4 - Reflection and Semantics in Lisp

1 Introduction

For three reasons, Lisp’s self-referential properties have not
led to a general understanding of what it is for a computa-
tional system to reason, in substantial ways, about its own op-
erations and structures. First, there is more to reasoning than
reference; one also needs a theory, in terms of which to make
sense of the referenced domain. A computer system able to
reason about itself—what I will call a reflective system—will
therefore need an account of itself embedded within it. Sec-
ond, there must be a systematic relationship between that em-
bedded account and the system it describes. Without such a
connection, the account would be useless—as disconnected as
the words of a hapless drunk who carries on about the evils of
inebriation, without realizing that his story applies to himself.
Traditional embeddings in Lisp are inadequate in just this
way; they provide no means for the implicit state of the Lisp
process to be reflected, moment by moment, in the explicit
terms of the embedded account. Third, a reflective system
must be given an appropriate vantage point at which to stand,
far enough away to have itself in focus, and yet close enough
to see the important details.

This paper presents a general architecture, called proce-
dural reflection, to support self-directed reasoning in a se-
rial programming language. The architecture, illustrated in a

Version C.o4 (June 4, 2014)

Draft Version 0.81 — 2018 - Mar - 3

with a single mechanism. The basic idea is to define an infinite
tower of procedural self-models, very much like metacircular
interpreters (Steele and Sussman 1978b), except connected to
each other in a simple but critical way. In such an architecture,
any aspect of a process state that can be described in terms
of the theory can be rendered explicit, in program accessible
structures. Furthermore, as we will see, this apparently infi-
nite architecture can be finitely implemented.

The architecture allows the user to define complex pro-
gramming constructs (such as escape operators, deviant vari-
able passing protocols, and debugging primitives) by writing
direct analogues of the metalinguistic semantical expressions
that would normally be used to describe them. As is always
true in semantics, the metatheoretic descriptions must be
phrased in terms of some particular set of concepts; in this
case I have used a theory of Lisp based on environments and
continuations. A 3Lisp program, therefore, at any point dur-
ing a computation, can obtain representations of the environ-
ment and continuation characterizing the state of the com-
putation at that point. Thus, such constructs as THROW and
catcH, which must otherwise be provided primitively, can be
easily defined as user procedures (and defined, furthermore,
in code that is almost isomorphic to the \-calculus equations
one normally writes, in the metalanguage, to describe them).
And all this can be done without writing the entire program
in a continuation-passing style, of the sort illustrated in Steele
(1976). The point is not to decide at the outset what should
and what should not be explicit, in other words (in Steele’s
example, continuations must be passed around explicitly from
the beginning). Rather, the reflective architecture provides a aa
method of making some aspects of the computation explicit,
right in the midst of a computation, even if they were implicit
a moment earlier. It provides a mechanism, in other words, of

Draft Version 0.81 — 2018 - Mar - 3

reaching up and “pulling information out of the sky,” when un-
expected circumstances warrant it, without having to worry
about it otherwise.

The overall claim is that reflection is simple to build on a se-
mantically sound base, where “semantically sound” means more a5
than that the semantics be carefully formulated. Rather, I
assume throughout that computational structures have a se-
o, to put this another way, that programs and computational
structures are about something, over and above the effects they
have on the systems they inhabit. Lisp's NIL, for example, not
only evaluates to itself forever, but also (and somewhat inde-
pendently) stands for Falsehood. A reconstruction of Lisp se-
mantics, therefore, must deal explicitly with both declarative
and procedural aspects of the overall significance of computa-
tional structures. This distinction is different from (though I
will contrast it with) the distinction between operational and a7
denotational semantics. It is a reconstruction that has been
developed within a view that programming languages are
properly to be understood in the same theoretical terms used
to analyze not only other computer languages, but even natu-
ral languages.

This strategy forces us to distinguish between a structure’s
value and what it returns, and to discriminate entities, like
numerals and numbers, that are isomorphic but not identical
(both instances of the general intellectual hygiene of avoid-
ing use/mention errors). Lisps basic notion of evaluation, I a8
will argue, is confused in this regard, and should be replaced
with independent notions of designation and simplification.
The result is illustrated in a semantically rationalized dialect,
called 2Lisp, based on a simplifying (designation-preserving)
term-reducing processor. The point of defining 2Lisp is that
the reflective 3Lisp can be very simply defined on top of it
whereas defining a reflective version of a non-rationalized

Draft Version 0.81 — 2018 - Mar - 3

understand.

The strategy of presenting a general architecture by devel-
oping a concrete instance of it was selected on the grounds
that a genuine theory of reflection (perhaps analogous to the
theory of recursion) would be difficult to motivate or defend
we will sketch a general “recipe” for adding reflective capabili-
ties to any serial language; 3Lisp is the result of applying this
conversion process to the non-reflective 2Lisp.

It is sometimes said that there are only a few constructs
from which programming languages are assembled, includ-
ing for example predicates, terms, functions, composition,
recursion, abstraction, a branching selector, and quantifica-
tion. Though different from these notions (and not defin-
able in terms of them), reflection is perhaps best viewed as a
proposed addition to that family. Given this view, it is helpful
to understand reflection by comparing it, in particular, with a10
recursion—a construct with which it shares many features.
Specifically, recursion can seem viciously circular to the un-
initiated, and can lead to confused implementations if poorly
understood. The mathematical theory of recursion, however,
underwrites our ability to use recursion in programming lan-
guages without doubting its fundamental soundness (in fact,
for many programmers, without understanding much about
the formal theory at all). Reflective systems, similarly, initially
seem viciously circular (or at least infinite), and are difficult
to implement without an adequate understanding. The intent
of this paper, however, is to argue that reflection is in fact as
well-tamed a concept as recursion, and potentially as eflicient
to use. The long-range goal is not to force programmers to
understand the intricacies of designing a reflective dialect, but
rather to enable them to use reflection and recursion with
equal abandon.

Draft Version 0.81 — 2018 - Mar - 3

2 Motivating Intuitions

Before taking up technical details, it will help to layout some
motivations and assumptions. First, by reflection’ in its most
general sense, I mean the ability of an agent to reason not
only introspectively, about its self and internal thought pro-
cesses, but also externally, about its behavior and situation in
the world. Ordinary reasoning is external in a simple sense; a11
the point of reflection is to give an agent a more sophisticated
stance from which to consider its own presence in that em-
bedding world. There is a growing consensus' that reflective
abilities underlie much of the plasticity with which we deal
with the world, both in language (such as when one says
Did you understand what I meant?) and in thought (such as
when one wonders how to deliver bad news compassionately).
Common sense suggests that reflection enables us to master
new skills, cope with incomplete knowledge, define terms, ex-
amine assumptions, review and distill our experiences, learn
from unexpected situations, plan, check for consistency, and
recover from mistakes.

In spite of working with reflection in formal languages,
most of the driving intuitions about reflection are grounded
in human rationality and language. Steps towards reflection,
however, can also be found in much of current computational
practice. Debugging systems, trace packages, dynamic code
optimizers, runtime compilers, macros, metacircular inter-
preters, error handlers, type declarations, escape operators,
comments, and a variety of other programming constructs
involve, in one way or another, structures that refer to or deal
with other parts of a computational system. These practices
suggest. as a first step towards a more general theory, defin-
ing a limited and rather introspective notion of procedural
reflection: self-referential behavior in procedural languages, in
which expressions are primarily used instructionally, to engen-

1. See Doyle (1980), Weyrauch (1980), Genesereth & Lenat (1980), and

Batali (1983).

Draft Version 0.81 — 2018 - Mar - 3

der behavior, rather than assertionally, to make claims. It is the
hope that the lessons learned in this smaller task will serve a12
well in the larger account.

We mentioned at the outset that the general task, in defin-
ing a reflective system, is to embed a theory of the system in the
system in such a way as to support smooth shifting between
reasoning directly about the world and reasoning about that
reasoning. Because we are talking of reasoning, not merely of
language, we added an additional requirement on this embed-
ded theory, beyond its being descriptive and true: it must also
be what we will call causally connected, so that accounts of
objects and events are tied directly to those objects and events.
The causal relationship, furthermore, must go both ways: from
event to description, and from description back to event. (It a13
is if we were creating a magic kingdom, where from a cake
you could automatically get a recipe, and from a recipe auto-
matically get a cake.) In mathematical cases of self-reference,
including both self-referential statements, and models of
syntax and proof theory, there is of course no causation at all,
since there is no temporality or behavior (mathematical sys-
tems don't run). Causation, however, is certainly part of any
reflective agent. Suppose, for example, that you capsize while
canoeing through difficult rapids, and swim to shore to fig-
ure out what you did wrong. You need a description of what
you were doing at the moment the mishap occurred; merely
having a name for yourself, or even a general description of
yourself, would be useless. Also, your thinking must be able
to have some effect; no good will come from your merely con-
templating a wonderful theory of an improved you. As well
as stepping back and being able to think about your behav-
ior, in other words, you must also be able to take a revised
theory and “dive back in under it,” adjusting your behavior so
as to satisfy the new account. And finally, we mentioned that
when you take the step backwards, to reflect, you need a place

Draft Version 0.81 — 2018 - Mar - 3

to stand with just the right combination of connection and
detachment.

