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		  Abstract
In a procedurally reflective programming language, all pro-
grams are executed not through the agency of a primitive and 
inaccessible interpreter, but rather by the explicit running of 
a program that represents that interpreter. In the correspond-
ing virtual machine, therefore, there are an infinite number 
of levels at which programs are processed, all simultaneously 
active. It is therefore a substantial question to show whether, 
and why, a reflective language is computationally tractable. 
We answer this question by showing how to produce an ef-
ficient implementation of a procedurally reflective language, 
based on the notion of a level-shifting processor. A series of 
general techniques, which should be applicable to reflective 
variants of any standard applicative or imperative program-
ming languages, are illustrated in a complete implementation 
for a particular reflective Lisp dialect called 3Lisp.

	 1	 Introduction
As described in (Smith 1982a; Smith 1984),† a reflective com-
putational system is one in which otherwise implicit aspects 
of the system’s structure and behavior are available for explicit 
inspection and manipulation. A procedurally reflective pro-
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gramming language is a particular architecture for reflection 
in which all programs are executed not through the agency 
of a primitive and inaccessible interpreter, but rather by the 
explicit running of a program that represents that interpreter. 
Since the latter program, which we call the reflective proces-

sor program (rpp),1 is written in the same reflective language 
as the user program, it too must be executed by the explicit 
running of a copy of itself. And so on ad infinitum. In the ab-
stract or virtual machine, in other words, no program is ever 
run directly, but instead is run indirectly through the explicit 
action of the running of the rpp.

In the virtual machine, therefore, there are an infinite 
number of levels at which programs are processed, all simul-
taneously active (in exactly the same way that a traditional 
program written in some language l and the program that 
implements language l are simultaneously active). Each level 
has its own local state distinct from the state of neighbour-
ing levels (i.e., there is one “control stack” per level). The ar-
chitecture resembles an infinite tower of continuation-passing 
metacircular interpreters,† except that (again as discussed in 
(Smith 1984) [ch. 4]) there are crucial causal connections be-
tween the levels. Specifically, a program running at one level 
can provide code to be run at the next higher level—i.e., at 
the level of the original program’s processor—thereby gaining 
explicit access to the formerly implicit state of the computation.

The situation is analogous to one where a user program is 
allowed to insert code into the implementation, except that in 
the reflective case the implementation is written in the same 
language as the original user program. This facility enables the 
user to define new control constructs, implement debuggers, 
etc., without requiring special hooks into the actual implemen-

1. We use ‘processor’ in place of ‘interpreter’ in order to avoid confu-
sion with the semantic (model-theoretic) notion of interpretation. See 
Smith (1982a) [ch. 3] and Smith (1984) [ch. 4.]
†McCarthy (1965), Steele & Sussman (1978b).
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tation. The technique is so powerful that large classes of con-
trol structures can be straightforwardly defined in a reflective 
language in terms of primitive data-manipulation procedures.

Reflection is an important tool to add to any language 
designer’s toolbox. Even if one decides that reflection is too 
powerful to make generally available to users, a designer may 
find that the task of producing a correct and complete imple-
mentation (e.g., including debugging facilities) is simplified by 
adopting a reflective architecture as an underlying model. As 
this paper will show, the issues that arise in implementing a 
simple reflective language are remarkably similar to the issues 
that arise in implementing complex non-reflective languages 
containing primitive debugging facilities and fancy control 
constructs. Also, reflection has interesting (and unique) prop-
erties that are a direct effect of making it possible to view a 
computation from more than one vantage point at the same 
time. For example, a purely functional procedurally reflective 
language, entirely lacking side effects in its primitive functions 
or special constructs, can nevertheless use reflection to define 
an assignment statement.2 In general, reflection is a technique 
whereby a theory of a language embedded within a language 
can convey otherwise unavailable power.

Given a virtual machine consisting of an infinite number of 
levels of processing, it is clear that one of the most important 
questions to ask about a reflective language is whether, and 
why, it is computationally tractable. This paper addresses that 
problem by considering the general question of producing an 
efficient actual implementation of a procedurally reflective 
language. We show, in other words, how to construct a finite 
program to simulate an infinite tower of reflective levels. After 

2. Exactly the same principle is employed when giving a denotational 
semantic account of a programming language that has assignment state-
ments: the state of the computation that was implicit at the level of the 
program is made explicit at the level of the mathematical metalanguage 
in which the account of the language is formulated.
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presenting general principles and techniques that should apply 
to reflective variants of any standard applicative or imperative 
programming languages, we present an efficient implementa-
tion of a particular reflective Lisp dialect called 3Lisp.†

	 2	 Towers of Processing
We start by numbering each reflective level: 0 for the level at 
which the user’s program is processed, 1 for the level at which 
the program that runs the user’s program is processed, and 
so on. In general, the structures (programs and data and so 
forth) at any given level represent the state of the computation 
one level below; thus level n+1 is one level “meta” to level n.3 
This arrangement, which we call a tower, is depicted in fig-
ure 1. Finite heterogeneous towers of processing (i.e., a finite 
number of different languages) are commonplace—a Lisp 
program running at level 0, run by the Lisp processor (inter-
preter) which is a machine language program running at level 
1, which, in turn might be run by an emulator, a microcode 
program running at level 2.4 What distinguishes procedurally 
reflective architectures is that the processing tower is infinite 
and homogeneous. The user’s program (at level 0) is run by 
the rpp (running at level 1), which is in turn run by another 
incarnation of that same rpp (at level 2). And so on.5

The claim that a user’s program runs at level 0 is in fact a 

†Smith (1984) (included here as ch. 4), des Riviéres & Smith (1984).
3. Though it is not quite required by the underlying notion, it is natural 
to have structures at one level designate (name) structures at the level 
below. Again, see (Smith 1982a) and (Smith 1984).
4. In a finite tower, there is one level which is run “by the hardware”, at 
which point there is no further program, and therefore no question of 
who runs it. See (Smith 1982b).
5. Throughout, we assume that a level implements the level below it, so 
the sense of direction is opposite from common practice, where one 
normally thinks of an implementation of a language as being below the 
language implemented. Our usage, however, is in line with the custom-
ary view that a name or designator is above the referent or designation 
(see note 3).
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lie: the whole point of procedurally reflective languages is to 
allow user code also to run at level 1 or higher, thereby giving 
user programs explicit access to the data structures encoding 
their own state, and therefore power to direct the course of 
their own computation. What we are calling the actual imple-
mentation (that process that mimics the virtual infinite tower) 

must therefore be able to pro-
vide explicit structures encoding 
the otherwise implicit state of the 
user’s program at any arbitrary 
level. It is this crucial fact that 
makes procedurally reflective 
systems more difficult to imple-
ment than systems without 
such “introspective” capabilities.

The first step in providing such 
an implementation is to dis-

charge the threat of the infinite. The key observation is that 
the activity at most levels—in fact at all but a finite number of 
the lowest levels—will be monotonous: the rpp will primarily 
be used to process the same old expressions, namely those that 
make up the rpp itself. From some finite level k all the way to 
the “top,” in other words, the tower will just consist of the pro-
cessor processing the processor. Identify as kernel those ex-
pressions in the rpp that are used in the course of processing 
the rpp which is running one level below.6 Call a processing 
level boring if the only expressions that are processed at that 
level (in the course of a computation) are kernel expressions. 
Define the degree of introspection (∆) of a program to be the 
least m such that when the program is run at level 0, all levels 

6. There are three classes of expressions that one might think of as the 
relevant base for the induction: those that are primitive, those that are 
simple (i.e., do not involve reflection), and those that are kernel. In 3Lisp 
the three classes overlap but are distinct; as discussed in §4d, it is the 
kernel ones that are key to a correct implementation.

Figure 1 — Processing Levels in a 
Reflective Tower
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numbered higher than m are boring.
All programs consisting entirely of kernel expressions have 

∆=0. Normal programs (i.e., standard user programs that 
do not use any reflective capabilities) will have ∆=1, meaning 
that no out-of-the-ordinary processing is required at level 1. 

The processing of the level 
0 program, in other words, 
will not entail running non-
kernel code at level 1. ∆=2 
would be assigned to pro-
grams that involve running 
non-kernel user code at 
levels 0 and 1, but not at the 
second reflective level. And 
so on. Just as a correct im-
plementation of recursion 
is not required to terminate 
when a procedure recurses 
indefinitely, a correct imple-
mentation of a procedur-
ally reflective system need 

terminate only on computations having a finite degree of in-
trospection. Tractable reflective programs, in other words, are 
those with a finite degree of introspection (∆).

We can now formulate a general plan for implementing a pro-
cedurally reflective system. Suppose that one has an imple-
mentation processor g (a real, active, processor—not just a 
program for a processor) that engenders the behavior of the 
processor for the language provided that the program it is given 
to run has ∆=1. The existence of such a g is a reasonable pre-
sumption, since g is essentially just a processor for the lan-
guage in question stripped of its reflective capabilities. A pro-
cedurally reflective language minus the ability for the user to 

Figure 2 — How to run a ∆=n program 
with a black-box processor 
that can handle only ∆=1 
programs
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use reflection is likely to be conventional. 3Lisp minus reflec-
tion, for example, is a simple Scheme-like language that will 
succumb to standard implementation techniques.†

Given g, we can show why any reflective program is trac-
table by induction. The crucial observation is that the overall 
degree of introspection (∆) of an rpp that is running some 
∆=n program is itself ∆=n–1 (this follows directly from the 
definition of ∆). So, if instead of having the user program run 
directly by g, it is run indirectly by the rpp which itself is run 
directly by g, then any ∆≤2 user program will be processed 
correctly. In general, any ∆≤n program can be run correctly 
by g provided that n–1 levels of genuine rpp are placed in be-
tween. This result is depicted in figure 2. (Note that we talked 
previously only about a program’s running at a given level; after 
introducing g we have described it—an active process, not a 
program—as running at some level as well. The relationship is 
this: if g is running at level k, we mean that a program at level k 
is run by g directly, without any higher levels of RPP.)

Since it is unlikely that a program’s ∆ can be determined 
without processing it, the tractability argument just given does 
not lead directly to a very useful implementation strategy. But 
based on its insight, we can design a series of implementations, 
the final version of which is actually reasonably efficient. The 
first approach is simply to start out with g running at some 
level, and then to restart the computation at the beginning 
with g at a higher level if the previous try does not succeed.

