
4 · 48	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

			   Annotations1

A1	 ·1/1/-8	 Apologies for the sexist language (here and throughout). In spite of 
the awkwardness of the last word, I would now say ‘their story ap-
plies to themself’—see fn. … in the Introduction.

A2	 ·1/1/-4:-1	 The theme of focus requiring a modicum of distance—that just as 
one cannot see what is too far away, so too one cannot see that 
which is pressed right up against one’s eyeballs—is explored in On 
the Origin of Objects (o3). As mentioned in ch. 2, a number of 
metaphyical points are reflected in the design of 2/3Lisp which 
might not strike one’s attention, if one were to focus on them solely 
from the programming language perspective—or perhaps to put it 
more accurately, if one’s perspective on programming languages is 
to view them as their own distinct genus, rather than being (as I 
have always assumed) an instructive species of languages and as-
sociated intentional processes more generally.

A3	 ·2//1	 As noted in annotation a…, throughout this book I have deleted the 
hyphen in the names of the dialects of Lisp under discussion: hence 

‘3Lisp’ instead of the ‘3-Lisp’ of the published version.
A4	·2/-1/-7:-4	 This phrasing is somewhat disingenuous—that “[t]he point is not to 

decide at the outset what should and what should not be explicit.” 
In a procedurally reflective dialect of the sort presented here, the 
language designer must decide, in advance, what aspects of the 
language or system will potentially be available for explicit treat-
ment in user code. Any such aspects must be explicitly dealt with 
in the metatheory in terms of which the processor and dialect are 
defined, and then provided for in the resulting implementation. The 
point is that the language’s users—i.e., programmers—need not de-
cide in advance which of those aspects to avail themselves of in 
any given program. More significantly, even within the context of 
a single program, the relevant factors need be dealt with only in 
places where their explicit treatment is germane; otherwise they can 
be left implicit.

The paper would thus have been better phrased if the sentence 
had been written as follows:

“Although the metatheory (and reflective processor) must 
deal explicitly with all of those aspects of the language that 

1. References are in the form page/paragraph/line; with ranges (of any type) 
indicated as x:y. For details see the explanation on p.•



	 4 · Reflection and Semantics in Lisp 

	 4 · 49

Draft Version 0.81 — 2018 · Mar · 3

are capable, at any point within a program, of being made 
explicit, user code that does not want to deal with them need 
not deal with them explicitly. In Steele’s dialect, in contrast, 
for an aspect to be treated explicitly at any one point in a 
computation, it must be dealt with explicitly throughout the 
whole program. In a sense, therefore, reflection can be un-
derstood as providing something like contextual informa-
tion hiding—or perhaps more accurately, contextually-de-
pendent explicitization of otherwise implicit information.”

The next sentence in the text is more accurate, and more useful.
a5	 ·3/1/1:3	 Italics have been added in this version. As noted in ch. 2, it is this 

thesis that went unnoticed (or at least was set aside) when this pa-
per was first published.

a6	 ·3/1/4:6	 It is here where the overarching deferential perspective on logic, 
representation, etc., enters the picture—as discussed in §5.c of the 
Introduction, and extensively in ch. 2. The framework in terms of 
which 2Lisp and 3Lisp are defined is based on a theoretical for-
mulation of this “semantic significance that transcends…behavioral 
import.” Specifically, the significance that “transcends” is analysed 
in terms of declarative import (called ‘ϕ’, for ‘philosophy,’ analo-
gous to semantic interpretation or denotation in logic), which es-
tablishes the norms that govern behavioural import (called ‘ψ’, for 

‘pscyhology,’ analogous to reasoning, derivation, or proof theory in 
logic).

A7	 ·3/1/-7:-5	 See §3, particularly the first full paragraph on p. 10, but in truth 
this paper does not provide an adequate analysis of the notions of 
operational and denotational  semantics. See however ch. 2, ch.10 
(especially its annotation a…), and also Volume iii of aos.

A8	 ·3/-1/4:5	 “[T]he general intellectual hygiene of avoiding use/mention errors” 
reflects the position discussed in §6 of the Introduction of embrac-
ing a traditionally strict semantical framework of the sort embraced 
in formal logic. Hygiene, however, is theory-relative. See “The Cor-
respondence Continuum” (ch.11), written approximately five years 
later, by which time these commitments had already begun to 
unravel.