Computational reflective systems, similarly, must provide
both directions of causal connection, and an appropriate van-
tage point. Consider, for example, a debugging system that
accesses stack frames and other implementation-dependent
representations of processor state, in order to give the user an
account of what a program is up to in the midst of a computa-
tion. First, stack-frames and implementation codes really are
just descriptions, in a rather inelegant language, of the state of a14
the process they describe. Like any description, they make ex-
plicit some of what was implicit in the process itself (this is one
reason they are useful in debugging). Furthermore, because of
the nature of implementation, they are always available, and
always true. They have these properties because they play a
causal role in the very existence of the process they implement,
and therefore automatically solve the “event-to-description”
direction of causal connection. Second, debugging systems
must solve the “description-to-reality” problem, by providing
a way of making revised descriptions of the process true of
that process. They carefully provide facilities for altering the
underlying state, based on the user’s description of what that
state should be. Without this direction of causal connection,
the debugging system, like an abstract model, could have no
effect on the process it was examining. And finally, program-
mers who write debugging systems wrestle with the problem
of providing a proper vantage point. In this case, practice has
been particularly atheoretical; it is typical to arrange, very
cautiously, for the debugger to tiptoe around its own stack
frames, in order to avoid variable clashes and other unwanted
interactions.

As we will see in developing 3Lisp, all of these concerns can
be dealt with in a reflective language in ways that are both
simple and implementation-independent. The procedural

Draft Version 0.81 — 2018 - Mar - 3

code in the metacircular processor serves as the “theory” dis-
cussed above; the causal connection is provided by a mecha-
nism whereby procedures at one level in the reflective tower
are run in the process one level above (a clean way, essentially,
of enabling a program to define subroutines to be run in its
own implementation). In one sense it is all straightforward;
the subtlety of 3Lisp has to do not so much with the power
of such a mechanism, which is evident, but with how such
power can be finitely provided—a question we will examine

in section 9.

process as a whole is divided into an internal assemblage of
program and data structures collectively called the structural
field, coupled with an internal process that examines and ma-
nipulates these structures.
In computer science this
inner process (or ‘homun-
culus) is typically called
the interpreter; in order

to avoid confusion with

semantic notions of inter-

Srwctwral Reld
pretation, I will call it the
processor. While models
Figure 1 — A Serial Model of Computation of reflection for concur-
rent systems could un-
doubtedly be formulated, I claim here only that our particular
architecture is general for calculi of this serial (i.e.,, single pro-
cessor) sort.

I will use the term structure for elements of the structural a15
field, all of which are inside the machine, never for abstract
mathematical or other ‘external” entities, such as numbers,
functions, or radios. (Although this terminology may be con-

fusing for semanticists who think of a “structure” as a model,

Draft Version 0.81 — 2018 - Mar - 3

I want to avoid calling them expressions, since the latter term
connotes linguistic or notational entities. The aim is for a con-
cept covering both data structures and internal representa-

tions of programs,

: - ¥ - - with which to cat-
S:frl:ﬂ.l:r]l: Dﬁmlﬂ 5 _!' SEm:n:L\: Dﬂmn D

egorize what we

Figure 2 — A Simple Semantic Interpretation Function would in ordinary

English call the
structure of the overall process or agent.) Consequently, I call
metastructural any structure that designates another struc-
ture, reserving metasyntactic for expressions designating lin-
guistic entities or expressions‘2 Given our interest in internal
self-reference, it is clear that both structural field and proces-
sor, as well as numbers and functions and the like, must be
part of the semantic domain. Note that metastructural calculi
must be distinguished from those that are higher-order, in
which terms and arguments may designate functions of any

degree (2Lisp and 3Lisp will have both properties).’

3 A Framework for Computational Semantics
We turn, then, to questions of semantics. In the simplest case,
semantics is taken to involve a mapping, possibly contextually
relativized, from a syntactic to semantic domain, as shown in

2. In the dialects we consider, the metastructural capability must be
provided by primitive quotation mechanisms, as opposed simply to be-
ing able to model or designate syntax—something virtually any calcu-
lus can do, using for example Gédel numbering—for reasons of causal
connection.

3. Most programming languages, such as Fortran and Algol 60, are nei-
ther higher-order nor metastructural; the N-calculus is the first but not
the second, whereas Lisp 1.5 is the second but not the first (dynamic
scoping is a contextual protocol that, coupled with the meta-structural
facilities, allows Lisp 1.5 partially to compensate for the fact that it is
only first-order). At least some incarnations of Scheme, on the other A16
hand, are both (although Scheme’s metastructural powers are limited).
As will emerge, 2Lisp and 3Lisp are very definitely both metastructural
and higher-order.

Draft Version 0.81 — 2018 - Mar - 3

figure 2. The mapping (¢) is typically called an interpretation
function (to be distinguished, as noted above, from the stan-
dard computer science notion of an interpreter). It is usually
specified inductively, with respect to the compositional struc-
ture of the elements of the syntactic domain, which is typi-
cally a set of syntactic or linguistic sorts of entities. Semantic
domains may be of any type whatsoever, including a domain
of behavior; in reflective systems it will often include the syn-
tactic domain as a proper part. We will use a variety of differ-
ent terms for different kinds of semantic relationship; in the
general case, we will call s a symbol or sign, and say that s signifies
d, or conversely that d is the significance or interpretation of s.

In a computational setting, there are several different se-
mantic relationships—not different ways of characterizing
the same relationship (as operational and denotational se-
mantical accounts are sometimes taken to be), but genuinely
distinct relationships. These different relationships make for a
more complex semantic framework, as do ambiguities in the ,17
use of words like ‘program. In many settings, such as in purely
extensional functional programming languages, such distinc-
tions are inconsequential. But when we turn to reflection, self-
reference, and metastructural processors, these otherwise mi-
nor distinctions play a much more important role. Also, since
the semantical theory we adopt will be at least partially em-
bedded within 3Lisp, the analysis will affect the formal design.
Our approach, therefore, will be to start with basic and simple
intuitions, and to identify a finer-grained set of distinctions
than are usually employed. We will consider very briefly the
issue of how current programming language semantics would
be reconstructed in these terms, but the complexities involved
in answering that question adequately would take us beyond
the scope of the present paper.

At the outset, we distinguish three things: (i) the objects
and events in the world in which a computational process

Draft Version 0.81 — 2018 - Mar - 3

is embedded, including both real-world objects such as cars
and caviar, and set-theoretic abstractions such as numbers
and functions (i.e., we adopt a kind of pan-Platonic idealism
about mathematics); (ii) the internal elements, structures, or
processes inside the computer, including data structures, pro-
gram representations, execution sequences and so forth (these
are all formal objects, in the sense that computation is formal
symbol manipulation); and (iii) notational or communica- a18
tional expressions, in some externally observable and consen-
sually established medium of interaction, such as strings of
characters, streams of words, or sequences of display images
on a computer terminal. The last set are the constituents of
the communication one has with the computational process;
the middle are the ingredients of the process with which one
interacts; and the first (at least presumptively) are the ele-
ments of the world about which that communication is held.
In the human case, the three domains would correspond, re-
spectively, to world, mind, and language.

It is a truism that the third domain of objects—communi-
cation elements—are semantic. We claim, however, that the
middle are semantic as well (i.e. that structures are bearers of
meaning, information, or whatever). Distinguishing between
the semantics of communicative expressions and the seman-
tics of internal structures will be one of the main features of
the framework we adopt. It should be noted, however, that in
spite of our endorsing the reality of internal structures, and
the reality of the embedding world, it is nonetheless true that
the only things that happen with computers (at least the only
thing we will consider, since we ignore sensors and manipu-
lators) are communicative interactions. If, for example, I ask
my Lisp to calculate the square root of 2, what I do is to type
some expression like (SQRT 2.0) at it, and then receive back
some other expression, probably quite like 1.414, by way of
response. The interaction is carried out entirely in terms of ex-

Draft Version 0.81 — 2018 - Mar - 3

Figure 3 — Semantic Relations in a

pressions; no structures, numbers, or functions are part of the
interactional event. The participation or relevance of any of
these more abstract objects, therefore, must be inferred from,
and mediated through, the communicative act.

