48

Annotations'
A1 -1/1/-8 Apologies for the sexist language (here and throughout). In spite of

the awkwardness of the last word, | would now say ‘their story ap-
plies to themself’—see fn. ... in the Introduction.

A2 -1/1/-4:-1 The theme of focus requiring a modicum of distance—that just as

one cannot see what is too far away, so too one cannot see that
which is pressed right up against one’s eyeballs—is explored in On

metaphyical points are reflected in the design of 2/3Lisp which
might not strike one’s attention, if one were to focus on them solely
from the programming language perspective—or perhaps to put it
more accurately, if one’s perspective on programming languages is
to view them as their own distinct genus, rather than being (as |
have always assumed) an instructive species of languages and as-
sociated intentional processes more generally.
A3 -2//1 As noted in annotation A..., throughout this book | have deleted the
hyphen in the names of the dialects of Lisp under discussion: hence
‘3Lisp’ instead of the ‘3-Lisp’ of the published version.
4 This phrasing is somewhat disingenuous—that “[t]he point is not to

decide at the outset what should and what should not be explicit.”
In a procedurally reflective dialect of the sort presented here, the
language designer must decide, in advance, what aspects of the
language or system will potentially be available for explicit treat-
ment in user code. Any such aspects must be explicitly dealt with
in the metatheory in terms of which the processor and dialect are
defined, and then provided for in the resulting implementation. The
point is that the language’s users—i.e., programmers—need not de-
cide in advance which of those aspects to avail themselves of in
any given program. More significantly, even within the context of
a single program, the relevant factors need be dealt with only in
places where their explicit treatment is germane; otherwise they can
be left implicit.

The paper would thus have been better phrased if the sentence
had been written as follows:

“Although the metatheory (and reflective processor) must

deal explicitly with all of those aspects of the language that

1. References are in the form page/paragraphy/line; with ranges (of any type)
indicated as x:y. For details see the explanation on p.-

Draft Version 0.81 — 2018 - Mar - 3

are capable, at any point within a program, of being made
explicit, user code that does not want to deal with them need
not deal with them explicitly. In Steele’s dialect, in contrast,
for an aspect to be treated explicitly at any one point in a
computation, it must be dealt with explicitly throughout the
whole program. In a sense, therefore, reflection can be un-
derstood as providing something like contextual informa-
tion hiding—or perhaps more accurately, contextually-de-
pendent explicitization of otherwise implicit information.”

The next sentence in the text is more accurate, and more useful.

A5 -3/1/1:3 ltalics have been added in this version. As noted in ch. 2, it is this
thesis that went unnoticed (or at least was set aside) when this pa-
per was first published.

A6 -3/1/4:6 It is here where the overarching deferential perspective on logic,

which 2Lisp and 3Lisp are defined is based on a theoretical for-
mulation of this “semantic significance that transcends...behavioral
import.” Specifically, the significance that “transcends” is analysed

>

in terms of declarative import (called ‘¢’ for ‘philosophy,” analo-
gous to semantic interpretation or denotation in logic), which es-
tablishes the norms that govern behavioural import (called Y, for
‘pscyhology,” analogous to reasoning, derivation, or proof theory in
logic).

See §3, particularly the first full paragraph on p. 10, but in truth

this paper does not provide an adequate analysis of the notions of

A8 -3/-1/4:5 “[T]he general intellectual hygiene of avoiding use/mention errors”

reflects the position discussed in §6 of the Introduction of embrac-

ing a traditionally strict semantical framework of the sort embraced

respondence Continuum?” (ch.11), written approximately five years

later, by which time these commitments had already begun to
unravel.

I still believe that the 2/3Lisp architecture has a degree of theo-
retical elegance. The problem is just that this elegance proves un-

49

Draft Version 0.81 — 2018 - Mar - 3

50

that the style of theoretical cleanliness illustrated in 2/3Lisp can be
exemplified in a radically more practicable architecture.
By ‘semantic rationalization’ | mean defining the processing regi-

~ men to “normalise” in a “reference-preserving” way. Of the two
properties, it is the latter notion, of reference-preservation, that
is crucial—endowing the dialect with what in chapter 1 of the dis-

mer property, of normalisation, is both more restrictive and less
important—i.e., the requirement that the co-referring result be con-

normalisation is essential to the particulars of 2Lisp and 3Lisp, but
it is not a condition on the overarching notion of a procedurally
reflective architecture being proposed.