I still believe that the 2/3Lisp architecture has a degree of theo-
retical elegance. The problem is just that this elegance proves un-



4 · 50	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

workable. As briefly discussed in the Introduction, one aim of the 
fan calculus is for it to provide a theoretical framework that accom-
modates the kinds of semantical flexibility described in ch.11, so 
that the style of theoretical cleanliness illustrated in 2/3Lisp can be 
exemplified in a radically more practicable architecture.

A9	 ·3:-1/-1:	 	 By ‘semantic rationalization’ I mean defining the processing regi-
	 ·4/0/-1	 men to “normalise” in a “reference-preserving” way. Of the two 

properties, it is the latter notion, of reference-preservation, that 
is crucial—endowing the dialect with what in chapter 1 of the dis-
sertation (ch. 3b, at ·…) I refer to as semantic flatness.2 The for-
mer property, of normalisation, is both more restrictive and less 
important—i.e., the requirement that the co-referring result be con-
textually-independent, side-effect free, and stable (§4, ·…; see also 
ch. 3b, …). As discussed in ch. 2, at ·…, this particular construal of 
normalisation is essential to the particulars of 2Lisp and 3Lisp, but 
it is not a condition on the overarching notion of a procedurally 
reflective architecture being proposed.

The entire discussion, however, rests on the much more impor-
tant underlying point, explored in ch. 2, that unless one distinguish-
es what happens in a system from what it is about—i.e., distin-
guishes reference from normalisation in the 2/3Lisp case (what 
later in the paper I refer to as φ and ψ)3—then one cannot even claim 
that the system is reflective at all. While one might challenge the 
thesis that reference preservation (semantic flatness) is a necessary 
or useful architectural criterion in terms of which to define an intel-
ligible reflective system, that is, a strong version of the approach 
being defended in this paper is that it would be incoherent to chal-
lenge the prior act of distinguishing φ and ψ. Without making that 
discrimination, it is claimed, the notion of reflection cannot even 
be defined.

This is why it is critical for 2/3Lisp to adopt an ingrediential 
rather than specificational view of programs and their seman-
tics.4 The fundamental characterization of a reflective system is of 

2. Cf. also §4’s characterization (p. 21, ¶0) of traditional Lisp evaluators 
“crossing semantic levels.” Note that the use of the term ‘semantical’ is inap-
propriate in this situation; the phrase should be ‘crosses semantic levels’; cf. 
fn • in the Introduction.
3. Defined in §3; see especially ·….
4. See §3, particularly ·….



	 4 · Reflection and Semantics in Lisp 

	 4 · 51

Draft Version 0.81 — 2018 · Mar · 3

a system that reasons about its own operations and structures and 
behavior, where the applicable notion of “aboutness” must be dif-
ferent from what it is that happens. Cf. for example the following 
phrasings in §2 of the paper (emphasis added):

·5/1/4:6	 “not only…about its self and internal thought processes, 
but also…about its behavior and situation in the world”

·5/-1/-6	 “refer to or deal with other parts of a computational 
system”

·6/1/4:5	 “reasoning directly about the world and reasoning about 
that reasoning”

and similar passages in §3 and §4. If one adopts a specification-
al view, and takes a program to denote the behavior that results 
from executing it, then in order to define that program as reflec-
tive one would have to define two distinct notions of designation 
or aboutness. As I indicate in «ref», various such strategies suggest 
themselves, such distinguishing the semantics of programming 
languages from the semantics of programs written in those lan-
guages, or—perhaps more productively—distinguishing program 
semantics from process semantics (by the latter meaning the 
semantics of the processes that result from running executing the 
programs—what on a specificational view of programs could be 
desibed as “the semantics of the semantics of the programs”). See 
ch. 2, ·…, ch. 11, and ch. 12.

A10	 ·4/2	 It would have been helpful to point out that while it is possible to 
understand recursion (mathematically or computationally) without 
explicitly distinguishing declarative import (φ) and procedural con-
sequence (ψ), the same does not hold for reflection. The notion of 
reflection is only intelligible with respect to a disentangled under-
standing of both.