More formally, assume initially that ∆=1, and give the pro-
gram to g to run directly. If g detects that the program that it 
is running has ∆>1, start the whole computation over again, 
but this time run the user program indirectly, with one more 
level of intervening rpp. Repeat this last step until g does not 
protest. This procedure is guaranteed to terminate for any 
computation with a finite degree of introspection; it requires 
only that g be able to recognize, at some point during its process-

†Allen (1978), Steele (1977a), and Henderson (1980).
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ing, that a computation has a ∆>1, and that the computation 
be re-startable.7 Both of these assumptions are theoretically 
reasonable, even though this whole approach is not practically 
recommended.

It would be far better, of course, if there were some computa-
tionally tractable way of inferring the instantaneous state of 
the level n+1 rpp from the instantaneous state of the level n 
one. This suggestion, which would mean that computations 
would not need to be restarted, is not as unlikely as it might 
first seem. The processing that goes on at adjacent levels is al-
ways strongly correlated (since, after all, level n+1 essentially 

“implements” level n). Adjacent levels are related by “meta”-
ness; it is not as if different levels have “minds of their own.” 
If it were possible to make such a step, one could refine the 
implementation strategy so as not to restart the computation 
when an impasse was reached, but rather to “manufacture” the 
state that would have existed one level up, had the implemen-
tation been explicitly running at that level from the beginning.

In other words, the overall strategy would be improved if 
the actual implementation processor could make an instanta-
neous shift up, when needed, to where it would have been had 
an extra level of explicit rpp been in effect since the start. Call 
such a modified implementation processor g′. Thus a ∆=n 
program would be run directly by g′ until it was discovered 

7. The re-startability of a computation does not imply that external 
world side effects (e.g., input/output) would be out of the question for 
a procedurally reflective system run in this way. All that would be re-
quired is for all interactions with the external world to be remembered 
by G. Since the restarted computation will retrace its steps up to the 
point that G detected the problem, except now mediated by an extra lev-
el of reflective processor program, the replayed computation is guaran-
teed to be the same as it was the last time. The replay up until this point 
could therefore be performed without external world interaction—i.e., 
by blocking output and using remembered inputs instead. Then when it 
reaches this same point, interaction can be resumed in a normal fashion.

a7
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that n>1, at which time the internal state of g′ would be used 
to create the explicit state that would be passed to the explicit 
rpp that would take over running the user program. After 
modifying its own internal state to reflect what would have 
been the state one level up, g′ could devote its attention to 
running the rpp. This means that the original program will 
now be run indirectly. It will continue to be run that way until 
such time as it is revealed that n>2, at which time g′ would 
shift up again, and will start running the base-level program 
double-indirectly. And so on.8

Over the course of the computation, in other words, g′ 
will gradually climb to higher and higher reflective levels. Al-
though its strategy for shifting levels is not very sophisticated, 
g′ exemplifies the fundamentally important idea of a level-

shifting implementation. All of the implementation proces-
sors we will discuss in the rest of the paper are level-shifting as 
well; they merely have more complex shifting strategies.

Invariably, each additional level of indirection will degrade the 
system’s performance with respect to the bottom level of the 
user program. This is not a minor concern, given that proces-
sor overhead is typically measured in orders of magnitude. 
What we would really like is an implementation processor 
that will never run at any higher level than necessary. Not only 
should the implementation be able to shift up easily, in other 
words; it should also be able to shift back down whenever it 
discovers that things are getting boring—i.e., when it starts 
processing kernel expressions again.

To make this formal, we have to define local, rather than 
global, notions of boredom and introspective degree, but 
those are relatively straightforward extensions. That is, when 
it appears that the program that the implementation proces-

8. We are assuming (not unreasonably) that the point at which it is de-
termined that ∆>1 is a point at which all upper levels would have been 
boring so far, even if they had been run explicitly. A more formal treat-
ment would make this explicit.
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sor is running directly has a local ∆=0, the implementation 
processor should compensate by absorbing the explicit state 
of the rpp it was previously running directly, and proceed 
to take direct responsibility for running of the computation 
formerly one level below. This ensures maximum utilization 
of the capability of the implementation processor to directly 
run arbitrary ∆=1 computations. An actual implementation 
will be called optimal if it never processes a kernel expression 
indirectly.

There are two subtleties here. First, it is not necessarily rea-
sonable to expect that every rpp will permit the appropriate 
determination of local boredom. Once the user has been able 
to run code at a meta level, there would seem to be no telling 
what might have been done there. Some sort of “time bomb” 
might have been planted that will detonate at some later point 
in time. If, however, the local notion of boredom just cited can 
be used to say that a local portion of a program is boring, even 
if some of its embedding context is not, then the implementa-
tion can depend on the fact that it is safe to turn its back on an 
arbitrary number of boring levels of processing, just so long as 
it can turn around and shift back up the moment any of them 
becomes interesting again. In other words, it would seem in 
general to be very difficult to determine whether it is safe to 
shift down. On the other hand, as the 3Lisp example will show 
in some detail, there are some reasonable assumptions and 
techniques that enable optimality at least to be approached.

Second, we said above that, when shifting down, the imple-
mentation should absorb the explicit state of the rpp it was 
previously running directly. It takes some care to determine 
just what it is to absorb this state in such a way that it can later 
be rendered explicit, should the need arise, as the discussion 
of 3Lisp will show.

In broad terms, these considerations lead to an adequate 
implementation strategy. A correct implementation is one that 

a8



	 5 · Implementation of Procedural Reflection

	 5 · 11

Draft Version 0.81 — 2018 · Mar · 3

engenders the same computation as that specified by the limit, 
as n→∞, of a tower of n reflective processor levels run at the 
top (nth) level by an actual processor. The base case for an effi-
cient but correct processor requires an independent specifica-
tion of the capabilities of an implementation processor capa-
ble of running only ∆=1 programs. The induction step shows 
that adding an extra level of processing engenders exactly the 
same computation while increasing by one the maximum de-
gree of introspection that can be handled. In order to produce 
a level-shifting implementation we also need computationally 
effective rules for determining when and how to shift up and 
back down.

	 3	 3·Lisp: a Reflective Dialect of Lisp 
Before we can make this all more precise, we need a specific 
reflective language to use as an example. 3Lisp† is a reduction-
based, higher-order, lexically scoped dialect of Lisp whose 
closest ancestor is Scheme. Other than its reflective capa-
bilities (described below), the most significant way in which 
3Lisp differs from its ancestors is that the notion of evaluation 
is rejected in favour of a rationalized semantics based on the 
orthogonal notions of:

1.	 Reference: what an expression designates, stands for, re-
fers to, names); and

2.	 Simplification: how an expression is handled by the 
3Lisp processor; what is returned.

Specifically, all 3Lisp expressions are taken as designating 
something; the 3Lisp processor then embodies a particular 
form of simplification called normalisation, in which each 
expression is reduced to a normal-form codesignator. The mo-
tivation for and semantics of such a language are discussed in 
(Smith 1984).‡

In 3Lisp, $t designates truth and $f designates falsity. Ex-

†, ‡. See chs. 3 and 4.
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pressions of the form [xl x2 … xn] designate the abstract se-
quence of length n consisting of the objects designated by the 
xi in the specified order. Expressions of the form (f  . a) des-
ignate the value that results from applying the function des-
ignated by f to the argument designated by a. The common 
case of applying a function to a sequence of n (≥0) arguments 
(f . [x1 x2 … xn]) is abbreviated (f x1 x2 … xn). The standard 
sequence operations are named empty, 1st, rest, prep, and 
scons (corresponding to Lisp 1.5’s null, car, cdr, cons, and 
list, respectively).

As is clearly indicated for any reflective language, 3Lisp con-
tains numerous facilities for quotation and general reference 
to other program structures. In general, if x is any expression, 
the quoted expression 'x is used to designate x ('x is a primi-
tive notation; it is not an abbreviation for (quote x)). When 
one deals with quotation, one needs names for expressions of 
various types. We say that '100 designates the numeral 100 
(which in turn designates the number one hundred); '$t desig-
nates the boolean $t; '[1 2] designates the rail [1 2]; 'foo des-
ignates the atom foo; '(x . y) designates the pair (x . y). There 
are also normal form function designators called closures, 

which have no adequate printed representation. The expres-
sions ''foo, ''[1], and ''''$f designate the handles 'foo, '[1], and 
'''$f, respectively. The standard functions numeral, boolean, 
rail, atom, pair, closure, and handle are characteristic func-
tions for the seven kinds of expressions just listed.

The standard operations on sequences are polymorphic, 
applying equally to rails. The additional standard operation 
rcons can be used to construct new rails: (rcons) designates 
the empty rail []. The standard operations on pairs are named 
pcons, car, and cdr; (pcons 'a 'b) designates the pair (a . b); 
(car '(a . b)) designates the atom a; and (cdr '(a . b)) desig-
nates the atom b. The standard operations on closures are 
named ccons, environment, reflective, body, and pattern. The 
standard composite expression used to designate functions is 
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of the form

	 (lambda type pattern body)

where type is usually either simple (for non-reflective proce-
dures) or reflect (for reflective procedures). Thus

	 (lambda simple [n] (+ n 1))

designates the successor function.
Despite the many minor differences between the languages, 

readers familiar with Scheme should have little difficulty un-
derstanding 3Lisp programs. The reader is referred to (Smith 
1984)† for a more complete introduction to both the language 
and to the intuitions that guided its development. Very much 
like the metacircular interpreters discussed in Sussman & 
Steele’s “Lambda papers,”‡ we present in figure 3 (next page) 
the continuation-passing 3Lisp rpp.