We will begin to analyze this complex of relationships using
fer to the relationship between external notational expressions
and internal structures; by U, to the processes and behaviors
those structural field elements engender (thus i is inherently
temporal); and by ¢ to [the relationship to] the entities in the
world that they designate. The relations ¢ and { are named,
for mnemonic convenience, by analogy with philosophy and
psychology, respectively, since a study of ¢ is a study of the
relationship between struc-
tures and the world, whereas
a study of { is a study of the

relationships among symbols,
all of which, in contrast, are
“within the head” (of person or
machine).

tructral Field Computation is inherently

=
g_s/\

temporal; our semantic analy-

Lo sis, therefore, will have to deal

explicitly with relationships

across the passage of time. In

Computational Process as to get at a full configuration
of these relationships. The
expressions 7 and n, are intended to be linguistic or com-
municative entities, as described above; 5; and s, are internal
structures over which internal processing is defined. The rela-

tionship 6, which we will call internalization relates these two

Draft Version 0.81 — 2018 - Mar - 3

a19

a20

a21

kinds of object, as appropriate given the device or process in
question (we will say, in addition, that » notates s)). For ex-
ample, in first order logic n; and n, would be expressions, per-

Motation My Motation My

Figure 4 — A Framework for Computational Semantics

haps written with letters, spaces, and ‘I signs; 5, and s,, to the
extent they can even be said to exist, would be something like
abstract derivation tree types of the corresponding first-order
formulae. In Lisp, as we will see, n; and n, would be the input
and output expressions, written with letters and parentheses,
or perhaps with boxes and arrows; s and s, would be the cons-
cells in the s-expression heap.

In contrast, d; and d, are elements or fragments of the em-
bedding world, and ¢ is the relationship that internal struc-
tures bear to them. ¢, in other words, is the interpretation
function that makes explicit what we will call the designation
of internal structures (not the designation of linguistic expres-
sions or terms, which would be described by 6 @ ¢). The rela-
tionship between my mental token for T. S. Eliot, for example,
and the poet himself, would be formulated as part of ¢, where-
as the relationship between the public name “T. S. Eliot and

Draft Version 0.81 — 2018 - Mar - 3

the poet would be expressed as ¢(6(“T.s.eLo1”)) = T. S. Eliot.
Similatly, ¢ would relate an internal “numeral” structure (say,

the numeral 3) to the corresponding number. As mentioned 422
at the outset, our focus on ¢ is evidence of our permeating se-
mantical assumption that all structures have designations—or,

to put it another way, that all structures are symbols.4

The i relation, in contrast to 6 and ¢, always (and necessar-
ily, since it doesn't have access to anything else) relates some
internal structures to others, or at least to behaviors over them.

To the extent that it would make sense to talk of a s in logic,
it would be approximately the formally computed derivability
o relationship (F); in natural deduction or resolution schemes,
s would be a subset of the derivability relationship, picking
out the particular inference procedures those regimens adopt.
In a computational setting, however, ¢ would be the function
computed by the processor (i.e., is evaluation in Lisp).

The relationships 6, 1, and ¢ have different relative impor-
tance in different linguistic disciplines, and different relation-
ships among them have been given different names. For ex-
ample, 6 is usually ignored in logic, and there is little tendency
to view the study of i, called proof theory, as semantical, al-
though it is always related to semantics, as in proving sound- a23
ness and completeness (which, incidentally, can be expressed
as the equation Ui(s,s,) = [d, C d,], if one takes (s to be a rela-
tion, and ¢ to be an inverse satisfaction relationship between

4. For what we might call declarative languages, there is a natural account
of the relationship between linguistic expressions and in-the-world des-
ignations that need not make crucial reference to issues of processing
(to which we will turn in a2 moment). It is for such languages, in par-
ticular, that the composition ¢ @ 0, which we might call it ¢, would be
formulated. And this, for obvious reasons, is what is typically studied
in mathematical model theory and logic, since those fields do not deal
in any crucial way with the active use of the languages they study. Thus,
for example, ¢’ in logic would be the interpretation function of standard
model theory. In what we will call computational languages, on the other
hand, questions of processing do arise.

Draft Version 0.81 — 2018 - Mar - 3

sentences and possible worlds that satisfy them). In addition, a24
there are a variety of “independence” claims that have arisen

in different fields. That ¢ does not uniquely determine o, for
example, is the “psychology narrowly construed” and concomi-
tant methodological solipsism of Putnam, Fodor, and others
(Fodor 1980). That 6 is usually specifiable compositionally and
independently of s or ¢ is essentially a statement of the auton-
omy thesis for language. Similarly, when 6 cannot be specified
independently of s, computer science will say that a program-
ming language “cannot be parsed except at runtime” (Teco and

the first versions of Smalltalk were of this character). a25

A thorough analysis of these semantic relationships, how-
ever, and of the relationships among them, is the subject of a
different paper. For present purposes we need not take a stand
on which of 6, U, or ¢ has a prior claim on being “semantics,”
but we do need a little terminology to make sense of it all. For
discussion, therefore, we will refer to the “¢” of a structure as
its declarative import, and to its “y” as its procedural conse-
quence. It is also convenient to identify some of the situations
when two of the six entities (1}, n,, 5, 5,, d; and d,) are identical.
In particular, we will say that s, is self-referential if s, = dj, that
de-references s if s, = dy, and that s is designation-preserving (at
s;) when d| = d, (as it always is, for example, in the \-calculus,
where y—a and B-reduction—do not alter the interpretation
in the standard model).

It is natural to ask what a program is, what programming
language semantics gives an account of, and how (this is a re-
lated question) ¢ and i relate in the programming language
case. An adequate answer to this, however, introduces a maze
of complexity that will be considered in future work. To ap- a26
preciate some of the difficulties, note that there are two differ-
ent ways in which we can conceive of a program, suggesting
different semantical analyses. On the one hand, a program
can be viewed as a linguistic object that describes or signifies

Draft Version 0.81 — 2018 - Mar - 3

a computational process consisting of the data structures and
activities that result from (or arise during) its execution. In
this sense a program is primarily a communicative entity, not a27
so much playing a role within a computational process as ex-
isting outside the process and representing it. Putting aside for
a moment the question of what it is meant to communicate to,
we would simply say that a program is in the domain of 6, and,
roughly, that ¢ @ 6 of such an expression would be the compu-
tation described. The same characterization would, of course,
apply to a specification; indeed, the only salient difference
might be that a specification would [allow] using non-effec- 28
tive concepts in describing behavior. One would expect speci-
fications to be stated in a declarative language (in the sense
defined in fo

be executed or run, even though they speak about behaviors

1), since specifications aren’t themselves to

or computations. Thus, for program or specification b describ-
ing computational process ¢, we would have (for the relevant
language) something like ¢(6(b))=c. If b were a program, there
would be an additional constraint that the program somehow
play a causal role in engendering the computational process ¢
that it is taken to describe.

There is, however, an alternative conception, that places
the program inside the machine as a causal participant in the
behavior that results. This view is closer to the one implicitly
1, and it is closer (we claim) to the way in

adopted in figu

which a Lisp program must be semantically analyzed if we are

to understand Lisp's emergent reflective properties. In some
ways this different view has a von Neumann character, in the
sense of equating program and data. On this view, the more
appropriate equation would seem to be y(6(b))=c, since one
would expect the processing of the program to yield the ap-
propriate behavior. One would seem to have to reconcile this
equation with that in the previous paragraph, something it is a29
not clear that it is possible to do.

Draft Version 0.81 — 2018 - Mar - 3

Thus this will require further work. What we can say here
is that programming language semantics seems to focus on
what, in our terminology, would be an amalgam of and ¢. a30
For our purposes we need only note that we will have to keep
rand ¢ strictly separate, while recognizing (because of context
relativity and non-local effects) that the two parts cannot be
told independently. Formally, one needs to specify a general
significance function X, which recursively specifies ¢ and ¢ a31
together. In particular, given any structure s, and any state of
the processor and the rest of the field (encoded, say, in an en-
vironment, continuation, and perhaps a store), = will specify
the structure, configuration, and state that would result (i.e.,
it will specify the use of s), and also the relationship to the
world that s, signifies. For example, given a Lisp structure of a32
the form (+ 1 (PROG (SETQ A 2) A)), 3 would specify that the
whole structure designated the number three, that it would
return the numeral 3, and that the machine would be left in a
state in which the binding of the variable A was changed to the 33
(structural) numeral 2.

Before leaving semantics completely, it is instructive to ap-
ply our various distinctions to traditional Lisp. We said above
that all interaction with computational processes is mediated
by communication; this can be stated in the present terminol-
ogy by noting that 6 and 6™ (we will call the latter external-
ization) are a part of any interaction. Thus Lisp’s “read-eval-
print”loop is mirrored in this analysis as an iterated version of
07" B ¢ B 0 (i.e, if n, is an expression that you type as input to
a Lisp system, returning n, as output, then n, = 6”'(¢(6(n,))).
The Lisp structural field, as it happens, has an extremely sim-
ple compositional structure, based on a binary directed graph
of atomic elements called cons-cells, extended with atoms, nu-
merals, and so forth. The linguistic or communicative expres-
sions that we use to represent Lisp programs—the formal
language objects that we edit with our editors and print in

Draft Version 0.81 — 2018 - Mar - 3

books and on terminal screens—is a separate lexical (or some-
times graphical) object with its own syntax (of parentheses
and identifiers in the lexical case; of boxes and arrows in the
graphical).