A11	 ·5/1/2:6	 On the characterization given here, which is compatible with the 
formulation in ch. 6, 3Lisp was in fact only introspective, not fully 
reflective. As this passage illustrates, however, my intent had al-
ways been to aim for the wider notion—as evident, for example, in 
the encompassing project of defining the general-purpose represen-
tation system Mantiq, of which, as described in  §3 of the Introduc-
tion and in ch. 2, 3Lisp was originally intended to be a design study.



4 · 52	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

A12	·6/0/-3:-1	 In part this is a reference to Mantiq (see previous annotation), but 
as mentioned in ch. 2 I had also planned to develop a next dialect in 
the series of reconstructed dialects of Lisp, to be called 4Lisp, which, 
while otherwise retaining 3Lisp’s basic style and control structure, 
was to include semantically-rationalized data structures for (exter-
nal) reference to the real-world. That is: 4Lisp was intended to ex-
tend 3Lisp’s φ/ψ semantic framework to data structures as well as 
programs. As noted in ch. 2, 4Lisp, like Mantiq, never materialized, 
due to the challenges of developing representational regimens ad-
equate to real-world ontology.

At the “Reflection ’96” workshop, held April 21-23, 1996 in San 
Francisco, I presented a paper entitled “What Ever Happened to 
4Lisp?”—which remains unpublished. Fundamentally, as described 
in ch. 1, the issues were both semantical and ontological. The se-
mantical issues included not just confusions and ambiguities about 
programming languages, programs written in them, processes, 
etc., of the sort discussed here, but the more challenging issues ex-
pressed in ch. 12. But it was the ontological issues that were the 
most daunting. One way to understand On the Origin of Objects, 
published that same year, is to view it as an initial exploration of 
how would have to understand the world in order to do justice to 
4Lisp’s and Mantiq’s goal of being genuinely reflective, rather than 
merely introspective.

A13	·6/1/10:11	The two connections are reminiscent of what philosophers describe 
as word-to-world (or mind-to-world) and world-to-word (or 
world-to-mind) “directions of fit,”6 with the following exceptions:

1.	 Instead of words or minds we are of course talking about inter-
nal structures (impressions) in a computational process;

2.	 The issue is not just that the “words” or internal structures 
should end up true or “fitting” what is the case—by adjusting 
the “word” in the world-to-word case, and adjusting the world 
in the word-to-world case—but rather that the connection be 
causally efficient, so that that “fit” can be practially accom-

6. See for example Austin (1962) and Searle (1979).
7. Note that internalization (θ) and externalization (θ-1) are both effective in 
2/3Lisp, ensuring that language is included along with structure in both direc-
tions of causal connection.
7.5. E.g., see ··· in ch. 12, and the discussion at ···9/1 of ch. 11.



	 4 · Reflection and Semantics in Lisp 

	 4 · 53

Draft Version 0.81 — 2018 · Mar · 3

plished;7 and
3.	 The “world” at stake is the internals of the computational pro-

cess itself, as discussed in ch. 2. As usual, 3Lisp’s design was 
meant to exemplify semantical and metaphysical frameworks of 
much wider applicability.

A14	 ·7/1/7:9	 To say that implementations are “really…just descriptions” is glib, 
as are the next two sentences. As discussed in ch. 2, the relationship 
between description and implementation is a something like a pun 
or stalking horse that permeates not only this whole paper, but the 
entire reflective architecture and background theoretical perspec-
tive under discussion throughout this volume.

As noted in ch.2 (see §·…), the focus here on implementation-
inspired examples (stack frames, processor state, etc.)—not just in 
this and the subsequent paragraph, but to an extent throughout 
the chapter—was in retrospect unfortunate. What mattered was 
to get at aspects of a running process that were implicit, from the 
point of view of the program; for a paper aimed at a community of 
programmers and computer scientists, I thought that these imple-
mentation-oriented examples would be compelling because famil-
iar. The difficulty was that they ended up conveying the misimpres-
sion that reflection has to do with making the implementation 
explicit and available—not my intent at all, and as argued in ch. 
2, a considerable distraction from understanding what reflection is 
really about. See in particular ch. 2, §…

A15	 ·8/-1/1:2	 Elsewhere I refer to internal structures as impressions, to highlight 
the contradst with expressions.7.5 As soon as the term ‘impression’ 
was introduced, it took over from ‘structure’ in conversation among 
those working with 2/3Lisp—including Jim des Rivières (co-author 
of ch. 5) and others in my Xerox parc research group, and more 
recently Jun Luo and other students and colleagues.