The entire discussion, however, rests on the much more impor-
es what happens in a system from what it is about—i.e., distin-
guishes reference from normalisation in the 2/3Lisp case (what
later in the paper | refer to as ¢ and s)*>—then one cannot even claim
that the system is reflective at all. While one might challenge the
thesis that reference preservation (semantic flatness) is a necessary
or useful architectural criterion in terms of which to define an intel-
ligible reflective system, that is, a strong version of the approach
being defended in this paper is that it would be incoherent to chal-
lenge the prior act of distinguishing ¢ and . Without making that
discrimination, it is claimed, the notion of reflection cannot even
be defined.

This is why it is critical for 2/3Lisp to adopt an ingrediential
rather than specificational view of programs and their seman-
tics.* The fundamental characterization of a reflective system is of

2. Cf. also §4’s characterization (p. 21, €0) of traditional Lisp evaluators

“crossing semantic levels.” Note that the use of the term ‘semantical’ is inap-
propriate in this situation; the phrase should be ‘crosses semantic levels’; cf.

Draft Version 0.81 — 2018 - Mar - 3

a system that reasons about its own operations and structures and
behavior, where the applicable notion of “aboutness” must be dif-
ferent from what it is that happens. Cf. for example the following
phrasings in §2 of the paper (emphasis added):

-5/1/4:6 “notonly...aboutits selfand internal thought processes,
but also...about its behavior and situation in the world”

-5/-1/-6 “refer to or deal with other parts of a computational
system”

-6/1/4:5 “reasoningdirectlyabouttheworldandreasoningabout

that reasoning”

and similar passages in §3 and §4. If one adopts a specification-
al view, and takes a program to denote the behavior that results
from executing it, then in order to define that program as reflec-
tive one would have to define two distinct notions of designation
or aboutness. As | indicate in «ref», various such strategies suggest
themselves, such distinguishing the semantics of programming
languages from the semantics of programs written in those lan-
guages, or—perhaps more productively—distinguishing program
semantics from process semantics (by the latter meaning the
semantics of the processes that result from running executing the
programs—what on a specificational view of programs could be
desibed as “the semantics of the semantics of the programs”). See

A10 -4/2 It would have been helpful to point out that while it is possible to
understand recursion (mathematically or computationally) without
explicitly distinguishing declarative import (¢) and procedural con-
sequence (), the same does not hold for reflection. The notion of
reflection is only intelligible with respect to a disentangled under-
standing of both.

A11 -5/1/2:6 On the characterization given here, which is compatible with the

reflective. As this passage illustrates, however, my intent had al-
ways been to aim for the wider notion—as evident, for example, in
the encompassing project of defining the general-purpose represen-

51

Draft Version 0.81 — 2018 - Mar - 3

52

the series of reconstructed dialects of Lisp, to be called 4Lisp, which,
while otherwise retaining 3Lisp’s basic style and control structure,
was to include semantically-rationalized data structures for (exter-
nal) reference to the real-world. That is: 4Lisp was intended to ex-
tend 3Lisp’s ¢/ semantic framework to data structures as well as
due to the challenges of developing representational regimens ad-
equate to real-world ontology.

At the “Reflection ’96” workshop, held April 21-23, 1996 in San
Francisco, | presented a paper entitled “What Ever Happened to
4Lisp?”—which remains unpublished. Fundamentally, as described
mantical issues included not just confusions and ambiguities about
programming languages, programs written in them, processes,
etc., of the sort discussed here, but the more challenging issues ex-
most daunting. One way to understand On the Origin of Objects,
published that same year, is to view it as an initial exploration of

how would have to understand the world in order to do justice to
4Lisp’s and Mantiq’s goal of being genuinely reflective, rather than
merely introspective.

as word-to-world (or mind-to-world) and world-to-word (or

world-to-mind) “directions of fit,”® with the following exceptions:

1. Instead of words or minds we are of course talking about inter-
nal structures (impressions) in a computational process;

2. The issue is not just that the “words” or internal structures
should end up true or “fitting” what is the case—by adjusting
the “word” in the world-to-word case, and adjusting the world
in the word-to-world case—but rather that the connection be
causally efficient, so that that “fit” can be practially accom-

6. See for example Austin (1962) and Searle (1979).
7. Note that internalization () and externalization (6’1) are both effective in

2/3Lisp, ensuring that language is included along with structure in both direc-

tions of causal connection.