As mentioned above, 3Lisp is based on a notion of expres-
sion reduction, rather than evaluation: the processor (nor-
malise, in place of the more standard eval) returns a co-desig-
nating normal-form expression for each expression it is given.* 
We write “x ⟹ y” to mean that x normalises to y. For example:

	 (+ 1 2)									         ⟹	 3 
	 (pcons 'a 'b)						      ⟹	 '(a . b) 
	 ((lambda simple [x] (* x x)) 4)	 ⟹	 16

The code for the 3Lisp rpp is given in figure 3. All the proce-
dures in the rpp code, other than those explicitly defined, are 
straightforward, side-effect-free, data manipulation functions. 
None have any special control responsibilities (except cond, 
define, and block, whose definitions have been omitted only to 
shorten the presentation). prompt&read and prompt&reply is-
sue the system’s ‘level>’ and ‘level=’ prompts, and perform input 

†Cf. note on page ·11.
‡Sussman & Steele (1975); Steele & Sussman (1976, 1978a, 1978b, 1980); 
Steele (1976, 1977a, 1977b).

*By convention, variable names ending in ‘!’ are used to indicate that they 
will always designate normal-form structures.
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	 1	 (define READ-NORMALISE-PRINT 
	 2	 .... (lambda simple [level env stream] 
	 3	 ........(normalise (prompt&read level stream) env 
	 4	 ........... (lambda simple [result]	 ; c-reply 
	 5	 ............... (block.(prompt&reply result level stream) 
	 6	 ......................... (read-normalise-print level env stream))))))

	 7	 (define NORMALISE 
	 8	 .... (lambda simple [struc env cont] 
	 9	 ........(cond [(normal struc) (cont struc)] 
	 10	 ..................[(atom struc) (cont (binding struc env))] 
	 11	 ..................[(rail struc) (normalise-rail struc env cont)] 
	 12	 ..................[(pair struc) (reduce (car struc) (cdr struc) env cont)]))

	 13	 (define REDUCE 
	 14	 .... (lambda simple [proc args env cont] 
	 15	 ........(normalise proc env 
	 16	 ........... (lambda simple [proc!]	 ; c-proc! 
	 17	 ............... (if (reflective proc!) 
	 18	 .................. (↓(de-reflect proc!) args env cont) 
	 19	 .................. (normalise args env 
	 20	 ...................... (lambda simple [args!]	 ; c-args! 
	 21	 ......................... (if (primitive proc!) 
	 22	 ............................. (cont ↑(↓proc! . ↓args!))

and output, respectively, but are otherwise innocuous. ↑ and 
↓ mediate between a structure and what it designates. Some 
examples:

	 ↑(+ 2 2)		  ⟹	 '4 
	 ↑↑(+ 2 2)		 ⟹	 ''4 
	 ↓''4			   ⟹	 '4 
	 ↓''(+ 2 2)		 ⟹	 '(+ 2 2)

There are no hidden procedures; user programs may use 
ccons (the closure constructor), body, normalise, etc.—even 
↑ and ↓—with impunity.

By defining special reflective procedures, using

	 (lambda reflect …))

the user may augment the processor just shown. These reflec-

a9
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tive procedures are handled by line 18 of reduce:

	 (↓(dereflect proc!) args eny cont)

Thus suppose foo is bound to a reflective procedure. When 
the level 1 processor encounters (foo e1 … en) in the program it 
is running, the reflective procedure associated with the name 
foo is called at the same level as the processor, with exactly 
three arguments: a designator of the non-normalised argu-
ment structure '[e1 … en], the variable binding environment, 
and the continuation. In this way, the user’s program may gain 
access to all of the state information maintained by the proces-
sor that is running it. From this unique vantage point, it is easy 
to realize new control constructs, such as catch and throw, or 
to implement a resident debugger.

The infinite tower appears to the user exactly as if the sys-

	 23	 ............................. (normalise (body proc!) 
	 24	 ................................. (bind (pattern proc!) args! (environment proc!)) 
	 25	 .................................cont))))))))

	 26	 (define NORMALISE-RAIL 
	 27	 .... (lambda simple [rail env cont] 
	 28	 ........(if (empty rail) 
	 29	 ........... (cont (rcons)) 
	 30	 ........... (normalise (1st rail) env 
	 31	 ............... (lambda simple [first!]	 ; c-first! 
	 32	 ..................(normalise-rail (rest rail) env 
	 33	 ...................(lambda simple [rest!]	 ; c-rest! 
	 34	 ...................... (cont (prep first! rest!)))))))))

	 35	 (define LAMBDA 
	 36	 .. (lambda reflect [[kind pattern body] env cont] 
	 37	 .... (cont (ccons kind ↑env pattern body)))))

	 38	 (define IF 
	 39	 .. (lambda reflect [[premise c1 c2] env cont] 
	 40	 ..... (normalise premise env 
	 41	 ........ (lambda simple [premise!]	 ; c-if! 
	 42	 ........... (normalise (ef ↓premise! c1 c2) env cont)))))

Figure 3 — The 3Lisp Reflective Processor
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tem had been initialized in the following manner:†

	 … 
4>	(read-normalise-print 3 global) 
3>	(read-normalise-print 2 global) 
2>	(read-normalise-print 1 global) 
1>

The user can verify this by defining a quit procedure that re-
turns a result instead of calling the continuation, thereby caus-
ing one level of processing to cease to exist:

1> (define quit (lambda reflect [args env cont] 'done)) 
1= quit

1> (quit)						      ; quit is run as part of the level 1 
2= 'done					    ; processor, which it kills

2> (+ 2 (quit))				    ; This time quit terminates the 
3= 'done					    ; level 2 processor

3> (read-normalise-print 1 global)		  ; Levels can be re-
created 
1> (read-normalise-print 2001 global)	 ; at will; level numbers 
2001> (quit)								        ; are arbitrary. 
1= 'done

1> (quit) 
3= 'done

The following code defines (as a user procedure) the Scheme 
escape operator catch:

(define scheme-catch 
	 (lambda reflect [[tag body] catch-env catch-cont] 
		  (normalise 
			   body 
			   (bind	tag 
					     ↑(lambda reflect [[answer] throw-env throw-cont] 
						      (normalise answer throw-env catch-cont)) 
					      catch-env) 
			   catch-cont)))

†Italics are used to indicate user input.
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For example, the following expression would return 17:

(let [[x 1]] 
	 (+ 2 (scheme-catch	punt 
							       (* 3 (/ 4 (if	(= x 1) 
											           (punt 15) 
											           (- x 1)))))))

To some extent, a metacircular processor or rpp can be viewed 
as an account of a language (or at least of how it is processed) 
expressed within that language. As such, it “explains” various 
things about how the language is processed, but depending on 
the account, it can account for more or less of what is the case. 
In particular, it is important to realize what the above 3Lisp 
rpp does and does not explain.

The 3Lisp reflective processor was designed to be similar 
to standard Scott-Strachey continuation-based semantic ac-
counts of λ-calculus based languages.† Its primary purpose 
is to explain the variable binding mechanisms and the flow 
of control in the course of error-free computations. The ac-
count intentionally does not say anything about how errors 
are processed, nor does it shed any light on how the field of 
data structures are implemented, nor on how input/output 
is carried out. These details are buried in the primitive pro-
cedures, and the reflective processor carefully avoids account-
ing for what they actually do. A different theory that did ex-
plain these aspects of the language could be written, yielding 
a different rpp, and a different reflective dialect—all of which 
would require a different implementation. But the basic ar-
chitecture and strategies we employ would generalize to such 
other circumstances.

One of the many things that Scheme demonstrated was 
that lexical scoping and the treatment of functions as first 
class citizens resulted in a cleaner Lisp that no longer need-
ed to quote its lambda expressions. 3Lisp goes a step further 

†E.g., Stoy (1977), Muchnick (1980)

a10

a11
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by showing how to incorporate, in a semantically principled 
way, some of the other hallmarks of real systems, including; 
constructing programs on-the-fly; making explicit use of eval 
and apply; fexprs and nlambdas; and implementing a debugger 
within a system.

	 4	 Levels and Level-Shifting Processors
We explained in section 2 how an implementation of reflec-
tion might work; in this section we present the architecture 
for such an implementation in much more detail. Although 
we will use 3Lisp as a motivating example, our dependence 
on its idiosyncrasies will not be crucial; the actual code for a 
3Lisp implementation is deferred until section 5.

	 4a	 Level Shifting in Conventional Implementations
Although procedurally reflective architectures are new, the 
idea of level shifting processors is not. Consider for example 
an implementation of Lisp that supports both interpreted 
and compiled procedures definitions. In such a system, the 
non-compiled procedures will be defined by Lisp source code 
(typically, lambda expressions represented as list structure), 
while the compiled ones will be represented by blocks of in-
structions acceptable to the machine on which the Lisp system 
is implemented. Both kinds of procedures are represented as 
code, but in different languages: the uncompiled source code, 
which will be run by the implementation, is in Lisp, whereas 
the compiled code, which will be run by the same processor 
that runs the implementation (probably the cpu of the under-
lying machine—i.e., in machine language).

Given procedures in these two different languages, there 
are complexities in having them interact properly—complexi-
ties that the whole system usually smooths over so well that 
the user may never be aware of them. Consider in particu-
lar the procedure-call mechanism, where some procedure a 

a12
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calls another procedure b. In the simplest case, where both 
a and b are represented by compiled code, the linkage is usu-
ally achieved directly using a machine language branch in-
struction to transfer control from a to the first instruction 
of b (after arguments and the return address are loaded into 
registers or pushed on a stack). On the other hand, when a 

compiled procedure a calls a b 
that has no compiled code associ-
ated with it, a machine-language 
transfer of control must be made 
not from a to b, but from a to the 
block of machine language code 
that implements the explicit Lisp 
processor (eval) that in turn can 
examine the list-encoded lambda 
expression representation of b.

Once the Lisp processor is in 
control, the situation is reversed. As long as neither a nor b is 
compiled, everything is straightforward; the locus of control 
at the machine language level remains within the Lisp pro-
cessor’s code, and that processor implements an appropriate 
connection between the Lisp code for a and the Lisp code for 
b. When a non-compiled a calls a compiled b, however, there 
will have to be a machine-language level transfer of control 
from the code for the Lisp processor to the code representing b.

As depicted in figure 4, this can be described as simple level 
shifting between a level of direct processing (at the lower level, 
where user code is run) and one of indirect processing (at the 
upper level, where processors for user code are run). Shifting 
up and shifting down both occur at times corresponding to 
procedure-to-procedure calls (and returns). What controls 
the level-shifting in this particular case is not the occurrence 
of reflective procedures, but rather changes in language.