A16	·9/n3/3:6	 In March of 1982, a month after the dissertation had been com-
pleted, and still a rather green graduate student, I presented 2Lisp 
and 3Lisp at a colloquium at sri International. To my astonishment, 
the legendary John McCarthy, inventor of Lisp, sat down at the very 
front of the room. I was terrified. There being nothing for it, I pre-
sented my analysis of traditional Lisps, including the critique of eval-
uation given in §4, and hazarded the idea, stated in this footnote, 

8. Quoted function descriptions could be passed “downwards” because vari-



4 · 54	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

that McCarthy had recruited (structural) quotation and dynamic 
scoping to compensate for the fact that Lisp 1.5 was (inadvertent-
ly?) only first-order. Guy Steele and Gerry Sussman had already de-
veloped the higher-order, lexically scoped Scheme, and presented 
their analysis of Lisp in the now-famous Lambda Papers (Steele 
& Sussman, 1975–80). So the idea of a lexically scoped, genuinely 
higher-order Lisp was not new; it was the analysis of reference and 
quotation on which I did not know McCarthy’s views. While hugely 
impressed by Steele and Sussman’s papers—indeed their work on 
Scheme undoubtedly influenced my choice of Lisp as a site for a 
Mantiq design study (up until that point I had been working in the 
area of knowledge representation, not programming languages)—I 
had also felt that they did not go nearly far enough. Scheme dis-
courages (as we might now say, “deprecates”) quotation, whereas 
I felt that there was extraordinary power latent in quotation, which 
needed to be theoretically understood, rigorously disciplined, and 
then unleashed.

I have no reason to believe that McCarthy ever thought much 
about (or of) 3Lisp after that talk, but I was hugely relieved, after 
I made the claim that Lisp 1.5, within the context of a dynamically 
scoped environment, had recruited quotation in order to “fake” 
higher-order behavior (at least downward8), that he agreed—nod-
ding his head slowly, and saying (I believe I remember the words 
exactly) “I am sure that is right.”

A17	·10/1/5:7	 When this was written I still believed that with sufficient rigorous 
attention these complexities could be sorted out—cf. for example 
ch. 11. By the time I had written ch. 12, however, I had begun to 
appreciate the magnitude—and ultimate formal incomprehensibil-
ity—of the task.

A18	·11/0/7:8	 Even at the time this paper was published I was critical of the idea 
that computation could adequately be understood as formal sym-
bol manipulation. I believe that my use of the phrasing “in the sense 
that” was meant (rather ineffectively) to signal some distancing of 

ables bound in the calling procedure would still be dynamically available for 
use by those descriptions if executed underneath the point of call on the stack. 
What did not work was to pass them “upwards.” That is: quoted function 
descriptions functioned properly (within limits) as arguments to procedures; 
they did not as functional results.
8.5. See annotation a…, above.



	 4 · Reflection and Semantics in Lisp 

	 4 · 55

Draft Version 0.81 — 2018 · Mar · 3

my own view from that then-universal assumption. It was not until 
1986 that I explicitly argued against such a construal. See “The Link 
from Symbols to Knowledge” (Smith 1986b) and aos (especially 
Volume ii).

A19	 ·12/0/3	 What I am here calling “structures” (data structures, programs in 
the sense that they might be available during the course of their 
execution, etc.—i.e., what I later called “impressions”8.5) are at least 
arguably more abstract than linguistic expressions, but that is not 
to say that they are abstract objects, in the sense enjoyed by genu-
ine mathematical entities, types, etc.8.7

A20	 ·12/1/6	 The words ‘the relationship to’ has been added to the original, for 
clarity.