Draft Version 0.81 — 2018 - Mar - 3

plished;” and
3. The “world” at stake is the internals of the computational pro-

meant to exemplify semantical and metaphysical frameworks of
much wider applicability.

between description and implementation is a something like a pun
or stalking horse that permeates not only this whole paper, but the
entire reflective architecture and background theoretical perspec-
tive under discussion throughout this volume.

inspired examples (stack frames, processor state, etc.)—not just in
this and the subsequent paragraph, but to an extent throughout
the chapter—was in retrospect unfortunate. What mattered was
to get at aspects of a running process that were implicit, from the
point of view of the program; for a paper aimed at a community of
programmers and computer scientists, | thought that these imple-
mentation-oriented examples would be compelling because famil-
iar. The difficulty was that they ended up conveying the misimpres-
sion that reflection has to do with making the implementation

2
' Elsewhere | refer to internal structures as impressions, to highlight

the contradst with expressions.”® As soon as the term ‘impression’
was introduced, it took over from ‘structure’ in conversation among
those working with 2/3Lisp—including Jim des Riviéres (co-author
recently Jun Luo and other students and colleagues.

A16 :9/n3/3:6 In March of 1982, a month after the dissertation had been com-
pleted, and still a rather green graduate student, | presented 2Lisp
and 3Lisp at a colloquium at sri International. To my astonishment,
the legendary John McCarthy, inventor of Lisp, sat down at the very
front of the room. | was terrified. There being nothing for it, | pre-
sented my analysis of traditional Lisps, including the critique of eval-
uation given in §4, and hazarded the idea, stated in this footnote,

8. Quoted function descriptions could be passed “downwards” because vari-

53

Draft Version 0.81 — 2018 - Mar - 3

54

that McCarthy had recruited (structural) quotation and dynamic
scoping to compensate for the fact that Lisp 1.5 was (inadvertent-
ly?) only first-order. Guy Steele and Gerry Sussman had already de-
veloped the higher-order, lexically scoped Scheme, and presented
their analysis of Lisp in the now-famous Lambda Papers (Steele
& Sussman, 1975-80). So the idea of a lexically scoped, genuinely

higher-order Lisp was not new; it was the analysis of reference and
quotation on which | did not know McCarthy’s views. While hugely
impressed by Steele and Sussman’s papers—indeed their work on
Scheme undoubtedly influenced my choice of Lisp as a site for a
Mantiq design study (up until that point | had been working in the
area of knowledge representation, not programming languages)—|
had also felt that they did not go nearly far enough. Scheme dis-
courages (as we might now say, “deprecates”) quotation, whereas
| felt that there was extraordinary power latent in quotation, which
needed to be theoretically understood, rigorously disciplined, and
then unleashed.

| have no reason to believe that McCarthy ever thought much
about (or of) 3Lisp after that talk, but | was hugely relieved, after
I made the claim that Lisp 1.5, within the context of a dynamically
scoped environment, had recruited quotation in order to “fake”
higher-order behavior (at least downward®), that he agreed—nod-
ding his head slowly, and saying (I believe | remember the words
exactly) “l am sure that is right.”

appreciate the magnitude—and ultimate formal incomprehensibil-
ity—of the task.

A18 -11/0/7:8 Even at the time this paper was published | was critical of the idea
that computation could adequately be understood as formal sym-
bol manipulation. | believe that my use of the phrasing “in the sense

that” was meant (rather ineffectively) to signal some distancing of

ables bound in the calling procedure would still be dynamically available for
use by those descriptions if executed underneath the point of call on the stack.
What did not work was to pass them “upwards.” That is: quoted function
descriptions functioned properly (within limits) as arguments to procedures;
they did not as functional results.

8.5. See annotation A..., above.

Draft Version 0.81 — 2018 - Mar - 3

my own view from that then-universal assumption. It was not until
1986 that | explicitly argued against such a construal. See “The Link
from Symbols to Knowledge” (Smith 1986b) and aos (especially
Volume).
A19 -12/0/3 What | am here calling “structures” (data structures, programs in
the sense that they might be available during the course of their
”83) are at least
arguably more abstract than linguistic expressions, but that is not

to say that they are abstract objects, in the sense enjoyed by genu-
7

execution, etc.—i.e., what | later called “impressions

ine mathematical entities, types, etc.®
A20 -12/1/6 The words ‘the relationship to’ has been added to the original, for
clarity.

