact
ppc closures that would have been created had the rpp been
used explicitly. Such continuations will never be used by the
implementation as such, but since they are visible from user
code they must be perfectly simulated.

There are four procedures in the implementation to con-
struct closures of each of the four types. For example, the

(make-proc-continuation proc args env cont)

expression in &&REDUCE will produce the same closure that
lines 16-25 in ReDUCE would, given identical bindings for
the four variables. An example (the others are given in the

appendix):

(define MAKE-PROC-CONTINUATION
(lambda simple [proc args env cont]

O(ccons 'simple O(bind '[ proc args env cont reduce]
O[proc args env cont reduce]
global)

'[proc!]
'(if (reflective proc!)
(O(de-reflect proc!) args env cont)
(normalise args env
(lambda [args!]
(if (primitive proc!)
(cont O(Oproc! . args!))
(normalise (body proc!)
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bind (pattern proc!
P P
args!
(environment proc!))

cont))))))))

In many cases the implementation procedures call one another,
in exactly those places where the ppps in the rep call other
ppps. For example, &&NORMALISE calls &&REDUCE in just the
place (line 12) where NORMALISE would call Rebuce. However,
in those cases where it is not possible to determine exactly
which procedure to call, the implementation procedures defer
this task to &&caLL. E.g., whereas in lines 9 and 10 of the rpp
NORMALISE calls the procedure designated by the local variable
CONT, the corresponding lines in &&NORMALISE pass the buck to
&&caLL, which inspects the closure designating the function
to be called. If the closure is a ppP or a ppc, the corresponding
implementation procedure (&&...) is invoked. In the case of
ppcs, the non-global bindings captured within them must be
extracted and passed as extra arguments to the implementa-
tion versions, as discussed earlier. (The two shift-up cases will

be discussed below.)

(define g&cALL
(lambda simple x
(let [[state (1st x)] [f (2nd x)] [a (rest (rest x))]]
(cond [(ppp [f) (&&call-ppp state fa)]
[(ppc [Of) (&&call-ppc state f (1st a))]
[(directly-implemented 0Of)
(&&call (shift-up state)
(reify-continuation state)
0(F.a))]
[st (&&expand-closure (shift-up state)
Of Oa (reify-continuation state))]))))

(define &&cALL-PPP
(lambda simple [state fa]
((select (ppp-type [If)
['normalise &&normalise]
['normalise-rail &&normalise-rail |
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['reduce &&reduce]
['read-normalise-print &&read-normalise-print]
['if &&if]
['lambda &&lambdal])
. (prep state a))))

(define g&cALL-PPC
(lambda simple [state farg]

(select (ppc-type Of)
['proc (&&proc-continuation state arg

(ex 'proc f) (ex 'args f) (ex 'env f) (ex 'cont f))]
['args (&&args-continuation state arg (ex 'proc! f)

(ex 'proc f) (ex 'args f) (ex 'env f) (ex 'cont f))]
['first (&&first-continuation state arg

(ex 'rail f) (ex 'env f) (ex 'cont f))]

['rest (&&rest-continuation state arg
(ex 'first! f) (ex 'rail f) (ex 'env f) (ex 'cont f))]
['reply (&&reply-continuation state arg

(ex 'level f) (ex 'env f))]

['if (&&if-continuation state arg (ex 'premise f)

(ex'c1 f) (ex 'c2 f) (ex 'env f) (ex 'cont f))])))

5b Shifting Up, Shifting Down & Level Management
The implementation presented so far will correctly process
code at a given level; we need next to examine shifting back
and forth between levels. This will enable us to explain the
underlined clauses in the definition of &&cALL, above.