A21	 ·12/1/-1	 Cf. annotation «…» of ch. 3….
A22	·14/0/2:3	 In discussions of 2/3Lisp the term ‘numeral’ is overloaded, as com-

puter scientists would say—used to refer both to (external) strings 
and to (internal) structures. Thus in this paper the (English) phrase 

“the numeral 3” is used to refer to an internal 2/3Lisp structure (im-
pression). To refer to an external 2/3Lisp (string) numeral I would 
instead use “the numeral «3»’. See the fn. labeled ‘†’ on p. 18.

A23	 ·14/-1/-4	 It would have helped if this had been written: “is always norma-
tively related to semantics.”

A24	·14/-1/-2:		  While correct as stated, this parenthetical would have been more
	 ·15/0/1	 perspicuously formulated as: “which, incidentally, can be expressed 

as the equation ψ(s1, s2) ≡ φ(s1) ⊂ φ(s2), if one takes ψ to be a rela-
tion, and φ be a function mapping sentences onto possible worlds 
that satisfy them.”

A25	·15/0/-2:-1	teco (“text editor & corrector”) was a string-processing language 
which ran on the “Incompatible Time Sharing System” (its) at the 
mit Artificial Intelligence Lab in the 1970s. It is now remembered 
primarily as the programming language in which the initial versions 
of the still-popular text editor emacs were written. Smalltalk, an 
object-oriented, dynamically-typed, and inchoately “reflective” pro-
gramming language, was developed at the Xerox Palo Alto Research 
Center (parc) by Alan Kay and his colleagues during the 1970s.

A26	·15/-1/4:5	 Cf. ch. 11, ch. 12, §6 of the Introduction, ch. 2, and Volume iii of 

8.7. See aos for an argument that all objects are to some extent abstract. 
8.8. See http://www.thocp.net/biographies/dijkstra_edsger.htm «… is this 
the source? … »
9. See annotations a11 and a12, above (p. •). 



4 · 56	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

aos.
A27	 ·16/0/3	 To say “primarily communicative” makes sense only on a view that 

language exists solely as a medium of interchange or interaction 
among minds (or other intentional systems or processes). On such 
a view, to say of a text that it is a “description,” for example, would 
be understood as shorthand for saying that it can be used between 
and among intentional agents so as to enable them to stand in a 
descriptive relation to that which is described. In the philosophy of 
language or mind this would be viewed as a strongly psychologi-
cal or mentalist view of intentional content-bearing. While in the 
2/3Lisp context it is evident why I was distinguishing this case, to 
put it this way in the text is rather glib. In other places (e.g., in «ref») 
I sort views of programs into three rather than two types: ingredi-
ential, specificational, and communicative.

A28	 ·16/0/11	 The popl version contained the word ‘avoid’ instead of ‘allow’, but 
that was a mistake. The intent of the sentence is this: that “the only 
salient difference between specifications in general, and programs 
as a particular species of specification, is that in the general case 
specifications may use non-effective concepts in describing behav-
ior (such as specifying a square root routine by saying returns as 
output a number that, if squared, equals the input), whereas 
programs must be effective.”

A29	·16/-1/-3:-1	 From a 2014 perspecttive (30 years after this paper was 
written), I confess to having no idea of what the last sentence of this 
paragraph was intended to mean.

A30	 ·17/1/3	 Cf. §6 of the Introduction, and much of ch. 2.
A31	 ·17/1/7:8	 A general significance function (Σ) of this sort was defined in the 

dissertation; see the sections included in ch. 3.
A32	·17/1/-7:-6	This statement (“the relationship to the world that s1 signifies”) is 

infelicitous. It is not the relationship to the world that the structure 
signifies; rather, it is in virtue of participation in such a relationship 
to (or with) the world that the structure is able to signify whatever 
in-the-world entity that it does.