In particular, we are assuming that all user code is at the 

Figure 4 —	Simple level-shifting caused 
by calls between compiled 
and non-compiled procedures
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lower level—i.e., that all user code is run at level 0. Some of 
that code is in Lisp; some is in machine language. At level 1 
there is a program, written in machine language, that is a pro-
cessor program for Lisp; call this program m

l
. In this simple 

model, this is only one of four possible processor programs 
one could have; the other three being a Lisp program to pro-
cess machine language (l

m
); a machine language program to 

process machine language (m
m
), and a 

Lisp program to process Lisp (l
l
)—

i.e., a metacircular interpreter for 
Lisp in Lisp. The level shifting strat-
egy adopted by the implementation is 
one that enables the implementation 
to get away with just (i) the one pro-
cessor program m

l
, and (ii) a simple 

underlying processor g that knows 
only how to run machine language programs. If it adopted a 
different level-shifting strategy, it might need some of those 
other processor programs. For example, if the implementation 
were not to shift down when it encountered a non-compiled 
a to compiled b procedure call, it would need m

m
—a machine 

language program to interpret machine language. Similarly, if 
it were to try to shift up on a non-compiled to non-compiled 
procedure call, it would need l

l
.

The analogy between standard implementations and imple-
mentations of reflection can be pushed even further by consid-
ering how matters are complicated when explicit calls to eval 
are supported. Suppose that the expression (eval '(foo 10)) is 
found within the body of a (non-compiled) procedure named 
fee. When the implementation (specifically, the cpu running 
the program m

l
) encounters this expression while processing a 

call to fee, control within the user’s program must pass to the 
eval procedure, which, we will assume for the moment, will 
be defined via Lisp source code (i.e., we will assume that eval 

Figure 5 —	 Level-shifting caused 
by calls to eval
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is bound to l
l
, the metacircular processor program for Lisp). 

The net effect will be that m
l will process the code for foo 

indirectly specifically—m
l
 will process l

l
 (the code for eval), 

which in turn will process foo. So g (the cpu) will be two 
levels away from the code for foo.

It is a relatively simple change to the Lisp processor pro-
gram m

l
 to have it recognize calls to eval and treat them in 

a special way that avoids this extra level of indirect process-
ing—in fact that is what most implementations of Lisp do 
(see figure 5). This change also means that the code l

l
 need 

not be kept in the system. Notice, however, that this change 
is another form of level shift, not between compiled code and 
the Lisp processor this time, but between the following two 
different Lisp expressions:

			    (eval '(foo 10))		  and	  (foo 10)

It is no coincidence that there are strong similarities between 
these two forms of level shifting—compiled vs. interpreted, 
on the one hand, and ordinary expressions vs. arguments to 
eval, on the other. The machine code for the Lisp processor 
and the compiled code for eval are exactly the same thing: they 
are both m

l
—a program, written in machine language, to 

process Lisp. The downward shift to avoid an extra level of 
explicit processing on calls to eval is also the downward shift 
to run the compiled code for eval. In both cases, the relation-
ship between adjacent levels is the same: the computation that 
happens implicitly at one level is being carried out explicitly 
one level above it.

	 4b	 Analyzing a Processing Activity
While the simple level shifting techniques described above 
might suffice to handle a non-reflective language with explicit 
access to its processor, the task of implementing 3Lisp has 
an additional complexity; viz., reflective procedures give the 



5 · 22	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

user a way of running procedures at arbitrary levels of the 
program’s processor, including programs that are themselves 
reflective. In effect, the user can get access into the middle 
of normalise (3Lisp’s counterpart to eval), making the job of 

“compiling” normalise more difficult than it would otherwise 
be. Moreover, if you look carefully at the definition of 3Lisp 
and at its rpp, several of the standard control constructs, such 
as lambda and if, look dangerously circular, since they are both 
defined as reflective procedures and also used in the account 
of how the processor works. In order to implement a gener-
alised level-shifting processor of the sort suggested in the last 
section, therefore, we first have to analyze the processing ac-
tivities that must go on with an eye to implementing some of 
them directly, while allowing others to be carried out in virtue 
of one or more levels of explicit processing.

In particular, we need to name various relationships be-
tween the code in a processor program and the code that such 
a program processes.

First, if an expression or procedure to be applied is primitive, 
or, more generally, if within the processor there is code that 
corresponds exactly to the expression or procedure in question, 
then that expression or procedure can be dealt with directly in 
what amounts to a single processing step. We will call such 
expressions and procedures directly implemented. Small in-
teger arithmetic, for example, is typically directly implemented 
in Lisp implementations by the arithmetic capabilities of the 
underlying machine language; primitive data structure opera-
tions (like car and cons), at least in simple implementations, 
are also directly implemented by special procedures.

Second, if an expression is not directly implemented, it can 
usually be broken down into a series of constituent steps that 
are either themselves directly implemented, or can be broken 
down in turn, leading in the end to a long series of directly 
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implemented expressions. Suppose for example we have the 
following definition of the 3Lisp procedure 2nd:

(define 2nd 
	 (lambda simple [x] 
		  (1st (rest x))))

Then the processing of (2nd [10 20]) can be broken down into 
roughly the series of simpler processing activities correspond-
ing to the processing of (rest [10 20]) and (1st [20]). We will 
call this kind of processing decomposition engendered by the 
standard compositional and recursive nature of programs a 
horizontal decomposition, to correspond to the way we have 
been depicting levels of processing. In procedure-based lan-
guages, procedure call boundaries usually serve as the most 
convenient dividing lines or “click points” separating these 
processing units. In general, a lengthy computation is carried 
out in virtue of its horizontal decomposition into a series of 
simple steps, each of which is directly implemented. (Hori-
zontal decomposition corresponds to the standard notion of a 
computation tree, based on a compositional expression, with 
the directly implemented steps as the leaves.)

As we have seen, the existence of a metacircular processor 
program provides a third possible way of processing an ex-
pression. In particular, for any expression x, instead of pro-
cessing x we can do an upwards vertical conversion, and process 
instead an expression that explicitly represents the processing of 
x. For example, we can convert (2nd [10 20]) into (normalise 
'(2nd [10 20]) … ). This upwards vertical conversion can then 
in turn be horizontally decomposed, typically into more steps 
than the original expression would have been decomposed 
into. For example, the horizontal decomposition of

(normalise '(2nd [10 20]))

through normalise and reduce, begins (roughly):
01:	 (cond	[(normal '(2nd [10 20])) ... ] 
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			    … ) 
02:	 (normal '(2nd [10 20])) 
03:			    … 			   ; various internal steps within normal 
04:	 (atom '(2nd [10 20])) 
05:	 (rail '(2nd [10 20])) 
06:	 (pair '(2nd [10 20])) 
07:	 (reduce	(car '(2nd [10 20])) 
				    (cdr '(2nd [10 20])) 
				    env 
				    cont) 
08:	 (car '(2nd [10 20])) 
09:	 (cdr '(2nd [10 20])) 
10:	 (normalise '2nd) 
11:	 (normal '2nd) 
12:			    … 			   ;  various internal steps within normal 
13:	 (atom '2nd) 
14:	 (binding '2nd … ) 
15:			   …

Some expressions, like (normalise '3 … ), can be converted 
down (to 3, in this case), although downwards conversion is 
not always possible.

In sum, there are three ways in which an implementing pro-
cessor can attempt to perform any given processing activity:

1.	 It can implement it directly;
2.	 It can perform a horizontal decomposition, and pro-

cess the smaller steps; or
3.	 It can perform an upwards or downwards vertical con-

version, and then process the result at a different level.

Given this flexibility, we can make the following observations 
concerning 3Lisp’s various kinds of procedures:

1.	 Primitive procedures, such as 1st and up (or ↑), cannot 
be decomposed horizontally. Moreover, as line 22 the 
metacircular processor shows:
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						      (cont ↑(↓proc! . ↓args!))
and as common sense would suggest, every primitive 
is used in the horizontal decomposition of every (up-
wards) vertical conversion of it. Hence the primitives 
must be performed directly, or else be a part of some 
larger activity that is performed directly.

2.	 Other simple (non-reflective) procedures can be de-
composed horizontally using the closure associated 
with the procedure. However, simple procedures that 
are part of the standard system and whose processing 
can be completely decomposed a priori (this certainly 
includes but is not limited to the kernel procedures) 
are also candidates for being implemented directly; e.g., 
3Lisp’s binding and bind.

3.	 Reflective procedure require one level of vertical con-
version (in some sense that is what reflective proce-
dures are), after which the (corresponding “de-reflect-
ed”) procedure can be decomposed horizontally using 
the corresponding simple closure.

	 4c	 Tiling Diagrams
The notions of horizontal decomposition and vertical conver-
sion suggest an analogy. Imagine a simple tiling game, where 
the objective is to find a continuous path from left to right 
across an infinitely tall board consisting of rows of non-over-
lapping numbered tiles. You are only allowed to step on tiles 
with certain numbers, and you are never allowed to “retreat” 
(i.e., to move to the left). As illustrated by the simple exam-
ple in figure 6, each row typically consists of more tiles than 
the row below. The best score is achieved by using the fewest 
steps, so the general strategy is to stay as low as possible on the 
board. On the other hand, there are two pitfalls that must be 
avoided: (i) you do not want to end in a dead-end (no further 
steps possible, necessitating a retreat, which is illegal); and (ii) 
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you do not want to encounter a situation where you are climb-
ing a spike without a top.

The board shown in figure 6 was constructed according to 
the following two rules:

1.	 Above every tile numbered x is a sequence of tiles yi 
(listed in the form {x: yi}):

{1: 1,2}       {2: 3,4}       {3: 1,5}       {4: 3,5}       {5: 1,4}

2.	 In constructing a path across the board, only odd-
numbered tiles may be stepped on.

Given these rules, the best successful path is illustrated by 
[grey] tiles outlined with heavy lines.

In this example, given the particular way each tile is related 
to the tiles above it, it is always possible to find a path, no mat-
ter what the bottom layer of tiles is chosen to be. Moreover, 
it can be shown that no path ever need go higher than three 

rows from the bottom (in order to 
get over a 2-tile), and that the local 
strategy of choosing the lowest pos-
sible path will always be optimal and 
will never lead to a dead end. If the 
rules were made more restrictive 
by forbidding you to step on 3-tiles, 
however, the game would still be 
winnable; an optimal path under 
these conditions is illustrated in fig-

ure 7.† However, the same cannot be said of either the 1-tile 
or the 5-tile, both of which are unavoidable (note the insur-
mountable “spikes” of 1-tiles, indicated in figure 8).