If an expression with A>1 is given to &&NORMALISE, then at
some point a pair involving a user-defined reflective procedure
will be given to &&Rrepuck. This in turn will go to &&prroc-
CONTINUATION, will pass the test for reflective closures, and will
generate a call to &&caLL with a (corresponding de-reflected)
closure that &&cALL fails to recognize as one for which there
is an implementation equivalent. The last (underlined) conp
clause in &&cALL handles this case, while ensuring that the lo-
cus of control remains within the code of the implementation
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processor program. As discussed earlier, the implementation
processor must shift up, altering its internal state to accurately
reflect what would have been happening at the next higher
processing level in the tower.

In order to understand this clause, imagine that instead it
was replaced with the single clause [s1 (F. A)]. In some sense
this would “work” (since we are writing the implementation
processor in 3Lisp), but it would violate our goal of making
the implementation be a closed program. The procedure F
is intended to be called at this level, but we cannot afford to
use it in the implementation, because we did not write it and
therefore do not know that it stays within the restricted subset
of 3Lisp that the implementation is allowed to use. If, for ex-
ample, it contained reflective code, that would cause the imple-
mentation processor to reflect, whereas what we want is for
the implementation processor to model (i.e., implement) that
reflection. So instead of using the (F . A) clause, the implemen-
tation processor must instead shift up, effectively converting (F
. A) into (REDUCE [F DA ... ...). By assumption, we know that F is
bound to a non-reflective, non-primitive closure, which means
we will want to decompose it horizontally, so this call to Re-
DUCE is equivalent to (&&EXPAND-CLOSURE ... OF 0A ...). To make
this work we need to supply two missing arguments: a con-
tinuation for the next higher level of processing (the second
\..),and a new STATE argument for all levels above that (the first
.../). As discussed in section 4, the continuation can simply be
taken from the top of the absorbed state stack, which is done
by REIFY-CONTINUATION. SHIFT-UP then returns the (saved) states
for all levels above that.

If, on the other hand, F is primitive, kernel, or some other
procedure that we have directly implemented, we can simply
use (F . A). This is the case handled by the third (first under-
lined) clause in &&cALL. Performing the procedure application
is not difficult (effected with [(F . A)); the question to be asked
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is what to do with the result that is immediately returned. The
answer is that it needs to be sent to that continuation that is
waiting for a result from this level of processing. We can find
that continuation at the top of the absorbed state stack, which
might make us think we could simply do ((SHIFT-UP STATE)

0(F . A)). But that would be to assume that we also have a direct
implementation for that continuation, which will not neces-
sarily be true. So we first do the (F . A), and then immediately a15
shift up and recursively ask &&cALL to figure out how to give

the result to the appropriate saved continuation.

Note that this last case is one where the processor is asked
to use a primitive or kernel procedure, not one where it is
asked to process a primitive or kernel procedure, a situation
which is dealt with straightforwardly in the fourth line of the
definition of &&ARGS-CONTINUATION,

The corresponding shift down operation can occur whenever
the implementation processor finds itself processing a struc-
ture that it knows how to process directly, which will include
directly implemented procedures, ppps, and ppcs. Since the
locus of control must stay within the “&8 procedures, &&ex-
PAND-CLOSURE, when it detects that the closure it is about to
expand is of such a type, can shift down and call the corre-
sponding implementation processor procedure directly. This
would suggest the following code:

;35 (define &&EXPAND-CLOSURE 5 this will not work!
5; (lambda simple [state proc! args! cont]

35 (if (or (directly-implemented proc!)

5 (ppp proc!)

35 (ppc proc!))

35 (&&call (shift-down cont state) Oproc! [args!)
5 (&&normalise  state

3 (body proc!)

B (bind (pattern proc!)

2 args!

3 (environment proc!))