There is in Lisp is a relatively close correspondence between
expressions and structures; it is one-to-one in the graphical
case, but the standard lexical notation is both ambiguous
(because of shared tails) and incomplete (because of its in-
ability to represent cyclical structures). The correspondence
need not have been as close as it is; the process of converting
from external syntax or notation to internal structure could
involve arbitrary amounts of computation, as evidenced by
read macros and other syntactic or notational devices. But the
important point is that it is structural field elements, not nota-
tions, over which most Lisp operations are defined. If you type
«(RPLACA '(A . B) 'C)»," for example, the processor will change
the car of a field structure; it will not back up your termi-
nal and erase the eleventh character of your input expression.
Similarly, Lisp atoms are field elements, not to be confused
with their lexical representations (called “p-names”). Again,
quoted forms such as (QUOTE ABC) designate structural field el-
ements, not input strings. The form (QUOTE ...), in other words,
is a structural quotation operator; notational quotation is dif-
ferent, usually notated with string quotes (as in «"abc").”

tAs noted in «...where?...», French quotation marks (‘«’ and ‘»") are
used throughout to quote expressions. Internal structures are not quoted.
(To put it pedantically: when, in English language text, reference needs
to be made to an internal 2/3Lisp structure, that is done by including, as
part of the English, without additional quotation marks, the 2/3Lisp ex-
pression that notatates the structure to which reference is being made.)

5. The string «(QUOTE ABC)» notates a structure that designates another
structure that in turn could be notated with the string «ABC». The string
«"ABC"», on the other hand, notates a structure that designates the string
ABC» direcdy‘.

Draft Version 0.81 — 2018 - Mar - 3

4 Evaluation Considered Harmful a34
The claim that all three relationships (6, ¢, and V) figure
crucially in an account of Lisp is not a formal one. It makes
an empirical claim on the minds of programmers, and can-
not be settled by pointing to any current theories or imple-

mentations. Nonetheless, it is

unarguable that Lisps numerals

designate numbers, and that the
atoms T and NiL (at least in pred-
icative contexts) designate truth

and falsity—no one could learn

Lisp without learning this fact.
Similarly, (EQ 'A ') designates fal-
sity. Furthermore, the structure
(cAR'(A. B)) designates the atom A;
this is manifested by the fact that
people, in describing Lisp, use ex-
pressions such as“if the cAR of the ~<—
list is LAMBDA, then it’s a procedure,”

where the term “the car of the list”

is used as a referring expression of

English, not as a quoted fragment

of Lisp (and English, or natural

Figure 5 — L1sp Evaluation vs. language generally, is by definition

Designation; Some Examples the locus of what designation is).

(QUOTE A), or 'A, is another way of

designating the atom A; thats just what quotation is. Finally,

we can take atoms like CAR and + to designate the obvious cor-
responding functions.

What, then, is the relationship between the declarative im-

port (o) of Lisp structures and their procedural consequence

()? Inspection of the data given in figure 5 shows that Lisp

obeys the following constraint (more must be said about ¢ in

Draft Version 0.81 — 2018 - Mar - 3

those cases where ¢(U(s)) = ¢(s), since the identity function
would satisfy this equation):

Vs ell[if [¢(s) € S] then [(s) = ¢(s)] (1]
else [o(U(s)) = «(s) 1]

All Lisps, including Scheme (Steele and Sussman 1978a), in
other words, dereference any structure whose designation is
another structure, but will return a co-designating structure
for any whose des-
ignation is outside

of the machine
(figure_6). Where-
as evaluation is
often thought to
correspond to the
semantic inter-
pretation function
¢, in other words, <— :
and therefore to :
have type ExPRES-
SIONS VALUES,
evaluation in Lisp
is often a desig-

nation-preserving
operation. In fact,
Figure 6 — L1spP’s“Dereference no computer can
If You Can” Evaluation Protocol evaluate a struc-
ture like (+ 2 3), if
that means “returning what is designated,” at least on the Pla-
tonist understanding of number I am working with, any more
than it can evaluate the name Hesperus or peanut butter.
Obeying equation [1] is highly anomalous. It means that
even if in a case in which one knows what y is, and knows that
x evaluates to y, one still does not know what x designates. It

Draft Version 0.81 — 2018 - Mar - 3

licenses such semantic anomalies as (+ 1 '2), which will evalu-
ate to 3 in all extant Lisps. Informally, we will say that Lisp's
evaluator crosses semantical levels, and therefore obscures
the difference between simplification and designation. Given a35
that processors cannot always de-reference (since by assump-
tion the co-domain is limited to the structural field), it seems
that they should always simplify, and therefore obey the fol-

Vs e 1 [[o(W(s)) = ¢(s)] N\ [NorMAL-FORM(U(s)]] [2]

The content of this equation clearly depends entirely on the
content of the predicate NORMAL-FORM (if NORMAL-FORM
were \x.TRUE, then (s could be the identity function). In the

\-calculus, the notion of normal-

Nerwal Farm formedness is defined in terms of

] #] the processing protocols (a- and
B-reduction), but we cannot use

any such definition here, on threat

of circularity. Instead, we say that

|I| a structure is in normal form if

Figure 7 — A Normalisation Protocol and only if it satisfies the following

three independent conditions:

1. It is context-independent, in the sense of having the
same declarative (¢) and procedural (§) import inde-
pendent of the context of use;

2. It is side-effect-free, implying that the processing of
the structure will have no effect on the structural field,
processor state, or external world; and

3. Itis stable, meaning that it must simplify to itself in all
contexts, so that ¢ will be idempotent.

We would then have to prove, given a language specification,
that equation [2] is satisfied.
Two notes. First, I won't use the terms evaluate or ‘value for

Draft Version 0.81 — 2018 - Mar - 3

expressions or structures, referring instead to normalisation
for s, and designation for ¢. I will sometimes call the result
of normalising a structure its result or what it returns. There is
also a problem with the terms apply’ and ‘application’; in stan-
dard Lisps, AppLY is a function from structures and arguments
onto values, but its us, like evaluate, is rife with use/mention
mathematical function application—i.e., to refer to a relation-
ship between a function, some arguments, and the value of the
function applied to those arguments—and the term ‘reduce’

to relate the three

Co—=r structures that des-
m ignate functions,
- arguments, and

Fo fwmction AD T@wment wp Ve & .
MEHMW &.-:gnntw .iuﬂ-u.m:._r values, respectlvely,
Note that I still use

P ¥ P . ,
the term ‘value’ (as
F function A ergment ¥ walue for e.xample in the
previous sentence),
_J__fﬂ but only to name
_— that entity onto

Figure 8 — Application vs. Reduction

which a mathemat-
ical function maps
its arguments.
Second, the idea of a normalising processor depends on
the idea that symbolic structures have a semantic significance
prior to, and independent of, the way in which they are treated
by the processor. Without this assumption we could not even
ask about the semantic character of the Lisp (or any other)
processor, let alone suggest a cleaner version. Without such
an assumption, more generally, one cannot say that a given
processor is correct, or coherent, or incoherent; it is merely
what it is. Given one account of what it does (like an imple-
mentation), one can compare that to another account (like a

Draft Version 0.81 — 2018 - Mar - 3

specification). One could also prove that it has certain prop-
erties, such as that it always terminates, or uses resources in
certain ways. One could prove properties of programs written
in the language it runs (from a specification of the aLgoL pro-

Lasficel vechaal Fancadesl Dexiasntivn
.f,-- T or WIL I,"r Truth walies

INinmerals Nimenals _Ff__,.- Mumerals Mumbers

Labels Aroms Atpens 7‘{

Diatred pairs Fairs —% - {Lowbda_} Functions
j}—* Lists é (guote) j'JI lil S-expresnions

["Lime | - Lists Sequenies

- Applications / II"'

Figure 9 — The Category Structure of Lisp 1.5

cessor, for example, one might prove that a particular program
sorted its input). However, none of these questions deal with
the fundamental question about the semantical nature of the
processor itself. We are not looking for a way in which to say

Lasrirsl eecharel | Dexiesstien
Digits Mwmenils Mormal form Blwmbers
T or §F Booleans HMormal forem Truth valwes
{closure_} Closures HMormal Jforem Functioms
[8y — 2] Bl Bl Sequences
"= Handles Mormal forem Structures
alphanmmeric Ao Atoms [
(A . Ag) Pairs Pairs S

Figure 10 — The Category Structure of 2Lisp

that the semantics of (CAR '(A . B)) is A because that is how the
language is defined; rather, we want to say that the language
was defined that way because Ais what (CAR '(A . B)) designates.

Semantics, in other words, can be a tool with which to judge a36

systems, not merely a method of describing them.