To implement a reflective language is basically to play a tiling 
game, where:

Figure 6 — Tiling Game

†Figures 7 and 8 were not included in the original version.
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1.	 Tiles correspond roughly to procedure calls;
2.	 Tiles above another tile are approximately (the hori-

zontal decomposition of ) an upwards vertical conver-
sion of the lower tile;

3.	 Horizontal tiles represent horizontal decompositions; 
and

4.	 Tiles that can be stepped on are procedures that have a 
direct implementation.

Like the designer of a tiling game 
that admits a winning strategy, there 
is a twofold challenge: (i) you must 
carefully select a collection of pro-
cessing activities that will be imple-
mented directly (corresponding to 
tiles that can be stepped on); and 
(ii) for efficiency, you must play the 
game well, which means coming 
up with a near-optimal strategy for 

achieving any ∆=n (n finite) computation that, by shifting ei-
ther up or down, avoids spikes and dead ends and crosses the 
board in a minimum number of steps.

	 4d	 Direct Implementation of Kernel Procedures
We said earlier that the kernel of a reflective language consists 

of those parts of the rpp that are 
used in the course of processing the 
rpp one level below. For 3Lisp, call 
the six procedures normalise, reduce, 
normalise-rail, lambda, if, and read-
normalise-print the primary proces-

sor procedures (ppps), and call their 
embedded continuations (the reply, 
proc, args, first, rest, and if continu-
ations identified on lines 4, 16, 20, 31, 

Figure 7 — No stepping on 3-tiles

Figure 8 — Insurmountable 1-tiles
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33, and 41 of the rpp) the primary processor continuations 
(ppcs). The 3Lisp kernel then consists of:

1.	 The ppps;
2.	 The ppcs;
3.	 The utilities like binding, bind, and normal; and
4.	 The primitives such as car, cdr, ↑, ↓ and rcons.

If the implementation were directly implemented (i.e., had 
“compiled” versions of ) all the kernel procedures, it would be 
guaranteed that any ∆=n (n finite) expression could be nor-
malised (the analogous situation in the tiling game would be 
one where any tile on rows n and above could be stepped on). 
The tiling analogy makes it clear why it is the kernel proce-
dures, not the primitive procedures, for which we need direct 
implementations: since all primitives are used in the horizon-
tal decomposition of every vertical conversion of them, primi-
tives will form spikes in the tiling diagram, over which no 
shifting strategy will be able to climb.

As we will discuss later, an implementation can be slightly 
more minimal (directly implement fewer procedures), but di-
rectly implementing the whole kernel makes for the simplest 
processor code, and the simplest shifting strategies. As with 
the tiling game, the choice of a basis set cannot be made inde-
pendently of the strategy for shifting up and down.

	 4e	 When and How to Shift Up
The next important problem is to determine (i) the criteria 
by which the implementation processor will decide that it is 
necessary to shift up, and (ii) the mechanisms for achieving 
this transition. We begin by observing that the state explic-
itly maintained at each level of processing by the reflective 
processor consists of the expressions, environments, and con-
tinuations that are passed as arguments among the ppps. Not 
captured at any particular level are the global state of input/
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output streams and the structural field itself; fortunately, how-
ever, the rpp does not use side effects to remember state infor-
mation (except when the program that it is running forces it to 
process a side effect).9 As a result, when a shift up occurs, only 
an expression, an environment, and a continuation will have 
to be “pulled out of thin air.”

Shifting up will have to occur when control would leave the 
implementation code that represents the directly implement-
ed kernel. This can happen at only a handful of places in the 
rpp: at one of the continuation calls, (cont … ), and on line 
18, where reflective procedures are called using the expression:

				    (↓(de-reflect proc!) args env cont)

The real question is where in the implementation processor 
should the shift up take us? In other words, it is one thing to 
know where one needs to leave the level below and shift up; it 
is much less clear where, in the level above, one should arrive.

Four possibilities suggest themselves. First, it would seem 
that the implementation processor could shift from process-
ing (cont exp) to processing the following upwards vertical 
conversions of (cont exp):

					     (normalise '(cont exp) e? c?)

Second, on the other hand, inspection of the RPP shows that 
this is equivalent to:

					     (reduce 'cont '[exp] e? c?)

And if we assume that exp and cont normalise to exp! and the 
simple (non-reflective) closure cont!, respectively, both of 
these are equivalent to:

9. Although 3Lisp has primitive procedures that “smash” structures, in 
this paper we will pretend that there are not any. Without this simplify-
ing assumption, bothersome technicalities would tend to obscure the 
otherwise straightforward solution. The interested reader is referred to 
the Interim 3Lisp Reference Manual (Smith & des Rivières 1984) which 
contains a correct implementation for the unabridged language.
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					     (reduce ↑cont! '[exp] e? c?) 
					     (reduce ↑cont! ↑[exp!] e? c?)

Since the higher level will in general be finer-grained (go 
through more identifiable steps) than the level below it, there 
is not a definitive choice to made among these. Given our 
particular choice of ppps, all four of these possibilities are ac-
ceptable. Pure efficiency would suggest the last, since it is the 

“furthest along” in the processing. This in turn suggests an even 
more efficient answer, and a more natural seam, at line 23 in 
the args continuation at the instant normalise is about to be 
called on the body of the (simple) cont! closure:

(normalise	(body ↑cont!) 
				    (bind	(pattern ↑cont!) 
						      ↑[exp!] 
						      (environment ↑cont!)) 
				    c?)

Since exp! and cont! are part of the state of the implementa-
tion, and since this expression does not use an environment, 
only the continuation c? needs to be pulled out of thin air. 
What should this continuation be? The (somewhat surpris-
ing) answer is that the appropriate continuation is not a func-
tion of the current level of processing; rather, it is a function 
only of the last processing done at the next higher level!

Why is this the case? The real answer is that it is because 
3Lisp’s rpp can be processed directly by a finite state machine, 
but it is important to see why this is so. There are two critical 
things to realize.

First, the rpp implements a “tail-recursive” dialect of Lisp 
(e.g., Scheme; see (Steele & Sussman 1976a)); it is not proce-
dure calls per se that cause the processor to accumulate state, 
but rather only embedded procedure calls. For example, with 
respect to a call to the procedure represented by (lambda sim-
ple [x] (f (g x))), the call (g x) is embedded in the first argu-



	 5 · Implementation of Procedural Reflection

	 5 · 31

Draft Version 0.81 — 2018 · Mar · 3

ment position of (f (g x)), and therefore requires the proces-
sor to save state until (g x) returns, just as in a conventional 
implementation of procedure calls. The call to f, on the other 
hand, is not embedded with respect to the initial call (rather, it 
substitutes for it), and can be implemented much like a goto 
statement, except that arguments must be passed as well. The 
fact that 3Lisp has a tail-recursive processor can be seen by 
inspecting the rpp and observing that:

1.	 The number of bindings in an environment is a (more-
or-less) linear function of the static nesting depth of 
programs; and

2.	 When a call to a simple procedure is reduced, the 
continuation in effect upon entry to reduce is the one 
passed to normalise for the body of the called proce-
dure’s closure.

The key implication of this is that when one procedure calls 
another from a non-embedded context, the continuation car-
ried by the processor upon entry to the called procedure is the 
same as what it was upon entry to the calling procedure.

The second crucial property is that the ppps always call one 
another in non-embedded ways. Together with the first ob-
servation, this implies the following property of the reflective 
processor processing the rpp itself:

The continuation carried by the processor upon entry to any 
ppp is always the same.

This assertion can be phrased more precisely:

The (level 2) reflective processor (rpp) processing the (level 
1) rpp processing a (level 0) ∆=1 structure always carries 
the same level 2 continuation at every trip through level 2 
reduce when the level 2 proc is bound to 'normalise.

In other words, if one were to “watch” the level 2 state upon 
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entry to reduce, one would find that cont was always bound 
to the same closure whenever proc is bound to the atom 'nor-
malise (or 'reduce, or 'cont, etc.).

Since the points in the rpp where the shift up will hap-
pen correspond to non-embedded calls within it—specifically, 
either to (↓(de-reflect proc!) args env cont) or to one of the 
six (cont  …  ) expressions—the continuation that must be 
reified is not a function of the current level of processing. In-
stead, it is the last continuation that was explicitly used at that 
level, which will be the original reply continuation at the next 
higher level, if user-defined code has never been run at that 
level before.

	 4f	 When and How to Shift Down
Deciding when to shift down is similarly straightforward. The 
implementation processor should shift down whenever it is 
asked to process something that is directly implemented. In 
practice, it is not necessary to shift down as soon as possible 
(i.e., full optimality need not be achieved); it suffices to recog-
nize only the situation where the implementation processor is 
processing calls to ppps and ppcs, since all paths through the 
rpp will pass through these procedures. The situation can be 
detected in the code corresponding to the args continuation 
(i.e., is proc! bound to the closure for a ppp or ppc?). It is also 
essential that the arguments passed to the ppps be scrutinized, 
to ensure that they are “reasonable” (of proper type and so 
forth). If they are, the implementation processor can perform 
a downwards conversion from (for example):

(normalise	(body ↑normalise) 
				    (bind	(pattern ↑normalise) 
					     args! 
					     (environment ↑normalise)) 
				    cont)
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to

(normalise	(1st ↑args!) 
				    (2nd ↑args!) 
				    (3rd ↑args!))

The continuation in effect prior to shifting down must be re-
corded in the absorbed state. Typically, it will be a reply con-
tinuation—the original one for that level of processing, born 
within the call to read-normalise-print that created that level 
at the time of system genesis. However, since it is possible for 
the user to write code that calls normalise from an embed-
ded context, it is essential to save the continuation each time 
a downward shift occurs so that it may be brought back into 
play the next time the processor shifts up to this level.