A33	·17/1/-2:-1	Computer science talks about a variable being “bound to” some-
thing—namely, to what is called its ‘value’—though, as evident in the 
semantical reconstruction being carried out here, I take it that that 
usually means a co-referential structure. Strictly speaking, that is 



	 4 · Reflection and Semantics in Lisp 

	 4 · 57

Draft Version 0.81 — 2018 · Mar · 3

(and pace the considerations adduced in ch. 12), a programming 
language variable would be bound to a numeral, not to a number—
and should be so described in contexts in which the differences be-
tween numerals and numbers are significant. In mathematics and 
logic, variables are likely, if bound to anything, to be understood as 
bound to numbers—i.e., to what is here being called declarative im-
port. Moreover—and this is what tripped up conversations between 
Barwise and me, it is more common in mathematical logic to de-
scribe a variable as “bound by” something—namely, by quantifiers, 
scoping constructs, etc. In computer science, that is, to say of a vari-
able that it is ‘bound,’ simpliciter, is understood as an abbreviation 
for, or as implying, that it is “bound to (something)”; in logic, as an 
abbreviation for, or as implying, that it is “bound by (something)”.

This is just one small instance of the general phenomenon of 
computer science’s using, as technical terminology, vocabulary and 
phrasings derived from logic, but in its own distinct ways—an in-
stance of the topic discussed in §4 of the Introduction. Sometimes, 
as here, the differences are subtle, and not usually distracting; 
sometimes, as with the word ‘semantics,’ they are major, and cause 
considerable confusion. See aos.

A34	 ·19/1/1	 This section title is a play on Edsger W. Dijkstra’s legendary “go 
to Statement Considered Harmful” (Communications of the acm, 
Vol. 11, No. 3, March 1968, pp. 147–48). No computer scientist 
in the 1980s would have failed to recognize the illusion; the Com-
munications of the acm (Association for Computing Machinery) 
was the première professional computer science journal at the time, 
and Dijkstra’s letter was widely taken to have inaugurated serious 
theoretical analysis of programming. Cf. this note from the History 
of Computing Project «ref»:8.8

“In 1968 Edsger Dijkstra laid the foundation stone in the 
march towards creating structure in the domain of program-
ming by writing, not a scholarly paper on the subject, but in-

10. A variant of vanilla λ-calculus extended with a special operator ‘✶’, so that, 
modulo some subtleties, the term ‘✶’ emerged as the result of normalizing any 
complex expression in which that form occurred.
11. Bobrow, des Rivières & Kiczales (1991).



4 · 58	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

stead a letter to the editor entitled “go to Statement Consid-
ered Harmful”. (Comm. acm, August 1968) The movement 
to develop reliable software was underway.”

A35	·21/0/1:4	 From a restricted view of programming languages, it may seem 
fastidious to make heavy weather out of the difference between a 
number and a numeral. But the philosophical issues at stake are 
substantial. Note, to take a striking example, that in his 1985 Presi-
dential Address to the American Philosophical Association, Fred 
Dretske used this very distinction not only to claim that calculators 
cannot add, but to go on, more seriously to argue hat computers 
cannot and never will be able to think—i.e., to undermine the very 
possibility of what Searle has famously dubbed “strong artificial in-
telligence.” (Dretske 1985)

A36	·23/-1/-2:-1	 This is as close as this paper comes to an explicit state-
ment of its underlying commitment to a deferential semantics (cf. 
§… of the Introduction, and ch. 2).

A37	·27s/1/1:2	 See annotation a16, above.
A38	·28/2/-2:-1	It is this ruthless semantic strictness to which I was referring, in §1 of 

the Introduction, when I said that in designing 3Lisp I had achieved 
a degree of philosophical clarity but at a price of “unusably fastidi-
ous baroqueness.” «…check!…»

A39	 ·29/-1/-4	 Which behavior, of course, they must also designate, as well as en-
gender. In fact one might describe an mpp as a program p where 
ψ(p) ≈ φ(p).

A40	·30/0/1:2	 Talk of recursive definitions being “self-referential” was typical of 
the sorts of semantical sloppiness that first puzzled me, and then 
frustrated me, during the course of my computational education. It 
was this sort of conceptual inelegance that I was trying to rout from 
computational discourse through this exercise.