Draft Version 0.81 — 2018 - Mar - 3

5 2.Lisp: A Semantically Rationalized Dialect
Since we have torn apart the notion of evaluation into two
constituent notions, we need to start at the beginning and
build Lisp over again. 2Lisp is a proposed result. Some sum-
mary comments can be made. First, I have reconstructed what
I call the category structure of Lisp, requiring that the catego-
ries into which Lisp structures are sorted, for various purpos-
es, “line up” (giving the dialect a property I will call category
alignment). More specifically, Lisp expressions are sorted

An Overview of 2Lisp

We begin with the objects. Ignoring input/output categories such as
characters, strings, and streams, there are seven 2Lisp structure types,
as illustrated in the table below. The numerals (notated as usual) and
the two Boolean constants (notated «$7» and «$r») are unique (i.e., ca-
nonical), atomic, normal-form designators of numbers and truth-values,
respectively. Rails (notated «[A A, ... A]») designate sequences; they re-
semble standard Lisp lists, but we distinguish them from pairs in order
to avoid category confusion, and give them their own name, in order to

Tipe £ IR N [Commmiad Crasbract Wikt
Bl Nomhes F= F= — it
Beslesss Troth rlom 7= yo= — MW
Bemlles Srooiores FoF FoF — whruchaer
O Fuosc s Ty = Cows jooase..)
[] o e = REEMS ;- =]

[== fmlon sfupp) | == — POME 3, 5]

avoid confusion with sequences (or vectors or tuples), which are nor-
mally taken to be Platonic ideals. All atoms are used as variables (i.e., as
context-dependent names); as a consequence, no atom is normal-form,
and no atom will ever be returned as the result of processing a struc-
ture (although a designator of it may be). Pairs (sometimes also called

Draft Version 0.81 — 2018 - Mar - 3

into categories by notation, by structure (atoms, cons pairs,
numerals), by procedural treatment (the “dispatch” inside
the traditional evAL), and by declarative semantics (the type
these categories are not aligned; lists, a derived structure type,
include some of the pairs and one atom (NIL); the procedural
regimen treats some pairs (those with LAMBDA in the cAR) in
one way, most atoms (except Tand NIL) in another, and so forth.
In 2Lisp we require the notational, structural, procedural, and

redexes, and notated «(A, . A,)») designate the value of the function des-
ignated by the car applied to the arguments designated by the cpr. By
taking notational form «(A, A, ... A;)» to abbreviate «(a, . [A, A, ... A])»
instead of Lisp’s traditional «(A, . (A, (A . NIL)...)))», we preserve the
standard look of Lisp programs, without sacrificing category alignment.
(Note that in 2Lisp there is no distinguished atom NiL, and «()» is a
notational error—corresponding to no structural field element.) Clo-
sures (notated «{CLOSURE: ... }») are normal-form function designators,
but they are not canonical, since it is not generally decidable whether
two structures designate the same function. Finally, handles are unique
normal-form designators of all structures; they are notated with a lead-
ing single quote mark (thus «'A» notates the handle of the atom notated
«A», and «'(A . B)» notates the handle of the pair notated «(a . B)», etc.
Because designation and simplification are orthogonal, quotation is a
structural primitive, not a special procedure (although QUOTE is easy to
define as a user function in 3Lisp).

We turn next to the functions (and use ‘@’ to mean “normalises to”).
There are the usual arithmetic primitives (+, -, *, and /). Identity (signi-
fied with «=») is computable over the full semantic domain except func-
tions; thus (= 3 (+ 1 2)) B ST, but (= + (LAmMBDA [X] (+ XX))) will generate
a processing error, even though it designates truth. The traditionally
unmotivated difference between EQ and EQUAL turns out to be an ex-
pected difference in granularity between the identity of mathematical
sequences and their syntactic designators; thus:

Draft Version 0.81 — 2018

«Mar- 3

semantic categories to correspond one-to-one, as illustrated in
figure 10 (this is a bit of an oversimplification, since atoms and

pairs—representing arbitrary variables and arbitrary function
application structures or redexes—can designate entities of
any semantic type).

A summary of 2Lisp is given the sidebar ("An Overview
of 2Lisp,” on the previous two pages and below"), but some

T . ,. .
Labeled figure 11" in the POPL version.

An Overview of 2Lisp, contd. ..

(- [123][123]) B $r

(-'[123] '[123]) B $

(= [123] '[123]) $F
(In the last case one structure designates a sequence and one a rail.)
1sT and REesT are the cArR/cDR analogues on sequences and rails; thus
(1sT [10 20 30]) @ 10; and (ResT [10 20 30]) @ [20 30]. cAR and cbrR
are defined over pairs; thus (cAr '(a . B)) B 'A (because it designates A),
and (cor '(+ 1 2)) @'[1 2]. The pair constructor is called pcons (thus
(Pcons 'A 'B) B '(A . B)); the corresponding constructors for atoms, rails,
and closures are ACONs, RCONs, and ccons. There are 11 primitive char-
acteristic predicates: 7 for the internal structural types (ATOM, PAIR, RAIL,
BOOLEAN, NUMERAL, CLOSURE, and HANDLE) and 4 for the external types
(NUMBER, TRUTH-VALUE, SEQUENCE, and FUNCTION). Thus:

(number 3) $T
(numeral '3) $T
(number '3) $F
(function +) $T
(function '+) $F

Procedurally intensional IF and conp are defined as usual; BLock (as in
Scheme) is like standard Lisp's PROGN. BODY, PATTERN, and ENVIRONMENT
are the three selector functions on closures. Finally, functions are usual-
ly “defined” (i.e., conveniently designated in a contextually relative way)
with structures of the form (LAMBDA SIMPLE ARGS BODY) (the term SIMPLE

Draft Version 0.81 — 2018 - Mar - 3

comments can be made here. Like most mathematical and
logical languages, 2Lisp is almost entirely declaratively exten-
sional. Thus (+ 1 2), an abbreviation for (+ . [1 2]), designates
the value of the application of the function designated by the
atom + to the sequence of numbers designated by the rail
[1 2].In other words, (+ 1 2) designates the number three, of
which the numeral 3 is the normal-form designator; (+ 1 2)
therefore normalises to the numeral 3, as expected. 2Lisp is
also usually call-by-value (what we one can think of as “pro-

will be explained presently); thus (LAMBDA SIMPLE [X] (+ X X)) normalises
to a closure that designates a function that doubles numbers; ((LAmMBDA
SIMPLE [X] (+ xx)) 4) @ 8.

2Lisp is higher-order, and therefore lexically scoped, like the \-cal-
culus and Scheme. However, as mentioned earlier and illustrated with a37
the handles in the previous paragraph, it is also metastructural, provid-
ing an explicit ability to name internal structures. Two primitive pro-
cedures, called up and powN (usually abbreviated «0» and «[», respec-
tively) help to mediate this metastructural hierarchy (there is otherwise
no way to add or remove quotes—'2 will normalise to '2 forever, never
to 2. Specifically, 0STRUC designates the normal-form designator of the
designation of STRUC; i.e., ISTRUC designates what STRUC normalises to
(therefore O(+ 2 3) @'5). Thus:

(lambda simple [x] x) — designates a function
'(lambda simple [x] x) — designates a pair or redex
O0(lambda simple [x] x) — designates a closure

(Note that «D» is call-by-value but not declaratively extensional.) Simi-
larly, OsTRUC designates the designation of the designation of STRUC,
providing that the designation of STRUC is in normal-form (therefore
0'2 @ 2). [MSTRUC is always equivalent to STRUC, in terms of both des-
ignation and result; so is [STRUC when it is defined. Thus if DOUBLE is
bound to (the result of normalising) (LamBDA [X] (+ x X)), then (BoDY
DOUBLE) generates an error, since BODY is extensional and pousLE desig-
nates a function, but (Bopy ObousLe) will designate the pair (+ x x).

Draft Version 0.81 — 2018 - Mar - 3

cedurally extensional”), in the sense that procedures by and
large normalise their arguments. Thus (+ 1 (BLock (PRINT "hel-
lo") 2)) will normalise to 3, printing out «hello» in the process.

Many properties of Lisp that must normally be posited in
an ad hoc way fall out directly from our analysis. For example,
one must normally state explicitly that some atoms, such as T
and NiL and the numerals, are self-evaluating; in 2Lisp, the fact
that the Boolean constants are self-normalising follows direct-
ly from the fact that they are normal-form designators. Simi-
larly, closures are a natural category, and distinguishable from
the functions they designate (there is ambiguity, in Scheme,
as to whether the value of + is a function or a closure). Finally,
because of category alignment, if X designates a sequence of
the first three numbers (i.e., it is bound to the rail [1 2 3]),
then (+ . x) will designate the number six and normalise to the
numeral 6; no metatheoretic machinery is needed for this “un-
currying” operation (in regular Lisp one must use (APPLY '+ X);
in Scheme, (APPLY + X)).