How is it that we can store away a user-supplied continu-
ation and shift down, without knowing what behavior that 
continuation will engender? The answer is simply that that 
continuation will not be called—cannot come into play—un-
til such time as the computation at the lower level returns a 
result. Since each ppp ends in a tail-recursive call, this chain 
can break down only if some non-ppp is called which returns a 
result instead of calling the continuation passed to it. But it is 
precisely these calls that always cause a shift up (see the defini-
tion of &&call in the next section); hence, the implementation 
processor will automatically find its way back to the appro-
priate level whenever a non-primary processor continuation 
would be called at a higher level.

	 5	 A 3·LISP Implementation Processor Program
The principal reason that the 3Lisp rpp cannot serve as a mod-
el for a real implementation (i.e., cannot be translated directly 
into an appropriate implementation language like machine 
language or c) is that it is not a closed program. As indicated 
in line 18 of the rpp, the processing of reflective procedures 
causes the locus of control to leave the ppps and venture off 
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into code supplied by the user. In the last section we gave a 
general description of how to write a real implementation that 
avoided this problem; in this section we use those strategies 
and present a full closed program for a real implementation of 
3Lisp. This program will be expressed in a conservative subset 
of 3Lisp; no crucial use will be made of 3Lisp’s meta-struc-
tural, reflective, or higher-order function capabilities. We have 
chosen to write this real implementation of 3Lisp in 3Lisp (i.e., 
to write a true metacircular processor for 3Lisp) because it al-
lows us to suppress many implementation details that would 
necessarily surface if a different language were chosen. The 
most important omissions are the memory representation of 
the elements of the structural field, garbage collection, error 
detection and handling, and all input/output. While impor-
tant, these concerns, which 3Lisp shares with other Lisp dia-
lects, are not germane to our particular topic of how to imple-
ment procedural reflection. What this program will do is to 
discharge all of the salient issues having to do with reflection; 
translating from the code presented here to an implementa-
tion in a more reasonable implementation language would be 
straightforward.

	 5a	 The Basic Implementation Processor
As noted in earlier sections, the structure of the 3Lisp imple-
mentation processor program will be based on the structure 
of the rpp itself. Specifically, for each ppp there is a corre-
sponding implementation processor procedure bearing its 
source’s name prefixed by ‘&&’; e.g., &&normalise implements 
normalise, As will be discussed later, each takes an additional 
parameter named state that represents the absorbed state, 
which is used only when shifting up or down (such shifts will 
be indicated with underlined code). The following is the code 
for the implementations of normalise and reduce (&&nor-
malise-rail and &&read-normalise-print, derived in an analo-
gous manner, are given in the appendix):

a13
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(define &&normalise 
	 (lambda simple [state exp env cont] 
		  (cond	[	(normal exp) (&&call state cont exp)] 
				    [	(atom exp) (&&call state cont (binding exp env))] 
				    [	(rail exp) (&&normalise-rail state exp env cont)] 
				    [	(pair exp) 
					     (&&reduce state (car exp) (cdr exp) env cont)])))

(define &&reduce 
	 (lambda simple [state proc args env cont] 
		  (&&normalise state proc env 
			   (make-proc-continuation proc args env cont))))

Similarly, for each type of ppc there is a corresponding im-
plementation processor procedure with names of the form 
&&xxx-continuation. E.g., &&proc-continuation implements 
the “proc” type continuations (see lines 16–25 of the rpp), 
which field the result of normalising the procedure part of a 
pair. While the rpp continuations are closed in an environment 
in which a handful of non-global variables are bound, their 
implementation equivalents are passed these data as explicit 
arguments (e.g., &&proc-continuation is passed as arguments 
the bindings of proc, args, env, and cont from the incarnation 
of &&reduce that spawned it). &&expand-closure (presented 
below) implements the last clause of the “args” continuation, 
although it does not correspond to a continuation on its own. 
Again, two examples (the others are given in the appendix):

(define &&proc-continuation 
	 (lambda simple [state proc! proc args env cont] 
		  (if	(reflective proc!) 
			   (&&call state ↓(de-reflect proc!) args env cont) 
			   (&&normalise state args env 
				    (make-args-continuation proc! proc args env cont)))))

(define &&args-continuation 
	 (lambda simple [state args! proc! proc args env cont] 
		  (if	 (directly-implemented proc!) 
			   (&&call state cont ↑(↓proc! . ↓args!)) 
			   (&&expand-closure state proc! args! cont))))

a14
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Note that &&args-continuation simply executes any proce-
dures which are implemented directly, using the same tech-
nique that is used in the rpp for primitives. If this code were 
to be translated into a different implementation language, the 
↑(↓proc! . ↓args!) expression would be turned into appropri-
ate calls, for each directly implemented procedure, to the pro-
cedure that performs the direct implementation.

As well as defining these implementation procedures to 
do the work of the ppcs, the implementation must also con-
tain code to create instances of the processor continuations 
exactly as specified by the rpp—i.e., it must create the exact 
ppc closures that would have been created had the rpp been 
used explicitly. Such continuations will never be used by the 
implementation as such, but since they are visible from user 
code they must be perfectly simulated.

There are four procedures in the implementation to con-
struct closures of each of the four types. For example, the

(make-proc-continuation proc args env cont)

expression in &&reduce will produce the same closure that 
lines 16-25 in reduce would, given identical bindings for 
the four variables. An example (the others are given in the 
appendix):

(define make-proc-continuation 
	 (lambda simple [proc args env cont] 
		  ↓(ccons	'simple ↑(bind	'[proc args env cont reduce] 
										          ↑[proc args env cont reduce] 
										          global) 
					     '[proc!] 
					     '(if (reflective proc!) 
						      (↓(de-reflect proc!) args env cont) 
						      (normalise args env 
							       (lambda [args!] 
							       (if	(primitive proc!) 
								        (cont ↑(↓proc! . ↓args!)) 
								        (normalise	(body proc!) 
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												            (bind	(pattern proc!) 
														              args! 
														              (environment proc!)) 
												            cont))))))))

In many cases the implementation procedures call one another, 
in exactly those places where the ppps in the rpp call other 
ppps. For example, &&normalise calls &&reduce in just the 
place (line 12) where normalise would call reduce. However, 
in those cases where it is not possible to determine exactly 
which procedure to call, the implementation procedures defer 
this task to &&call. E.g., whereas in lines 9 and 10 of the rpp 
normalise calls the procedure designated by the local variable 
cont, the corresponding lines in &&normalise pass the buck to 
&&call, which inspects the closure designating the function 
to be called. If the closure is a ppp or a ppc, the corresponding 
implementation procedure (&&...) is invoked. In the case of 
ppcs, the non-global bindings captured within them must be 
extracted and passed as extra arguments to the implementa-
tion versions, as discussed earlier. (The two shift-up cases will 
be discussed below.)

(define &&call 
	 (lambda simple x 
		  (let [[state (1st x)] [f (2nd x)] [a (rest (rest x))]] 
			   (cond [(ppp ↑f) (&&call-ppp state f a)] 
					      [(ppc ↑f) (&&call-ppc state f (1st a))] 
					      [(directly-implemented ↑f) 
						      (&&call (shift-up state) 
									         (reify-continuation state) 
									         ↑(f . a))] 
					      [$t (&&expand-closure (shift-up state) 
								        ↑f ↑a (reify-continuation state))]))))

(define &&call-ppp 
	 (lambda simple [state f a] 
		  ((select (ppp-type ↑f) 
			    ['normalise &&normalise] 
			    ['normalise-rail &&normalise-rail] 
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			    ['reduce &&reduce] 
			    ['read-normalise-print &&read-normalise-print] 
			    ['if &&if] 
			    ['lambda &&lambda]) 
		  . (prep state a))))

(define &&call-ppc 
	 (lambda simple [state f arg] 
		  (select (ppc-type ↑f) 
			   ['proc  (&&proc-continuation state arg 
						      (ex 'proc f) (ex 'args f) (ex 'env f) (ex 'cont f))] 
			   ['args  (&&args-continuation state arg (ex 'proc! f) 
						      (ex 'proc f) (ex 'args f) (ex 'env f) (ex 'cont f))] 
			   ['first (&&first-continuation state arg 
						      (ex 'rail f) (ex 'env f) (ex 'cont f))] 
			   ['rest  (&&rest-continuation state arg 
						      (ex 'first! f) (ex 'rail f) (ex 'env f) (ex 'cont f))] 
			   ['reply (&&reply-continuation state arg 
						      (ex 'level f) (ex 'env f))] 
			   ['if    (&&if-continuation state arg (ex 'premise f) 
						      (ex 'c1 f) (ex 'c2 f) (ex 'env f) (ex 'cont f))])))

	 5b	 Shifting Up, Shifting Down & Level Management
The implementation presented so far will correctly process 
code at a given level; we need next to examine shifting back 
and forth between levels. This will enable us to explain the 
underlined clauses in the definition of &&call, above.

If an expression with ∆>1 is given to &&normalise, then at 
some point a pair involving a user-defined reflective procedure 
will be given to &&reduce. This in turn will go to &&proc-
continuation, will pass the test for reflective closures, and will 
generate a call to &&call with a (corresponding de-reflected) 
closure that &&call fails to recognize as one for which there 
is an implementation equivalent. The last (underlined) cond 
clause in &&call handles this case, while ensuring that the lo-
cus of control remains within the code of the implementation 
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processor program. As discussed earlier, the implementation 
processor must shift up, altering its internal state to accurately 
reflect what would have been happening at the next higher 
processing level in the tower.

In order to understand this clause, imagine that instead it 
was replaced with the single clause [$t (f . a)]. In some sense 
this would “work” (since we are writing the implementation 
processor in 3Lisp), but it would violate our goal of making 
the implementation be a closed program. The procedure f 
is intended to be called at this level, but we cannot afford to 
use it in the implementation, because we did not write it and 
therefore do not know that it stays within the restricted subset 
of 3Lisp that the implementation is allowed to use. If, for ex-
ample, it contained reflective code, that would cause the imple-
mentation processor to reflect, whereas what we want is for 
the implementation processor to model (i.e., implement) that 
reflection. So instead of using the (f . a) clause, the implemen-
tation processor must instead shift up, effectively converting (f 
. a) into (reduce ↑f ↑a … …). By assumption, we know that f is 
bound to a non-reflective, non-primitive closure, which means 
we will want to decompose it horizontally, so this call to re-
duce is equivalent to (&&expand-closure … ↑f ↑a …). To make 
this work we need to supply two missing arguments: a con-
tinuation for the next higher level of processing (the second 
‘…’), and a new state argument for all levels above that (the first 
‘…’). As discussed in section 4, the continuation can simply be 
taken from the top of the absorbed state stack, which is done 
by reify-continuation. shift-up then returns the (saved) states 
for all levels above that.