B cont))))
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However there are two problems with this definition. First,
&&EXPAND-CLOSURE will never be called with a directly imple-
mented procedure, since &&ARGS-CONTINUATION and &&CALL
check for that case before calling &&exrAND-cLOSURE. This
is reasonable, because even though in some sense we could
shift down, as explained above we would immediately have
to shift back up again, in order to figure out what to do with
the result. So only the ppps and ppcs are relevant. We cannot
blindly shift down upon encountering them, because our im-
plementation versions make rather strong assumptions about
the arguments they are given, and we therefore need to check
that the arguments we are given explicitly conform to these
assumptions. Note for example that reflective continuations

are well-formed—i.e.:

(NORMALISE 'x global (lambda reflect [a e c] (c [a)))

normalises to
'[(binding exp env)]

However our implementation versions assume that continu-
ations are simple closures that normalise their arguments.
Since there is no conceptual problem with not shifting down—
all it means is that processing will be one level more indirect
than may be strictly necessary—we adopt a version of &&ex-
PAND-CLOSURE that checks these integrity conditions, and shifts
down only if they are met. Furthermore, we shift down only
on NORMALISE and the prcs; the other ppps could be checked,
but that would only add complexity (idiosyncratic argument
integrity checks), and, as an inspection of the rRpp shows, there
will only be one extra horizontal processing step before a call
to NORMALISE is encountered, so this will not be a very serious
inefficiency.

All of these considerations lead us to the following defini-
tion. SHIFT-DOWN is used to absorb the continuation into the
absorbed states of the higher levels.
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(define &XEXPAND-CLOSURE
(lambda simple [state proc! args! cont]
(cond [(and (= (ppp-type proc!) 'normalise)

(plausible-arguments-to-normalise args!))

(&&normalise (shift-down cont state)
O(1st args!) 0(2nd args!) 0(3rd args!))]

[(and (ppc proc!)
(plausible-arguments-to-a-continuation args!))

(&&call-ppc (shift-down cont state)

Oproc!
O(1st args!))]

[st (&&normalise state
(body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont)])))

The only further issue having to do with level shifting is deter-

mining the structure of the continuations saved for each level
of the infinite tower. The initialization process described in
initial conditions. Since we naturally defer the creation of the
level » initial continuation until such time as the implementa-
tion processor needs to reify it, the absorbed state of the whole
tower can in fact be represented as a (finite) sequence of con-
tinuations for the intervening levels from the current level of
the implementation processor up to the highest level reached
to date. There is one subtlety; since each REPLY «creply?» con-
tinuation is closed in an environment in which LEVEL is bound
to the integer level number, we store as the last element of
this continuation sequence the level number for the next level
not yet reached. The implementation processor is started off
at level 1 in the code corresponding to READ-NORMALISE-PRINT;
hence the initial absorbed state, which represents a (virtual)
tower of initial continuations for levels 2 to o0, consists of the

singleton sequence [2].
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(define 3usp
(lambda simple []
(&&read-normalise-print (initial-tower 2) 1 global)))

(define INITIAL-TOWER
(lambda simple [level] (scons level)))

(define sHIFT-DowN
(lambda simple [continuation state]
(prep continuation state)))

(define REIFY-CONTINUATION
(lambda simple [state]
(if (= (length state) 1)
(make-reply-continuation (1st state) global)
(Tst state))))

(define sHiFT-up
(lambda simple [state]
(if (= (length state) 1)
(scons (1+ (1st state)))
(rest state))))

5¢ Summary
ed procedures is broad enough to ensure that every call to a
kernel procedure will “top out” at some finite level, there is no
need for the implementation processor to handle every ker-
nel utility procedure (e.g., NORMAL and BIND). In the code just
presented we have included the appropriate code to handle
these kernel utilities as if they were primitive procedures, but
some of them need not have been so included. Though there
is probably no unique solution, there are no doubt more “mini-
mal” implementations, in the sense of implementations that
directly implement fewer 3Lisp procedures; it is a bit of an
exercise to figure out exactly how few are minimally necessary.
In a real implementation, however, efficiency presses the other
direction, towards implementations that implement more util-
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ities—a requirement that can usually be met, provided they
do not involve non-standard control constructs, and are not
“open” in the sense of calling user-supplied arguments as pro-
cedures (i.e., are not higher-order).