There are numerous properties of 2Lisp that we will ignore
in this paper. The dialect is defined (in Smith 1982) to include
side-effects, intensional procedures (that do not normalise
their arguments), and a variety of other sometimes-shunned
properties, in part to show that our semantic reconstruction
is compatible with the full gamut of features found in real
programming languages. Recursion is defined with explicit
fixed-point operators. 2Lisp is an eminently usable dialect (it
subsumes Scheme but is more powerful, in part because of
the metastructural access to closures), although it is ruthlessly a38
semantically strict.

6 Self-Reference in 2-Lisp
We turn now to matters of self-reference.
Traditional Lisps provide names (EvAL and APPLY) for the
primitive processor procedures; the 2Lisp analogues are NOR-

Draft Version 0.81 — 2018 - Mar - 3

MAUISE and REDUCE. Ignoring for a moment context arguments
such as environments. and continuations, (NORMALISE '(+ 2 3))
designates the normal-form structure to which (+ 2 3) nor-
malises, and therefore returns the handle '5. Similarly:

(normalise '(car '(a. b))) "a
(normalise (pcons '="'[2 3])) '$F
(reduce '1st '[10 20 30]) "10

More generally, the basic idea is that ¢(NORMALISE) = s, to be
contrasted with ¢(0), which is approximately ¢, except that
because 0 is a partial function we have ¢(0 B NORMALISE) = ¢.
Given these equations, the behavior illustrated in the forego-
ing examples is forced by general semantical considerations.
In any computational formalism able to model its own
syntax and structures,’ it is possible to construct what are
commonly known as metacircular interpreters, which we call
metacircular processors (or mcps)—“meta” because they oper-
ate on (and therefore terms within them designate) other for-
mal structures, and “circular” because they do not constitute a
definition of the processor. They are circular for two reasons.
First, they have to be run by that processor in order to yield
any sort of behavior (since they are programs, not processors,
strictly). Second, the behavior they would thereby engender a39
can be known only if one knows beforehand what that proces-
sor does. (Standard techniques of fixed points, furthermore,
are of no help in discharging this circularity, because this kind

6. Virtually any language, of course, has the requisite power to do
this kind of modeling. In a language with metastructural abilities, the
metacircular processor can represent programs for the Mcp as them-
selves—this is always done in Lisp McPs—but we need not define
that to be an essential property. The term ‘metacircular processor’ is by
no means strictly defined, and there are various constraints that one
might or might not put on it. My general approach has been to view
as metacircular any non-causally connected model of a calculus within
itself; thus the 3Lisp reflective processor is not meta-circular, because it
does have the requisite causal connections, and is therefore an essential
part of the 3Lisp architecture.

Draft Version 0.81 — 2018 - Mar - 3

of modeling is a kind of self-mention, whereas recursive defi-
nitions are more self-use.). Nonetheless, such processors are a40
pedagogically illuminating, and play a critical role in the devel-
opment of procedural reflection.

processing the metacircular processor mcp, it would still cor-
rectly engender the behavior of any overall program. Taking
processes to be func-
tions from structures
onto behavior, therefore
(whatever behavior is—
functions from initial
to final states, say), and
calling the primitive
processor p, we should

be able to prove that

p(Mcp) ~ p, where by '~
Figure 12 — Metacircular Processors we mean behaviorally
equivalent in some ap-
propriate sense. The equivalence, of course, is a global equiva-
lence; by and large the primitive processor and the processor
resulting from the explicit running of the Mcp cannot be arbi-
trarily mixed. If a variable is bound by the underlying proces-
sor p, it will not be able to be looked up by the metacircular
code, for example. Similarly, if the metacircular processor en-
counters a control-structure primitive, such as a THROW or a
Qui, it will not cause the metacircular processor itself to exit
prematurely, or to terminate. The point, rather, is that if an
entire computation is run by the process that results from the
explicit processing of the mcp by p, the results will be the same
(modulo time) as if that entire computation had been carried
out by p directly. Mmcps are not causally connected with the
systems they model.

Draft Version 0.81 — 2018 - Mar - 3

The reason that we cannot mix code for the underlying pro-
cessor and code for the mcp and the reason that we ignored
context arguments in the definitions above both have to do
with the state of the processor p. In very simple systems (un-
ordered rewrite rule systems, for example, and hardware archi-
tectures that put even the program counter into a memory lo-
cation), the processor has no internal state, in the sense that it
is in an identical configuration at every “click point” during the
running of a program (i.e., all information is recorded explic-
itly in the structural field). But in more complex circumstances,
there is always a certain amount of state to the processor that
affects its behavior with respect to any particular embedded
fragment of code. In writing an Mcp one must demonstrate,
more or less explicitly, how the processor state affects the pro-
cessing of object-level structures. By “more or less explicitly” we
mean that the designer of the mcp has options: the state can
be represented in explicit structures that are passed around
as arguments within the processor, or it can be absorbed into
the state of the processor running the mce. (I will say that
a property or feature of an object language is absorbed in a
metalanguage or theory just in case the metatheory uses the
very same property to explain or describe the property of the
object language. Thus conjunction is absorbed in standard
model theories of first-order logics, because the semantics of
p [Q is explained simply by conjoining the explanation of p
and Q—specifically, in such a formula as:“ ‘p [Q’is true just in
case P’ is true and Q' is true.”) ad1

The state of a processor for a recursively embedded func-
tional language, of which Lisp is an example, is typically rep-
resented in an environment and a continuation, both in mcps
and in the standard metatheoretic accounts. (Note that these
are notions that arise in the theory of Lisp, not in Lisp itself;
except in self-referential or self-modeling dialects, user pro-
grams don't traffic in such entitles.) Most mcps make the

Draft Version 0.81 — 2018 - Mar - 3

environment explicit. The control part of the state, however,
encoded in a continuation, must also be made explicit in order
to explain non-standard control operations, but in many mcps

(define READ-NORMALISE-PRINT
(lambda simple [env stream]
(block (prompt&reply (normalise (prompt&read stream) env) stream)
(read-normalise-print env stream))))

(define NORMALISE
(lambda simple [struc env]
(cond [(normal struc) struc]
[(atom struc) (binding struc env)]
[(rail struc) (normalise-rail struc env)]
[(pair struc) (reduce (car struc) (cdr struc) env)])))

(define REDUCE
(lambda simple [proc args env]
(let [[proc! (normalise proc env)]]
(selectq (procedure-type proc!)
[simple (let [[args! (normalise args env)]]
(if (primitive proc!)
(reduce-primitive-simple proc! args!)
(expand-closure proc! args!)))]
[intensional (if (primitive proc!)
(reduce-primitive-intensional proc! args env)
(expand-closure proc! args))]
[macro (normalise (expand-closure proc! args) env))]))))

(define NORMALISE-RAIL
(lambda simple [rail env]
(if (empty rail)
(rcons)
(prep (normalise (1st rail) env)
(normalise-rail (rest rail) env)))))

(define EXPAND-CLOSURE
(lambda simple [proc! args!]
(normalise (body proc!)
(bind (pattern proc!) args! (environment proc!)))))

Figure 13 — A non-continuation-passing 2Lisp MCP

Draft Version 0.81 — 2018 - Mar - 3

(such as in (McCarthy 1965) and Steele and Sussman’s mcp
for Scheme (see for example Sussman and Steele 1978b)), it
is absorbed. Two versions of the 2Lisp metacircular proces-
sor, one absorbing and one making explicit the continuation
that in both cases the underlying agency or anima is not rei-
fied; it remains entirely absorbed by the processor of the mce.
We have no mechanism to designate a process (as opposed to
structures), and no method of obtaining causal access to an
independent locus of active agency (the reason, of course, be-
ing that we have no theory of what a process is). ad2

7 Procedural Reflection and 3-Lisp

Given the metacircular processors defined above, 3Lisp can
be non-effectively defined in a series of steps. First, imagine a
dialect of 2Lisp, called 2Lisp/1, where user programs were not
run directly by the primitive processor, but by that processor
running a copy of an mcp. Next, imagine 2Lisp/2, in which
the Mcp in turn was not run by the primitive processor, but
was run by the primitive processor running another copy of
the mcp. Etc. 3Lisp is essentially 2Lisp/o, except that the mcp
is changed in a critical way in order to provide the proper con-
nection between levels. 3Lisp, in other words, is what I will
call a reflective tower, defined as an infinite number of copies
of an mcp-like program, run at the “top” by an (infinitely fleet)
processor. The claim that 3Lisp is well-founded is the claim
that the limit exists—that is, that:

3Linp 3 lim [:qu-,l'n}
We will look at the revised mcp presently, but first some gen-
eral properties of this tower architecture. A rough idea of

the levels of processing is given in figure 15: at each level the
processor code is processed by an active process that interacts

Draft Version 0.81 — 2018 - Mar - 3

iy
i

w1 o

Figure 15 — The 3Lisp Reflective Tower

(define READ-NORMALISE-PRINT
(lambda simple [env stream]

(normalise (prompt&read stream) env

(lambda simple [result]

with it (locally and serially, as
usual), but each processor is in
turn composed of a structural
field fragment in turn processed
by a reflective processor on top
of it. What I will show is that
the implied infinite regress is not
problematic, and that the archi-
tecture can be efficiently real-
ized, since only a finite amount
of information is encoded in all
but a finite number of the bot-
tom levels.