3 In discussions of 2/3Lisp the term ‘numeral’ is overloaded, as com-
puter scientists would say—used to refer both to (external) strings
and to (internal) structures. Thus in this paper the (English) phrase

“the numeral 3” is used to refer to an internal 2/3Lisp structure (im-
pression). To refer to an external 2/3Lisp (string) numeral | would
instead use “the numeral «3»’. See the fn. labeled ‘+’ on p. 18.

tively related to semantics.”

A24-14/-1/-2: While correct as stated, this parenthetical would have been more

-15/0/1 perspicuously formulated as: “which, incidentally, can be expressed

as the equation Ji(S;, S,) = ¢(S;) C ¢(S,), if one takes s to be a rela-
tion, and ¢ be a function mapping sentences onto possible worlds
that satisfy them.”
which ran on the “Incompatible Time Sharing System” (iTs) at the
miT Artificial Intelligence Lab in the 1970s. It is now remembered
primarily as the programming language in which the initial versions
of the still-popular text editor EmACs were written. Smalltalk, an
object-oriented, dynamically-typed, and inchoately “reflective” pro-
gramming language, was developed at the Xerox Palo Alto Research
Center (PARC) by Alan Kay and his colleagues during the 1970s.

A26-15/-1/4:5 Cf. ch. 11, ch. 12, §6 of the Introduction, ch. 2, and Volume 11 of

8.7. See aos for an argument that all objects are to Some extent abstract.

the source? ... »
9. See annotations A11 and A12, above (p.).

55

Draft Version 0.81 — 2018 - Mar - 3

56

AOS.

A27 -16/0/3 To say “primarily communicative” makes sense only on a view that
language exists solely as a medium of interchange or interaction
among minds (or other intentional systems or processes). On such
a view, to say of a text that it is a “description,” for example, would
be understood as shorthand for saying that it can be used between
and among intentional agents so as to enable them to stand in a
descriptive relation to that which is described. In the philosophy of
language or mind this would be viewed as a strongly psychologi-
cal or mentalist view of intentional content-bearing. While in the
2/3Lisp context it is evident why | was distinguishing this case, to
put it this way in the text is rather glib. In other places (e.g., in «ref»)
| sort views of programs into three rather than two types: ingredi-
ential, specificational, and communicative.

A28 -16/0/11 The popL version contained the word ‘avoid’ instead of ‘allow’, but
that was a mistake. The intent of the sentence is this: that “the only
salient difference between specifications in general, and programs
as a particular species of specification, is that in the general case
specifications may use non-effective concepts in describing behav-
ior (such as specifying a square root routine by saying returns as
output a number that, if squared, equals the input), whereas
programs must be effective.”

A29-16/-1/-3:-1 From a 2014 perspecttive (30 years after this paper was
written), | confess to having no idea of what the last sentence of this
paragraph was intended to mean.

infelicitous. It is not the relationship to the world that the structure
signifies; rather, it is in virtue of participation in such a relationship

to (or with) the world that the structure is able to signify whatever
in-the-world entity that it does.

thing—namely, to what is called its ‘value’—though, as evident in the
semantical reconstruction being carried out here, | take it that that
usually means a co-referential structure. Strictly speaking, that is

Draft Version 0.81 — 2018 - Mar - 3

A34

PETAVA

(and pace the considerations adduced in ch. 12), a programming
language variable would be bound to a numeral, not to a number—
and should be so described in contexts in which the differences be-
tween numerals and numbers are significant. In mathematics and
logic, variables are likely, if bound to anything, to be understood as
bound to numbers—i.e., to what is here being called declarative im-
port. Moreover—and this is what tripped up conversations between
Barwise and me, it is more common in mathematical logic to de-
scribe a variable as “bound by” something—namely, by quantifiers,
scoping constructs, etc. In computer science, that is, to say of a vari-
able that it is ‘bound,’ simpliciter, is understood as an abbreviation
for, or as implying, that it is “bound to (something)”; in logic, as an
abbreviation for, or as implying, that it is “bound by (something)”.
This is just one small instance of the general phenomenon of
computer science’s using, as technical terminology, vocabulary and
phrasings derived from logic, but in its own distinct ways—an in-
stance of the topic discussed in §4 of the Introduction. Sometimes,

as here, the differences are subtle, and not usually distracting;
sometimes, as with the word ‘semantics,’ they are major, and cause
considerable confusion. See AOs.