If, on the other hand, f is primitive, kernel, or some other 
procedure that we have directly implemented, we can simply 
use (f . a). This is the case handled by the third (first under-
lined) clause in &&call. Performing the procedure application 
is not difficult (effected with ↑(f . a)); the question to be asked 
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is what to do with the result that is immediately returned. The 
answer is that it needs to be sent to that continuation that is 
waiting for a result from this level of processing. We can find 
that continuation at the top of the absorbed state stack, which 
might make us think we could simply do ((shift-up state) 
↑(f . a)). But that would be to assume that we also have a direct 
implementation for that continuation, which will not neces-
sarily be true. So we first do the (f . a), and then immediately 
shift up and recursively ask &&call to figure out how to give 
the result to the appropriate saved continuation.

Note that this last case is one where the processor is asked 
to use a primitive or kernel procedure, not one where it is 
asked to process a primitive or kernel procedure, a situation 
which is dealt with straightforwardly in the fourth line of the 
definition of &&args-continuation.

The corresponding shift down operation can occur whenever 
the implementation processor finds itself processing a struc-
ture that it knows how to process directly, which will include 
directly implemented procedures, ppps, and ppcs. Since the 
locus of control must stay within the “&&” procedures, &&ex-
pand-closure, when it detects that the closure it is about to 
expand is of such a type, can shift down and call the corre-
sponding implementation processor procedure directly. This 
would suggest the following code:

;;;	 (define &&expand-closure			   ; this will not work! 
;;;		  (lambda simple [state proc! args! cont] 
;;;			    (if	 (or	(directly-implemented proc!) 
;;;					     (ppp proc!) 
;;;					     (ppc proc!)) 
;;;				    (&&call (shift-down cont state) ↓proc! ↓args!) 
;;;				    (&&normalise	 state 
;;;									         (body proc!) 
;;;									         (bind	(pattern proc!) 
;;;											           args! 
;;;											           (environment proc!)) 
;;;									         cont))))
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However there are two problems with this definition. First, 
&&expand-closure will never be called with a directly imple-
mented procedure, since &&args-continuation and &&call 
check for that case before calling &&expand-closure. This 
is reasonable, because even though in some sense we could 
shift down, as explained above we would immediately have 
to shift back up again, in order to figure out what to do with 
the result. So only the ppps and ppcs are relevant. We cannot 
blindly shift down upon encountering them, because our im-
plementation versions make rather strong assumptions about 
the arguments they are given, and we therefore need to check 
that the arguments we are given explicitly conform to these 
assumptions. Note for example that reflective continuations 
are well-formed—i.e.:

		  (normalise 'x global (lambda reflect [a e c] (c ↑a)))

normalises to

							       '[(binding exp env)]

However our implementation versions assume that continu-
ations are simple closures that normalise their arguments. 
Since there is no conceptual problem with not shifting down—
all it means is that processing will be one level more indirect 
than may be strictly necessary—we adopt a version of &&ex-
pand-closure that checks these integrity conditions, and shifts 
down only if they are met. Furthermore, we shift down only 
on normalise and the ppcs; the other ppps could be checked, 
but that would only add complexity (idiosyncratic argument 
integrity checks), and, as an inspection of the rpp shows, there 
will only be one extra horizontal processing step before a call 
to normalise is encountered, so this will not be a very serious 
inefficiency.

All of these considerations lead us to the following defini-
tion. shift-down is used to absorb the continuation into the 
absorbed states of the higher levels.
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(define &&expand-closure 
	 (lambda simple [state proc! args! cont] 
		  (cond [(and	(= (ppp-type proc!) 'normalise) 
						      (plausible-arguments-to-normalise args!)) 
				     (&&normalise (shift-down cont state) 
						      ↓(1st args!) ↓(2nd args!) ↓(3rd args!))] 
				    [(and	(ppc proc!) 
						      (plausible-arguments-to-a-continuation args!)) 
				     (&&call-ppc (shift-down cont state) 
								        ↓proc! 
								        ↓(1st args!))] 
				    [$t (&&normalise state 
						        (body proc!) 
						        (bind	(pattern proc!) 
									         args! 
									         (environment proc!)) 
						        cont)])))

The only further issue having to do with level shifting is deter-
mining the structure of the continuations saved for each level 
of the infinite tower. The initialization process described in 
section 3 would result in one reply continuation per level as the 
initial conditions. Since we naturally defer the creation of the 
level n initial continuation until such time as the implementa-
tion processor needs to reify it, the absorbed state of the whole 
tower can in fact be represented as a (finite) sequence of con-
tinuations for the intervening levels from the current level of 
the implementation processor up to the highest level reached 
to date. There is one subtlety; since each reply «creply?» con-
tinuation is closed in an environment in which level is bound 
to the integer level number, we store as the last element of 
this continuation sequence the level number for the next level 
not yet reached. The implementation processor is started off 
at level 1 in the code corresponding to read-normalise-print; 
hence the initial absorbed state, which represents a (virtual) 
tower of initial continuations for levels 2 to ∞, consists of the 
singleton sequence [2].
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(define 3lisp  
	 (lambda simple [] 
		  (&&read-normalise-print (initial-tower 2) 1 global)))

(define initial-tower 
	 (lambda simple [level] (scons level)))

(define shift-down 
	 (lambda simple [continuation state] 
		  (prep continuation state)))

(define reify-continuation 
	 (lambda simple [state] 
		  (if	(= (length state) 1) 
			   (make-reply-continuation (1st state) global) 
			   (1st state))))

(define shift-up 
	 (lambda simple [state] 
		  (if	 (= (length state) 1) 
			   (scons (1+ (1st state))) 
			   (rest state))))

	 5c	 Summary
As was discussed in section 4, as long as the set of implement-
ed procedures is broad enough to ensure that every call to a 
kernel procedure will “top out” at some finite level, there is no 
need for the implementation processor to handle every ker-
nel utility procedure (e.g., normal and bind). In the code just 
presented we have included the appropriate code to handle 
these kernel utilities as if they were primitive procedures, but 
some of them need not have been so included. Though there 
is probably no unique solution, there are no doubt more “mini-
mal” implementations, in the sense of implementations that 
directly implement fewer 3Lisp procedures; it is a bit of an 
exercise to figure out exactly how few are minimally necessary. 
In a real implementation, however, efficiency presses the other 
direction, towards implementations that implement more util-
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ities—a requirement that can usually be met, provided they 
do not involve non-standard control constructs, and are not 

“open” in the sense of calling user-supplied arguments as pro-
cedures (i.e., are not higher-order).

Given the code we have presented, it is easy to verify by 
inspection that all “&&…” procedures are used in the following 
restrictive ways:

1.	 They are always called from other “&&…” procedures, 
with the exception of 3Lisp which is the root procedure;

2.	 They are always called from non-embedded contexts;
3.	 They never use, either directly or indirectly, any reflec-

tive procedure other than those for the standard con-
trol structures;

4.	 They are never passed as an argument, or returned as 
a result;

5.	 They are never remembered in a user data structure; 
and

6.	 Barring an error, the chain of processing initiated 
by the call to 3Lisp is never broken (i.e., it will never 
return).

It is a relatively straightforward final step to translate such a 
program into one’s favourite imperative language.

	 6	 Conclusions
It is widely known that complex issues arise in the implemen-
tation of more traditional languages: we have already men-
tioned a system’s treatment of calls between compiled and 
interpreted code; micro-code routines that call macro-code 
routines as subroutines are a similar example of implicit level-
shifting. The general question of mediating between imple-
mentation structures and user structures, and the attendant 
complexities when they are in different languages, arises in 
other contexts as well, as for example in SmallTalk-80’s explic-
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it use of a compiled code interpreter for debugging purposes. 
It is also common experience that providing users with access 
to implementation structures, although powerful for certain 
purposes, tends to make an implementation unmodular and 
difficult to transport onto other architectures.

In (Smith 1982a) it was claimed that the reflective capa-
bilities of 3Lisp provide programmers with the power that is 
normally provided only by giving them access to the under-
lying implementation. We claimed, in other words, that the 
full power of implementation access was compatible with a 
fully abstract, implementation-independent language. In this 
paper, in showing how to implement such a reflective language, 
such notions as level-shifting, reifying implicit continuation 
structures, and so forth, make clear what it is that standard 
implementations do when they provide those sorts of facilities. 
In this sense, a level-shifting implementation processor for a 
procedurally reflective language can be viewed as a rational re-
construction of implementation more generally, just as reflection 
itself can be viewed as a rational reconstruction of the com-
plex programming techniques that use such implementations.

		  Epilogue and Acknowledgements
Although our first implementation of 3Lisp was based very 
closely on the techniques described in this paper, we have 
since shifted to a run-time incremental compiler, that trans-
lates 3Lisp code into byte codes for an underlying secd ma-
chine. The resulting system, implemented in Interlisp-d, 
yields a performance almost exactly the same as that provided 
by the Interlisp-d interpreter (i.e., 3Lisp programs run about 
as fast as interpreted Interlisp-d programs). The arguments 
presented in this paper, coupled with this experience, lead us 
to believe that although it is tricky, reflection is not an inher-
ently inefficient construct to add to a programming language.
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Information.

		  Appendix: 3·LISP Implementation Processor
This appendix lists the code for all the procedures required 
in the 3Lisp implementation processor described in section 
5. With very minor exceptions, this program is compatible 
with the dialect of 3Lisp used in the Interim 3Lisp Reference 
Manual (Smith & des Rivières 1984).