Given the code we have presented, it is easy to verify by
inspection that all “&&...” procedures are used in the following
restrictive ways:

1. They are always called from other “&&...” procedures,
with the exception of 3Lisp which is the root procedure;

2. They are always called from non-embedded contexts;

3. They never use, either directly or indirectly, any reflec-
tive procedure other than those for the standard con-
trol structures;

4. They are never passed as an argument, or returned as
a result;

5. They are never remembered in a user data structure;
and

6. Barring an error, the chain of processing initiated
by the call to 3Lisp is never broken (i.e., it will never
return).

It is a relatively straightforward final step to translate such a
program into one’s favourite imperative language.

6 Conclusions
It is widely known that complex issues arise in the implemen-
tation of more traditional languages: we have already men-
tioned a system’s treatment of calls between compiled and
interpreted code; micro-code routines that call macro-code
routines as subroutines are a similar example of implicit level-
shifting. The general question of mediating between imple-
mentation structures and user structures, and the attendant
complexities when they are in different languages, arises in
other contexts as well, as for example in Small Talk-80's explic-
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it use of a compiled code interpreter for debugging purposes.
It is also common experience that providing users with access
to implementation structures, although powerful for certain
purposes, tends to make an implementation unmodular and
difficult to transport onto other architectures.

In (Smith 1982a) it was claimed that the reflective capa-
bilities of 3Lisp provide programmers with the power that is
normally provided only by giving them access to the under-
lying implementation. We claimed, in other words, that the
full power of implementation access was compatible with a
fully abstract, implementation-independent language. In this
paper, in showing how to implement such a reflective language,
such notions as level-shifting, reifying implicit continuation
structures, and so forth, make clear what it is that standard
implementations do when they provide those sorts of facilities.
In this sense, a level-shifting implementation processor for a
procedurally reflective language can be viewed as a rational re-
construction of implementation more generally, just as reflection
itself can be viewed as a rational reconstruction of the com-

plex programming techniques that use such implementations.
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Appendix: 3-LISP Implementation Processor

This appendix lists the code for all the procedures required
5. With very minor exceptions, this program is compatlble
with the dialect of 3Lisp used in the Interim 3Lisp Reference

Manual (Smith & des Riviéres 1984).

(define 3usp ... ) ; code given in §5b [-43/1]

The implementation of READ-NORMALISE-PRINT is similar to the
RPP version, except that an explicit procedure implements the

REPLY continuation:

(define &&READ-NORMALISE-PRINT
(lambda simple [state level env]
(&&normalise state (prompt&read level) env
(make-reply-continuation level env))))
(define &&REPLY-CONTINUATION
(lambda simple [state result level env]
(block (prompt&reply result level)
(&&read-normalise-print state level env))))

The implementation of NORMALISE is virtually identical to NOR-
MALISE itself, except that it must &&CALL continuations, and use
implementation version of other ppps. Similarly, the imple-
mentation of REDUCE is similar to REDUCE itself, except that
explicit procedures are used to implement both the Proc and
ARGS continuations.

(define 8&NORMALISE ... ) ; code given in §5a [+35/1]

Draft Version 0.81 — 2018 - Mar - 3



(define &&PROC-CONTINUATION ... ) ; code given in §5a (-3
(define &XARGS-CONTINUATION ... ) ; code given in §5a (-3

The implementation of EXPAND-CLOSURE is like the regular ex-
PAND-CLOSURE code, except we can absorb (shift-down) on ppps
and ppcs—see the discussion in §5,2. The following checks for
NORMALISE and the ppcs:

(define 8REXPAND-CLOSURE ... ) ; code given in §5a [-42/1]

The implementation of NORMALISE-RAIL is similar to NORMALISE-
RAIL itself, except that explicit procedures are used to imple-
ment both the FIRST and REST continuations.