This section title is a play on Edsger W. Dijkstra’s legendary “co
To Statement Considered Harmful” (Communications of the Acm,
Vol. 11, No. 3, March 1968, pp. 147-48). No computer scientist
in the 1980s would have failed to recognize the illusion; the Com-
munications of the Acm (Association for Computing Machinery)
was the premiere professional computer science journal at the time,

and Dijkstra’s letter was widely taken to have inaugurated serious
theoretical analysis of programming. Cf. this note from the History
of Computing Project «ref»:*®

“In 1968 Edsger Dijkstra laid the foundation stone in the
march towards creating structure in the domain of program-
ming by writing, not a scholarly paper on the subject, but in-

10. Avariant of vanilla N-calculus extended with a special operator *’, so that,

modulo some subtleties, the term >k’ emerged as the result of normalizing any

complex expression in which that form occurred.
11. Bobrow, des Riviéres & Kiczales (1991).

57

Draft Version 0.81 — 2018

«Mar- 3

58

stead a letter to the editor entitled “Go To Statement Consid-
ered Harmful”. (Comm. AcM, August 1968) The movement
to develop reliable software was underway.”

fastidious to make heavy weather out of the difference between a
number and a numeral. But the philosophical issues at stake are
substantial. Note, to take a striking example, that in his 1985 Presi-
dential Address to the American Philosophical Association, Fred
Dretske used this very distinction not only to claim that calculators
cannot add, but to go on, more seriously to argue hat computers
cannot and never will be able to think—i.e., to undermine the very
possibility of what Searle has famously dubbed “strong artificial in-
telligence.” (Dretske 1985)

A36-23/-1/-2:-1 This is as close as this paper comes to an explicit state-
ment of its underlying commitment to a deferential semantics (cf.
§... of the Introduction, and ch. 2).

a degree of philosophical clarity but at a price of “unusably fastidi-
ous baroqueness.” «...check!...»

4 Which behavior, of course, they must also designate, as well as en-
gender. In fact one might describe an mpp as a program p where
b(P) = ¢(P).

the sorts of semantical sloppiness that first puzzled me, and then
frustrated me, during the course of my computational education. It
was this sort of conceptual inelegance that | was trying to rout from
computational discourse through this exercise.

“sloppiness” to have two components, the disentangling of which
will require considerable artistry. One component stems from a
metaphysical/ontological fact of the highest order: the world is
simply more complex than is or ever will be comprehended in an
imaginable theoretical framework. Adequate accounts, therefore,
in my judgment already do and increasingly have more in common
with novels that many formalists may like to admit. What detail

Draft Version 0.81 — 2018 - Mar - 3

is given what sorts of shrift is an act of judgment, not a matter
of formulaic prescription. That, | believe, will always be true. That
said, the second component of present-day sloppiness stems from
the profound inadequacy of current theoretical frameworks to do
justice to even what regularities there are, as regards the sorts of

to believe while a graduate student at miT, and it is one | would still
endorse. In the 1970s, though, | believed we were on firm ground
with respect to ordinary objects—a view that by the 1990s | had
clearly lost confidence in (hence On the Origin of Objects). A glim-
mer of the sorts of concern | felt is given in the discussion in §8 of

anima or active agency shifting up or down, in what logicians and
philosophers might describe as cases of semantic ascent and se-
mantic descent (as usual, the analysis is permeated with the “pun”
as between description and implementation). The model described
in the next sentence, in contrast, describes what the “tower view,”
in which no shifting is going on, and all levels are simultaneously
active. See «...».

connection presages the notion of “partial disconnection” that is a
major theme of On the QOrigin of Objects.

|n

A46:-44/1/4:5 ReTFUN and FRETURN were “non-local” return functions in various

1970s-era Lisp dialects, which could be used to implement out-of-
the-ordinary control structures—e.g., for complex error recovery.
Current records suggest that FRETURN existed in MacLisp, Interlisp,
Franz Lisp, and various other dialects of the day.

2Lisp and 3Lisp were first implememented in MacLisp, when |

was a graduate student at the mIT Artificial Intelligence Laboratory,

12. Handles vanished, for example, so that 2, '2, "'2, "2, etc., all turned into
the same thing—namely, the number (not numeral!) two.