(define 3lisp … )			   ; code given in §5b [·43/1]

The implementation of read-normalise-print is similar to the 
rpp version, except that an explicit procedure implements the 
reply continuation:

(define &&read-normalise-print 
	 (lambda simple [state level env] 
		  (&&normalise state (prompt&read level) env 
			    (make-reply-continuation level env))))
(define &&reply-continuation 
	 (lambda simple [state result level env] 
		  (block (prompt&reply result level) 
				     (&&read-normalise-print state level env))))

The implementation of normalise is virtually identical to nor-
malise itself, except that it must &&call continuations, and use 
implementation version of other ppps. Similarly, the imple-
mentation of reduce is similar to reduce itself, except that 
explicit procedures are used to implement both the proc and 
args continuations.

(define &&normalise … )	 ; code given in §5a [·35/1]

(define &&reduce … )	 ; code given in §5a [·35/2]



	 5 · Implementation of Procedural Reflection

	 5 · 47

Draft Version 0.81 — 2018 · Mar · 3

(define &&proc-continuation … )	 ; code given in §5a [·35/-2]
(define &&args-continuation … )	 ; code given in §5a [·35/-1]

The implementation of expand-closure is like the regular ex-
pand-closure code, except we can absorb (shift-down) on ppps 
and ppcs—see the discussion in §5.2. The following checks for 
normalise and the ppcs:

(define &&expand-closure … )	 ; code given in §5a [·42/1]

The implementation of normalise-rail is similar to normalise-
rail itself, except that explicit procedures are used to imple-
ment both the first and rest continuations.

(define &&normalise-rail 
	 (lambda simple [state rail env cont] 
		  (if (empty rail) 
			    (&&call state cont (rcons)) 
			    (&&normalise state (1st rail) env 
					     (make-first-continuation rail env cont)))))
(define &&first-continuation 
	 (lambda simple [state first! rail env cont] 
		  (&&normalise-rail state (rest rail) env 
			    (make-rest-continuation first! rail env cont))))
(define &&rest-continuation 
	 (lambda simple [state rest! first! rail env cont] 
		  (&&call state cont (prep first! rest!))))

lambda and if must be implemented as primary processor pro-
cedures, if with an explicit procedure in place of its normal 
continuation:

(define &&lambda 
	 (lambda simple [state [kind pattern body] env cont] 
		  (&&call state cont (ccons kind ↑env pattern body))))
(define &&if 
	 (lambda simple [state [premise c1 c2] env cont] 
		  (&&normalise state premise env 
			    (make-if-continuation premise c1 c2 env cont))))
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(define &&if-continuation 
	 (lambda simple [state premise! premise c1 c2 env cont] 
		  (&&normalise state (ef ↓premise! c1 c2) env cont)))

(&&call f a1 ... ak) would be like (f a1 ... ak) except that if f is a 
ppp or ppc, the corresponding implementation version is used 
instead; if f is directly implemented, we use the implementa-
tion directly and then shift up; otherwise we shift up and do 
an explicit expand closure one level higher.

(define &&call … )	 ; code given in §5a [·37/-2]
(define &&call-ppp … )	 ; code given in §5a [·37/-1:·38/0] 
(define &&call-ppc … )	 ; code given in §5a [·38/1]

The next six make-xxx-continuation procedures look very 
messy, but they are really trivial: all they do is to construct 
a closure that is identical to the type of closure that would 
have been constructed by the rpp, had it been running instead 
of this implementation. These continuations are only used to 
fake the rpp; their only use here is as templates for later recog-
nition. ex(tract) is used to extract bindings for variables that 
were enclosed in these faked continuations.

(define make-proc-continuation … )	 ; code given in §5a 
	 ; [·36/-1:·37/0]
(define make-args-continuation 
	 (lambda simple [proc! proc args env cont] 
		  ↓(ccons 'simple 
					     ↑(bind '[proc! proc args env cont reduce] 
							         ↑[proc! proc args env cont reduce] 
							         global) 
					     '[args!] 
					     '(if (primitive proc!) 
						       (cont ↑(↓proc! . ↓args!)) 
						       (normalise (body proc!) 
										           (bind (pattern proc!) 
												              args! 
												              (environment proc!)) 
										           cont)))))
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(define make-first-continuation 
	 (lambda simple [rail env cont] 
		  ↓(ccons 'simple 
					     ↑(bind '[rail env cont normalise-rail] 
							         ↑[rail env cont normalise-rail] 
							         global) 
					     '[first!] 
					     '(normalise-rail (rest rail) env 
						       (lambda [rest!] 
							        (cont (prep first! rest!)))))))
(define make-rest-continuation 
	 (lambda simple [first! rail env cont] 
		  ↓(ccons 'simple 
					     ↑(bind '[first! rail env cont normalise-rail] 
							         ↑[first! rail env cont normalise-rail] 
							         global) 
					     '[rest!] 
					     '(cont (prep first! rest!)))))
(define make-reply-continuation 
	 (lambda simple [level env] 
		  ↓(ccons 'simple 
					     ↑(bind '[level env read-normalise-print] 
							         ↑[level env read-normalise-print] 
							         global) 
					     '[result] 
					     '(block (prompt&reply result level) 
								        (read-normalise-print level env)))))
(define make-if-continuation 
	 (lambda simple [premise c1 c2 env cont] 
		  ↓(ccons 'simple 
					     ↑(bind '[premise c1 c2 env cont if] 
							         ↑[premise c1 c2 env cont if] 
							         global) 
					     '[premise!] 
					     '(normalise (ef ↓premise! c1 c2) env cont))))
(define ex 
	 (lambda simple [variable function] 
		  ↓(binding variable (environment ↑function))))
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Various utilities dealing with state management and continu-
ations for each level:

(define initial-tower … )	 ; code given in §5b [·43/2]
(define shift-down … )	 ; code given in §5b [·43/3]
(define reify-continuation … )	 ; code given in §5b [·43/4]
(define shift-up … )	 ; code given in §5b [·43/5]

Predicates to check the plausibility of arguments, closures, 
and environments, to be used preparatory to shifting down 
and using implementation versions:

(define plausible-arguments-to-a-continuation 
	 (lambda simple [args!] 
		  (and (rail args!) 
				    (= (length args!) 1) 
				    (handle (1st args!)))))
(define plausible-arguments-to-normalise 
	 (lambda simple [args!] 
		  (and (rail args!) 
				    (= (length args!) 3) 
				    (handle (1st args!)) 
				    (plausible-environment-designator (2nd args!)) 
				    (plausible-continuation-designator (3rd args!)))))
(define plausible-environment-designator 
	 (lambda simple [env!] 
		  (and (rail env!) 
				    (or (= env! ↑global) 
					      (empty env!) 
					      (and (plausible-binding-designator (1st env!)) 
							        (plausible-environment-designator 
								         (rest env!)))))))
(define plausible-binding-designator 
	 (lambda simple [b!] 
		  (and (rail b!) 
				    (= (length b!) 2) 
				    (handle (1st b!)) 
				    (atom ↓(1st b!)) 
				    (handle (2nd b!)))))
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(define plausible-continuation-designator 
	 (lambda simple [c!] 
		  (and (closure c!) 
			      (not (reflective c!)) 
			      (or (atom (pattern c!)) 
					      (and (rail (pattern c!)) 
					      (= 1 (length (pattern c!))))))))

Predicates defined over closures, sorting them into the vari-
ous types that the implementation needs to know about: ppps, 
ppcs, etc. Also, there are utilities for recognizing closures of 
these various types.

(define directly-implemented 
	 (lambda [closure] 
		  (or (primitive closure) 
			    (kernel-utility closure))))
(define ppp 
	 (lambda simple [closure] 
		  (not (= 'unknown (ppp-type closure)))))
(define ppp-type 
	 (lambda simple [closure] 
		  (identify-closure closure *ppp-table*)))
(set *ppp-table* 
	 [['normalise ↑normalise] 
	  ['reduce ↑reduce] 
	  ['normalise-rail ↑normalise-rail] 
	  ['read-normalise-print ↑read-normalise-print] 
	  ['lambda (de-reflect ↑lambda)] 
	  ['if (de-reflect ↑if)]])
(define ppc 
	 (lambda simple [closure] 
		  (not (= 'unknown (ppc-type closure)))))
(define ppc-type 
	 (lambda simple [closure] 
		  (identify-closure closure *ppc-table*)))

(set *ppc-table* 
	 [['proc 	↑(make-proc-continuation	 '?  '?  '?  '? )] 
		  ['args	 ↑(make-args-continuation	 '?  '?  '?  '?  '? )] 
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	  ['first	 ↑(make-first-continuation	 '?  '?  '? )] 
	  ['rest	 ↑(make-rest-continuation	 '?  '?  '?  '? ) ] 
	  ['reply	↑(make-reply-continuation	'?  '? ) ] 
	  ['if	 ↑(make-if-continuation	 '?  '?  '?  '?  '? )]])
(define kernel-utility 
	 (lambda simple [closure] 
		  (member closure *kernel-utility-table*)))
(set *kernel-utility-table* 
	 [↑1st	 ↑double	 ↑normal	 ↑rail 
	  ↑2nd	 ↑environment	 ↑normal-rail	 ↑rebind 
	  ↑atom	 ↑external	 ↑pair	 ↑reflective 
	  ↑bind	 ↑handle	 ↑primitive	 ↑rest 
	  ↑binding	 ↑length	 ↑prompt&read	 ↑unit  
	  ↑de-reflect	↑member	 ↑prompt&reply	 ↑vector-constructor])
(define identify-closure 
	 (lambda simple [closure table] 
		  (cond [(empty table) 'unknown] 
				     [(similar-closure closure (2nd (1st table))) 
				      (1st (1st table))] 
				     [$t (identify-closure closure (rest table))])))
(define similar-closure 
	 (lambda simple [closure template] 
		  (or (= closure template) 
			    (and (isomorphic (pattern closure) (pattern template)) 
					     (isomorphic (body closure) (body template)) 
					     (= (reflective closure) (reflective template)) 
					     (similar-environment (environment closure) 
												            (environment template))))))
(define similar-environment 
	 (lambda simple [environment template] 
		  (or (= ↑environment ↑template) 
			    (and (empty environment) (empty template)) 
			    (and (not (empty template)) 
					     (not (empty environment)) 
					     (= (1st (1st environment)) (1st (1st template))) 
					     (or (= ''? (2nd (1st template))) 
						       (=	(2nd (1st environment)) 
							       (2nd (1st template)))) 
					     (similar-environment	(rest environment) 
												            (rest template))))))