(define &&NORMALISE-RAIL
(lambda simple [state rail env cont]
(if (empty rail)
(&&call state cont (rcons))
(&&normalise state (1st rail) env
(make-first-continuation rail env cont)))))
(define &&FIRST-CONTINUATION
(lambda simple [state first! rail env cont]
(&&normalise-rail state (rest rail) env
(make-rest-continuation first! rail env cont))))
(define &&REST-CONTINUATION
(lambda simple [state rest! first! rail env cont]
(&&call state cont (prep first! rest!))))

LAMBDA and IF must be implemented as primary processor pro-
cedures, IF with an explicit procedure in place of its normal
continuation:

(define &&LAMBDA
(lambda simple [state [kind pattern body] env cont]
(&&call state cont (ccons kind [env pattern body))))
(define &&iF
(lambda simple [state [premise c1 c2] env cont]
(&&normalise state premise env
(make-if-continuation premise c1 c2 env cont))))
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(define &&IF-CONTINUATION
(lambda simple [state premise! premise c1 c2 env cont]
(&&normalise state (ef Opremise! c1 c2) env cont)))

(&&CALLF A ... A) would be like (F A, ... A ) except that if Fis a
PPP or PPC, the corresponding implementation version is used
instead; if F is directly implemented, we use the implementa-
tion directly and then shift up; otherwise we shift up and do
an explicit expand closure one level higher.

(define &&cALL ... ) ; code given in §5a (:37/-2
(define &&CALL-PPP ... ) ; code given in §5a (37
(define &&cALL-PPC ... ) ; code given in §5a [38/1]

The next six MAKE-XXX-CONTINUATION procedures look very
messy, but they are really trivial: all they do is to construct
a closure that is identical to the type of closure that would
have been constructed by the rRpp, had it been running instead
of this implementation. These continuations are only used to
fake the rpp; their only use here is as templates for later recog-
nition. EX(TRACT) is used to extract bindings for variables that

were enclosed in these faked continuations.

(define MAKE-PROC-CONTINUATION ... ) ; code given in §5a
(define MAKE-ARGS-CONTINUATION
(lambda simple [proc! proc args env cont]
O(ccons 'simple
O(bind '[proc! proc args env cont reduce]
O[proc! proc args env cont reduce]
global)
"Targs!]
'(if (primitive proc!)
(cont O(Oproc! . dargs!))
(normalise (body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont)))))
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(define MAKE-FIRST-CONTINUATION
(lambda simple [rail env cont]
O(ccons 'simple
O(bind '[rail env cont normalise-rail]
O[rail env cont normalise-rail |
global)
"[first!]
"(normalise-rail (rest rail) env
(lambda [rest!]
(cont (prep first! rest!)))))))
(define MAKE-REST-CONTINUATION
(lambda simple [first! rail env cont]
O(ccons 'simple
O(bind '[first! rail env cont normalise-rail |
O[first! rail env cont normalise-rail]
global)
"[rest!]
"(cont (prep first! rest!)))))
(define MAKE-REPLY-CONTINUATION
(lambda simple [level env]
O(ccons 'simple
O(bind '[level env read-normalise-print]
O[level env read-normalise-print]
global)
"[result]
'(block (prompt&reply result level)
(read-normalise-print level env)))))
(define MAKE-IF-CONTINUATION
(lambda simple [premise c1 c2 env cont]
O(ccons 'simple
O(bind '[premise c1 c2 env cont if]
O[premise c1 c2 env cont if]
global)
'[premise!]
'(normalise (ef Opremise! c1 c2) env cont))))
(define Ex
(lambda simple [variable function]
O(binding variable (environment Ofunction))))
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Various utilities dealing with state management and continu-
ations for each level:

(define INITIAL-TOWER ... ) ; code given in §5b [-43/2]
(define sHIFT-DOWN ... ) ; code given in §5b [:43/3]
(define REIFY-CONTINUATION ... ) ; code given in §5b [-43/4]
(define sHIFT-uP ... ) ; code given in §5b [:43/5]

Predicates to check the plausibility of arguments, closures,
and environments, to be used preparatory to shifting down
and using implementation versions:

(define PLAUSIBLE-ARGUMENTS-TO-A-CONTINUATION
(lambda simple [args!]
(and (rail args!)
(= (length args!) 1)
(handle (1st args!)))))
(define PLAUSIBLE-ARGUMENTS-TO-NORMALISE
(lambda simple [args!]
(and (rail args!)
(= (length args!) 3)
(handle (1st args!))
(plausible-environment-designator (2nd args!))
(plausible-continuation-designator (3rd args!)))))
(define PLAUSIBLE-ENVIRONMENT-DESIGNATOR
(lambda simple [env!]
(and (rail env!)
(or (= env! Oglobal)
(empty env!)
(and (plausible-binding-designator (1st env!))
(plausible-environment-designator
(rest env1)))))))
(define PLAUSIBLE-BINDING-DESIGNATOR
(lambda simple [b!]
(and (rail b!)
(= (length b!) 2)
(handle (1st b!))
(atom [O(1st b))
(handle (2nd b!)))))
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(define PLAUSIBLE-CONTINUATION-DESIGNATOR
(lambda simple [c!]
(and (closure c!)
(not (reflective c!))
(or (atom (pattern c!))
(and (rail (pattern c!))

(= 1 (length (pattern c!))))))))

Predicates defined over closures, sorting them into the vari-
ous types that the implementation needs to know about: ppps,
ppCs, etc. Also, there are utilities for recognizing closures of
these various types.

(define DIRECTLY-IMPLEMENTED
(lambda [closure]
(or (primitive closure)
(kernel-utility closure))))
(define ppp
(lambda simple [closure]
(not (= 'unknown (ppp-type closure)))))
(define ppp-TYPE
(lambda simple [closure]
(identify-closure closure *ppp-table*)))
(set *PPP-TABLE*®
[['normalise Onormalise]
['reduce Oreduce]
['normalise-rail Onormalise-rail |
['read-normalise-print Oread-normalise-print]
['lambda (de-reflect Olambda)]
['if (de-reflect [if)]])
(define ppc
(lambda simple [closure]
(not (= 'unknown (ppc-type closure)))))
(define ppc-TYPE
(lambda simple [closure]
(identify-closure closure *ppc-table*)))

set *PPC-TABLE

( * *
[['proc [(make-proc-continuation '? '? '? '? )]
['args O(make-args-continuation '? '2 '? '? '?)]
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['first O(make-first-continuation '? '? '? )]

['rest [(make-rest-continuation '2 '? '? '?)]

['reply O(make-reply-continuation '? '? ) |

['if  O(make-if-continuation 2 '? '? "2 "?)]])
(define KERNEL-UTILITY

(lambda simple [closure]

(member closure *kernel-utility-table*)))

(set *KERNEL-UTILITY-TABLE*

[O7st Odouble Onormal Orail

02nd Oenvironment Onormal-rail  [rebind

Oatom Oexternal Opair Oreflective

Obind Ohandle Oprimitive Orest

Obinding  Olength Oprompt&read Ounit

Ode-reflect Omember Oprompt&reply Ovector-constructor])

(define IDENTIFY-CLOSURE
(lambda simple [closure table]
(cond [(empty table) 'unknown]
[(similar-closure closure (2nd (1st table)))
(1st (1st table))]
[st (identify-closure closure (rest table))])))
(define SIMILAR-CLOSURE
(lambda simple [closure template]
(or (= closure template)
(and (isomorphic (pattern closure) (pattern template))
(isomorphic (body closure) (body template))
(= (reflective closure) (reflective template))
(similar-environment (environment closure)
(environment template))))))
(define SIMILAR-ENVIRONMENT
(lambda simple [environment template]
(or (= Oenvironment Otemplate)
(and (empty environment) (empty template))
(and (not (empty template))
(not (empty environment))
(= (1st (1st environment)) (1st (1st template)))
(or (=""? (2nd (1st template)))
(=(2nd (st environment))
(2nd (1st template))))
(similar-environment (rest environment)

(rest template))))))
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