59

Draft Version 0.81 — 2018 - Mar - 3

60

where it was developed and maintained. Subsequent (and better)
implementations—including a just-in-time incremental compiler—

and abbreviated, is in fact unsound (it is too strong). The refer-
enced Smith & des Rivieres (1984)—“Implementation of Procedur-

much better analysis of why 3Lisp is tractable, as well as a full im-
plementation. The total program, including all utilities, was about
200 lines of 2Lisp; however, the “50 lines” referenced in the text is
not entirely misleading, as that includes the substantive part (every-
thing except essentially trivial subroutines).

The reference to “Smith forthcoming” is not detailed in the refer-
ences in the POPL paper, and at present (2012) | have no recollection
of what in particular | had in mind—or even whether | did have any-
thing particular in mind. My guess is that | expected that someday
I would work on such issues of tractability—including the indicated
issue of whether an implementing processor could be algorithmi-
cally derived from an rrp. But just as in the case of a mathematical
theory of reflection, none of this came to pass. Instead, my atten-
tion moved to the issues cited above about 4Lisp, reference to the
external world, and genuine reflection (as opposed to the introspec-
tive abilities exhibited here).’

A48-45/1/-3:-1 In the mid-1980s, the reflective N-calculus described in §6

of the Introduction'® «...and elsewhere? check ...» was defined and
presented to a logic colloquim, hosted by Jon Barwise, at Stanford’s
Center for the Study of Language and Information (csui). The pre-
sentation engendered reactions that | can only describe as ranging
from befuddlement to consternation. There is no doubt that my
intention of convincing Jon Barwise (a very good friend) that reflec-
tion was important, and how it worked, entirely failed.

«...Ref other places this is talked about...unify?...»

I myself did not end up pursuing this suggestion—for all of the rea-
sons adumbrated above (semantical and ontological difficulties).

Draft Version 0.81 — 2018 - Mar - 3

It is perhaps worth mentioning, however, that one of the design
goals for Mantiq was to define a “structural field,” along the lines
of abstraction so that quotational reference and hyper-intensional
reference could be fused. The idea would be that at least one mean-
ingful notion of “means the same thing” could be tested, in such an
architecture, merely by checking structural identity.

particular routine, or at relevant points within a program, reify only
those aspects of a computation that were relevant and required
explicit treatment, was an idea that | had wrestled with in the very
early stages of the design of 3Lisp, while still at mIT, as was the idea
of what it would be to define a higher-order “language design” li-
brary from which one could “load in” such modules as recursion,
reflection, etc. Both ideas were bruited about in my research group
at PARC throught the 1980s—although, needless to say, neither was
brought to fruition in the form that | imagined them (in particular:
in a way that incorporated the deferential semantics and distinction
between declarative import and procedural consequence that as so
fundamental to 2/3Lisp).

In particular, although the initial work on both metaobject
protocols (mop)'", the Common Lisp Object System,'"* and as-
pect-oriented programming (aop) emerged out of these discus-
sions from members of my research group, | was struck that the
semantical (referential) aspect of 3Lisp, the part that | felt was most
foundational and theoretically important, was never incorporated
into these developments. Public discussions of both notions invari-
ably take a specificational view of programs, according to which the

“meaning” or semantics of a program has to do with what behavior
philosophy of blanket mechanism)).

As a result, in my judgment, neither the MoP nor Aop frameworks
have adequate intellectual machinery in terms of which even to de-
fine the notion of “meta.” That is not to say that issues of reference
are not at play; | do not believe it is possible to call one thing “meta”
to another except in referential terms. Rather, the point is that the
referential aspects, though utterly crucial, as yet remain wholly im-

61

Draft Version 0.81 — 2018 - Mar - 3

62

the “tacit view of programmers”).
A52 .47/1/4 Re the reference to “Smith (forthcoming),” see the discussion in

Jose Meseguer to develop a formal, mathematical account of the
denotational semantics of 2Lisp. As recounted in «...», when they
presented their proposal | was stunned. The reference relation (¢),
which | had worked so hard to bring into view and honor, and
which was so foundational to the architecture, had been entirely
obliterated."” It was not just that effectivelyeverything that mattered
to me about 2Lisp had disappeared. The real issue was that | was
unable to explain to them why what had disappeared had mattered
to me—why that which they took to be eliminable, en route to se-
mantical cleanliness, was exactly what | took semantical cleanliness
to consist in. That was what rocked me back on my heels, and led
me into the foundational investigations that have continued to oc-
cupy me ever since.

A53 -47/-1/7 For example, it would be essentially trivial to construct a N-calculus

analogue or mirror of the implementation presented in des Riviéres

Draft Version 0.81 — 2018 - Mar - 3