As mentioned in the Introduction (see esp. §6), I now believe this 
“sloppiness” to have two components, the disentangling of which 
will require considerable artistry. One component stems from a 
metaphysical/ontological fact of the highest order: the world is 
simply more complex than is or ever will be comprehended in an 
imaginable theoretical framework. Adequate accounts, therefore, 
in my judgment already do and increasingly have more in common 
with novels that many formalists may like to admit. What detail 



	 4 · Reflection and Semantics in Lisp 

	 4 · 59

Draft Version 0.81 — 2018 · Mar · 3

is given what sorts of shrift is an act of judgment, not a matter 
of formulaic prescription. That, I believe, will always be true. That 
said, the second component of present-day sloppiness stems from 
the profound inadequacy of current theoretical frameworks to do 
justice to even what regularities there are, as regards the sorts of 
complexity adduced in ch. 12. 

A41	·31/1/-9:-1	Cf. ch. 12, especially §8, ·….
A42	 ·33/0/-1	 That we have no satisfying theory of process was a claim I had come 

to believe while a graduate student at mit, and it is one I would still 
endorse. In the 1970s, though, I believed we were on firm ground 
with respect to ordinary objects—a view that by the 1990s I had 
clearly lost confidence in (hence On the Origin of Objects). A glim-
mer of the sorts of concern I felt is given in the discussion in §8 of 
the Introduction; see also ch. 1 §…, and aos.

A43	·35/1/1:6	 This idea of there being a “reflective act” accords with what in §… 
of ch. 3b and in ch. 5 is called the “level shifting view,” with the 
anima or active agency shifting up or down, in what logicians and 
philosophers might describe as cases of semantic ascent and se-
mantic descent (as usual, the analysis is permeated with the “pun” 
as between description and implementation). The model described 
in the next sentence, in contrast,  describes what the “tower view,” 
in which no shifting is going on, and all levels are simultaneously 
active. See «…».

A44	·43/n/-3:-1	 See the discussion in ch. 5, especially of primitives at ·….
A45	·44/0/-3:-1	This issue of striking a balance between vantage point and causal 

connection presages the notion of “partial disconnection” that is a 
major theme of On the Origin of Objects.

A46	·44/1/4:5	 retfun and freturn were “non-local” return functions in various 
1970s-era Lisp dialects, which could be used to implement out-of-
the-ordinary control structures—e.g., for complex error recovery. 
Current records suggest that freturn existed in MacLisp, Interlisp, 
Franz Lisp, and various other dialects of the day.

2Lisp and 3Lisp were first implememented in MacLisp, when I 
was a graduate student at the mit Artificial Intelligence Laboratory, 

12. Handles vanished, for example, so that 2, '2, ''2, '''2, etc., all turned into 
the same thing—namely, the number (not numeral!) two.



4 · 60	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

where it was developed and maintained. Subsequent (and better) 
implementations—including a just-in-time incremental compiler—
were written (primarily by Jim des Rivières, co-author of ch. 5) in 
Interlisp at Xerox parc, where I subsequently worked.

A47	·45/0/-2:-1	The argument in this one-paragraph section, as well as being glib 
and abbreviated, is in fact unsound (it is too strong). The refer-
enced Smith & des Rivières (1984)—“Implementation of Procedur-
ally Reflective Languages—is included here as ch. 5; it presents a 
much better analysis of why 3Lisp is tractable, as well as a full im-
plementation. The total program, including all utilities, was about 
200 lines of 2Lisp; however, the “50 lines” referenced in the text is 
not entirely misleading, as that includes the substantive part (every-
thing except essentially trivial subroutines).

The reference to “Smith forthcoming” is not detailed in the refer-
ences in the popl paper, and at present (2012) I have no recollection 
of what in particular I had in mind—or even whether I did have any-
thing particular in mind. My guess is that I expected that someday 
I would work on such issues of tractability—including the indicated 
issue of whether an implementing processor could be algorithmi-
cally derived from an rpp. But just as in the case of a mathematical 
theory of reflection, none of this came to pass. Instead, my atten-
tion moved to the issues cited above about 4Lisp, reference to the 
external world, and genuine reflection (as opposed to the introspec-
tive abilities exhibited here).9

A48	·45/1/-3:-1	 In the mid-1980s, the reflective λ-calculus described in §6 
of the Introduction10 «…and elsewhere? check …» was defined and 
presented to a logic colloquim, hosted by Jon Barwise, at Stanford’s 
Center for the Study of Language and Information (csli). The pre-
sentation engendered reactions that I can only describe as ranging 
from befuddlement to consternation. There is no doubt that my 
intention of convincing Jon Barwise (a very good friend) that reflec-
tion was important, and how it worked, entirely failed.