(block (prompt&reply result stream)
(read-normalise-print env stream))))))

(define NORMALISE
(lambda simple [struc env cont]
(cond [(normal struc) (cont struc)]

[(atom struc) (cont (binding struc env))]
[(rail struc) (normalise-rail struc env cont)]
[(pair struc) (reduce (car struc) (cdr struc) env cont)])))

(define REDUCE
(lambda simple [proc args env cont]
(normalise proc env

(lambda simple [proc!]

(selectq (procedure-type proc!)
[simple (normalise args env

(lambda simple [args!]
(if (primitive proc!)
(reduce-primitive-simple proc! args! cont)
(expand-closure proc! args! cont))]

Draft Version 0.81 — 2018 - Mar - 3

There are two ways to think about reflection. On the one
hand, one can think of there being a primitive and noticeable
reflective act, which causes the processor to shift levels rather
markedly (this is the explanation that best coheres with some
of our pre-theoretic intuitions about reflective thinking, in the
sense of contemplation). On the other hand, the explanation a43
given in the previous paragraph leads one to think of an infi-
nite number of levels of reflective processors, each implement-
ing the one below.” On such a view, it is not coherent either
to ask about what level the tower is running at, or to ask how

7. Curiously, there are also intuitions about contemplative thinking,
where one is both detached and yet directly present, that fit more with
this view.

[intensional (if (primitive proc!)
(reduce-primitive-int proc! args env cont)
(expand-closure proc! args cont))]
[macro (expand-closure proc! args
(lambda simple [result]
(normalise result env cont)))])))))

(define NORMALISE-RAIL
(lambda simple [rail env cont]
(if (empty rail)
(cont (rcons))
(normalise (1st rail) env
(lambda simple [first!]
(normalise-rail (rest rail) env
(lambda simple [rest!]

(cont (prep first! rest!)))))))))

(define EXPAND-CLOSURE
(lambda simple [proc! args! cont]
(normalise (body proc!)
(bind (pattern proc!) args! (environment proc!))
cont)))

Figure 14 — A continuation-passing 2Lisp Mcp

Draft Version 0.81 — 2018 - Mar - 3

many reflective levels are running: in some sense they are all
running at once. Exactly the same situation obtains when you
use an editor implemented in ApL. It is not as if the editor and
the ApL interpreter are both running together, either side-by-
side or independently; rather, the one, being interior to the
other, supplies the anima or agency of the outer one. To put
this another way, when you implement one process in another
process, you might want to say that you have two different pro-
cesses, but you don't have concurrencys; it is more a part/whole
kind of relation. It is just this sense in which the higher levels
in our reflective hierarchy are always running: each of them is

Programming in 3Lisp

For illustration, we will look at a handful of simple 3Lisp programs.
The first merely calls the continuation with the numeral 3; thus it is
semantically identical to the simple numeral:

(define THREE
(lambda reflect [[] env cont]
(cont '3)))
Thus (THREE) @ 3; (+ 11 (THREE)) B 14. The next example is an intension-
al predicate, true if and only if its argument (which must be a variable)
is bound in the current context:
(define BOUND
(lambda reflect [[var] env cont]
(if (bound-in-env var env)
(cont '$T)
(cont '$F))))

or equivalently

(define BOUND
(lambda reflect [[var] env cont]
(cont [(bound-in-env var env))))

Thus (LeT [[x 3]] (BOUND X)) B $T, whereas (BOUND X) B $F in the global
context. The following quits the computation, by discarding the con-

Draft Version 0.81 — 2018 - Mar - 3

in some sense within the processor at the level below, so that
it can thereby engender it. We will not take a principled view
on which account—a single locus of agency stepping between
levels, or an infinite hierarchy of simultaneous processors—is
correct, since they turn out to be behaviorally equivalent. (The
simultaneous infinite tower of levels is often the better way to
understand processes, whereas the shifting-level viewpoint is
sometimes the better way to understand programs.)

3Lisp, as we said, is an infinite reflective tower based on
2Lisp. The code at each level is like the continuation-passing

tinuation and simply “returning”:

(define QuIT
(lambda reflect [[] env cont]

'‘Quit!))

There are a variety of ways to implement a THROW/CATCH pair; the fol-
lowing defines the version used in Scheme:

(define SCHEME-CATCH
(lambda reflect [[tag body] catch-env catch-cOnt]
(normalise body
(bind tag
O(lambda reflect [[answer] throw-env throw-cont]
(normalise answer throw-env catch-cont))
catch-env)
catch-cont)))

For example:

(let [[x 1]]

(+ 2 (scheme-catch punt
(*3(/4(if(=x1)
(punt 15)
Gx1N)

would designate seventeen and return the numeral 17.

... contd

Draft Version 0.81 — 2018 - Mar - 3

whereby the user’s program can gain access to fully-articulated
descriptions of that program’s operations and structures (thus
extended, and located in a reflective tower, we will call this
code the 3Lisp reflective processor). One gains this access by
using what are called reflective procedures—procedures that,
when invoked, are run not at the level at which the invocation
occurred, but one level higher, at the level of the reflective pro-
cessor running the program, given as arguments those struc-
tures being passed around in the reflective processor.
Reflective procedures are essentially analogues of subrou-
tines to be run “in the implementation,” except that they are

Programming in 3Lisp, contd. ..

In addition, the reflection mechanism is so powerful that many tra-
ditional primitives can be defined; LAmMBDA, IF, and QUOTE are all non-
primitive (user) definitions in 3Lisp, defined as follows:

(define LAMBDA
(lambda reflect [[kind pattern body) env cont]
(cont (ccons kind Jenv pattern body))))
(define IF
(lambda reflect [[premise then else] env cont]
(normalise premise env
(lambda simple [premise!]
(normalise (ef Opremise! then else) env cont)))))

(define QUOTE
(lambda reflect [[arg) env cont) (cont [arg)))
Some comments. First, the definition of LAMBDA just given is, of course,
circular; a noncircular but effective version is given in Smith and des
Riviéres (1984); the one given above, if executed in 3Lisp, would leave
the definition unchanged, except that it is an innocent lie: in real 3Lisp
KIND is a procedure that is called with the arguments and environment,
allowing the definition of (LAMBDA MACRO ...), etc. CCONS is a closure
constructor that uses SIMPLE and REFLECT to tag the closures for recogni-

Draft Version 0.81 — 2018 - Mar - 3

in the same dialect as that being implemented, and can use all
the power of the implemented language in carrying out their
function (e,g,, reflective procedures can themselves use reflec-
tive procedures, without limit). There is not a tower of differ-
ent languages—there is a single dialect (3Lisp) all the way up.
Rather, there is a tower of processors, necessary because there
is different processor state at each reflective level.

Some simple examples will illustrate. Reflective procedures
are‘defined” (in the sense we described earlier) using the form
(LAMBDA REFLECT ARGS BODY) where ARGS—typically the rail ~—<—
[ARGS ENV CONT]—is a pattern that should match a 3-element

sional conditional that normalises all of its arguments; the definition of
IF defines the standard intensional version that normalises only one of
the second two, depending on the result of normalising the first. Finally,
the definition of QuOTE will yield (QUOTE A) B 'A.

Finally, we have a trivial break package, with env and conT bound in
the break environment for the user to see, and RETURN bound to a pro-
cedure that will normalise its argument and pass that out as the result
of the call to BrREAK:

(define BREAK
(lambda reflect [[arg) env cont)
(block (print arg primary-stream)
(read-normalise-print ">>"

(bind* ['env envJ
['cont Ocont)
['return O(lambda reflect [[a2] e2 c2]

(normalise a2 e2 cont))]

env)

primary-stream))))

If viewed as models of control constructs in a language being imple-
mented, these definitions will look innocuous; what is important to re-
member is that they work in the very language in which they are defined.

Draft Version 0.81 — 2018 - Mar - 3

designator of, respectively, the argument structure at the point
of call, the environment, and the continuation. Some simple
examples are given in the “Programming in 3Lisp” sidebar, on
the previous several pages,Jr including a working definition of
Scheme’s catcH. Though simple, these definitions would be
impossible in a traditional language, since they make crucial
access to the full processor state at point of call. Note also
that although THRow and catcH deal explicitly with continua-
tions, the code that uses them need know nothing about such
subtleties. More complex routines, such as utilities to abort
or redefine calls already in process, are almost as simple. In
addition, the reflection mechanism is so powerful that many
traditional primitives can be defined: LAMBDA, IF, and QUOTE are
all non-primitive (user) definitions in 3Lisp, again illustrated
in the sidebar. There is also a simplistic break package, to il-
lustrate the use of the reflective machinery for debugging pur-
poses. It is noteworthy that no reflective procedures need be
primitive; even LAMBDA can be built up from scratch.