«…Ref other places this is talked about…unify?…»
A49	·46/2/1:8	 See the discussion of lambda and intensional procedures in what 

was §4.c.i of the dissertation on 3Lisp, included here as ch. 3c.
A50	·46/1/-2:-1	As in the case of so many other ideas gestured towards in this paper, 

I myself did not end up pursuing this suggestion—for all of the rea-
sons adumbrated above (semantical and ontological difficulties). 



	 4 · Reflection and Semantics in Lisp 

	 4 · 61

Draft Version 0.81 — 2018 · Mar · 3

It is perhaps worth mentioning, however, that one of the design 
goals for Mantiq was to define a “structural field,” along the lines 
of what is defined here (see 8/1/4:5 in §2) but at a sufficient level 
of abstraction so that quotational reference and hyper-intensional 
reference could be fused. The idea would be that at least one mean-
ingful notion of “means the same thing” could be tested, in such an 
architecture, merely by checking structural identity.

A51	·47/0/-5:-3	The prospect of defining a system in which one could, within any 
particular routine, or at relevant points within a program, reify only 
those aspects of a computation that were relevant and required 
explicit treatment, was an idea that I had wrestled with in the very 
early stages of the design of 3Lisp, while still at mit, as was the idea 
of what it would be to define a higher-order “language design” li-
brary from which one could “load in” such modules as recursion, 
reflection, etc. Both ideas were bruited about in my research group 
at parc throught the 1980s—although, needless to say, neither was 
brought to fruition in the form that I imagined them (in particular: 
in a way that incorporated the deferential semantics and distinction 
between declarative import and procedural consequence that as so 
fundamental to 2/3Lisp).

In particular, although the initial work on both metaobject 
protocols (mop)11, the Common Lisp Object System,11.5 and as-
pect-oriented programming (aop) emerged out of these discus-
sions from members of my research group, I was struck that the 
semantical (referential) aspect of 3Lisp, the part that I felt was most 
foundational and theoretically important, was never incorporated 
into these developments. Public discussions of both notions invari-
ably take a specificational view of programs, according to which the 

“meaning” or semantics of a program has to do with what behavior 
it engenders (and thus instantiate what in the Introduction I call a 
philosophy of blanket mechanism).

As a result, in my judgment, neither the mop nor aop frameworks 
have adequate intellectual machinery in terms of which even to de-
fine the notion of “meta.” That is not to say that issues of reference 
are not at play; I do not believe it is possible to call one thing “meta” 
to another except in referential terms. Rather, the point is that the 
referential aspects, though utterly crucial, as yet remain wholly im-
plicit (they remain, to put it in terms of §… of ch. 2, wholly within 



4 · 62	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

the “tacit view of programmers”).
A52	 ·47/1/4	 Re the reference to “Smith (forthcoming),” see the discussion in 

annotation a47, above. In 1984, however, I did set out on the 
project described in §… of ch. 2: working with Joseph Goguen and 
Jose Meseguer to develop a formal, mathematical account of the 
denotational semantics of 2Lisp. As recounted in «…», when they 
presented their proposal I was stunned. The reference relation (φ), 
which I had worked so hard to bring into view and honor, and 
which was so foundational to the architecture, had been entirely 
obliterated.12 It was not just that effectivelyeverything that mattered 
to me about 2Lisp had disappeared. The real issue was that I was 
unable to explain to them why what had disappeared had mattered 
to me—why that which they took to be eliminable, en route to se-
mantical cleanliness, was exactly what I took semantical cleanliness 
to consist in. That was what rocked me back on my heels, and led 
me into the foundational investigations that have continued to oc-
cupy me ever since.

A53	 ·47/-1/7	 For example, it would be essentially trivial to construct a λ-calculus 
analogue or mirror of the implementation presented in des Rivières 
and Smith (1984), included here as ch. 5.