The importance of these examples stems from the fact that
they are causally connected in the right way, and will therefore
run in the system in which they defined, rather than being
models of another system. And, since reflective procedures
are fully integrated into the system design (their names are
not treated as special keywords), they can be passed around
in the normal higher-order way. There is also a sense in which
3Lisp is simpler than 2Lisp, as well as being more powerful;
there are fewer primitives, and 3Lisp provides much more
compact ways of dealing with a variety of intensional issues
(like macros).

8 The 3Lisp Reflective Processor
3Lisp can be understood through a close inspection of the

tion of the continuation-passing 2Lisp metacircular proces-

T This sidebar was labeled ‘igure 16" in the POPL version.

Draft Version 0.81 — 2018 - Mar - 3

sor mentioned above. NORMALISE (line 7) takes a structure,
environment, and continuation, returning the structure un-

1 (define READ-NORMALISE-PRINT

2 ...(lambda simple [level env stream]

3 e (normalise (prompt&read level stream) env

4 e (lambda simple [result] ; C-REPLY
5 e (block (prompt&reply result level stream)

6 e (read-normalise-print level env stream))))))

7 (define NORMALISE

8 ...(lambda simple [struc env cont]
[T (cond [(normal struc) (cont struc)]
I0 ceeeieeeeeiis [(atom struc) (cont (binding struc env))]
IT ceceeeeeeennne [(rail struc) (normalise-rail struc env cont)]
12 ceceeeeeeeenns [(pair struc) (reduce (car struc) (cdr struc) env cont)]))

13 (define REDUCE

14 ...(lambda simple [proc args env cont]

183 coooooo (normalise proc env

I6 e (lambda simple [proc!] ; C-PROC!
I7 ceeeeeeeenne (if (reflective proc!)

I8 i (O(de-reflect proc!) args env cont)

19 ceeeceeenieeenn (normalise args env

20 e (lambda simple [args!] ; C-ARGS!
21 e (if (primitive proc!)

22 e (cont [(Oproc! . Dargs!))

23 e (normalise (body proc!)

24 i (bind (pattern proc!) args! (environment proc!))

25 e cont))))))))

26 (define NORMALISE-RAIL

27 ...(lambda simple [rail env cont]

28 ... (if (empty rail)

29 e (cont (rcons))

30 e (normalise (1st rail) env

3T e (lambda simple [first!] ; C-FIRST!
32 e (normalise-rail (rest rail) env

33 e (lambda simple [rest!] ; C-REST!
34 eeeeeeeeeieeee (cont (prep first! rest!)))))))))

Figure 17 — The 3Lisp Reflective Processor

Draft Version 0.81 — 2018 - Mar - 3

changed (i.e., sending it to the continuation) if it is in normal
form, looking up the binding if it is an atom, normalising the
elements if it is a rail (NORMALISE-RAIL is 3Lisp’s tail-recursive
continuation-passing analogue of Lisp 1.5’s EvLs), and other-
wise reduces the car (procedure) with the cpr (arguments).
REDUCE (line 13) first normalises the procedure, with a continu-
ation (c-Proc!) that checks to see whether it is reflective (by
convention, we use exclamation point suffixes on atom names
used as variables to designate normal form structures). If it is
not reflective, c-PROC! normalises the arguments, with a con-
tinuation that either expands the closure (lines 23-25) if the
procedure is non-primitive, or else directly executes it it if it is
primitive (line 22).

Consider (REDUCE '+ '[x 3] ENv ID), where X is bound to the
numeral 2 and + to the primitive addition closure in ENv. At
line 22, ProC! will designate the primitive addition closure, and
ARGs! will designate the normal-form rail [2 3]. Since addition
is primitive, we must simply do the addition. (PrOC! . ARGS!)
would not work, because Proc! and ARGs! are at the wrong lev-
el; they designate structures, not functions or arguments. For
a brief instant, therefore, we dereference them (with 0), do the
addition, and then regain our meta-structural viewpoint with
the 0.° If the procedure is reflective, however, it (as shown in

8. One way to understand this is to realize that the reflective processor
simply asks its processor to do any primitives that it encounters. Le.,
it passes responsibility up to the processor running it. In other words,
each time one level uses a primitive, its processor runs around setting
everything up, finally reaching the point at which it must simply do the
primitive action, whereupon it asks its own processor for help. But of
course that processor will also come racing towards the edge of the same
cliff, and will similarly duck responsibility, handing the primitive up yet
another level. In fact every primitive ever executed is handed all the way
up to the top of the tower. There is a magic moment, when the thing
actually happens, and then the answer filters all the way back down to
the level that started the whole procedure. It is as if the deus ex machina,
living at the top of the tower, sends a lightning bolt down to some level
or other, once every intervening level gets appropriately lined up (rather

Draft Version 0.81 — 2018 - Mar - 3

the obvious three arguments (ARGS, ENV, and CONT) that are be-
ing passed around. The 0(DE-REFLECT PROC!) is merely a mecha-
nism to purify the reflective procedure so that it doesn't reflect
again, and to de-reference it to be at the right level (we want
to use, not mention, the procedure that is designated by proc!).
Note that line 18 is the only place that reflective procedures
can ever be called; this is why they must always be prepared to
accept exactly those three arguments.

Line 18 is the essence of 3Lisp; it alone engenders the full
reflective tower, for it says that some parts of the object lan-
guage—the code processed by this program—are called di-
rectly in this program. It is as if an object level fragment were
included directly in the meta language, which raises the ques-
tion of who is processing the meta language. The 3Lisp claim
is that an exactly equivalent reflective processor is processing
this code, without vicious threat of infinite ascent.

A reflective procedure, in sum, arrives in the middle of the
processor context. It is handed environment and continuation
structures that designate the processing of the code below it,
but it is run in a different context, with its own (implicit) en-
vironment and continuation, which in turn is represented in
structures passed around by the processor one level above it.
Thus it is given causal access to the state of the process that
was in progress (answering one of our initial requirements),
and it can of course cause any effect it wants, since it has com-
plete access to all future processing of that code. Furthermore,
it has a safe place to stand, where it will not conflict with the
code being run below it.

like the sun, at Stonehenge and the Pyramids, reaching down through
a long tunnel at just one particular moment during the year). Except,
of course, that nothing ever happens, ultimately, except primitives. In
other words the enabling agency, which must flow down from the top of
the tower, consists of an infinitely dense series of these lightning bolts,
with something like 10% of the ones that reach each level being allowed Ad4
through to the level below. All infinitely fast.

Draft Version 0.81 — 2018 - Mar -

These various protocols illustrate a general point. As men-
tioned at the outset, part of designing an adequate reflective
architecture involves a trade-off between being so connected
that one steps all over oneself (as in traditional implementa-
tions of debugging utilities), and so disconnected (as with
metacircular processors) that one has no effective access to
what is going on. The 3Lisp tower, we are suggesting, provides
just the right balance between these two extremes, solving the 45
problem of vantage point as well as of causal connection.

The 3Lisp reflective processor unifies three traditionally in-
dependent capabilities in Lisp: (i) the explicit availability of
EVAL and APPLY, (ii) the ability to support metacircular proces-
sors, and (iii) explicit operations (like MacLisp's RETFUN and 46
Interlisp's FRETURN) for debugging purposes. It is striking that
the latter facilities are required in traditional dialects, in spite
of the presence of the former, especially since they depend
crucially on implementation details, violating portability and
other natural aesthetics. In 3Lisp, in contrast, all information
about the state of the processor is fully available within the
language.

9 Threat of Infinity, and a Finite Implementation
The argument as to why 3Lisp is finite is complex in detail,
but simple in outline and substance. Basically, one shows that
the reflective processor is tail-recursive in two senses: (a) it
runs programs tail-recursively, in that it does not build up
records of state for programs across procedure calls (only on
argument passing); and (b) it itself is fully tail-recursive, in the
sense that all recursive calls within it (except for unimport-
ant subroutines) occur in tail-recursive position. The reflective
processor can therefore be executed by a simple finite state
machine. In particular, it can run itself without using any state
at all. Once the limiting behavior of an infinite tower of copies
of this processor has been determined, therefore, that entire

Draft Version 0.81 — 2018 - Mar - 3

chain of processors can be simulated by another finite state
machine, of complexity only moderately greater than that

of the reflective processor itself. (It is an interesting open re-
search question whether that“implementing” processor can be
algorithmically derived from the reflective processor code.) A

full copy of such an implementing processor—about 50 lines

of 2Lisp—is provided in Smith & des Riviéres (1984); a more 47
substantive discussion of tractability will appear in Smith
(forthcoming).

10 Conclusions and Morals

Fundamentally, the use of Lisp as a language in which to ex-
plore programming semantics and reflection is of no great
consequence; the ideas should hold in any similar circum-
stance. We chose Lisp because it is familiar, because it has
rudimentary self-referential capabilities, and because there
is a standard procedural self-theory (continuation-passing
metacircular “interpreters”). Work has begun, however, on
designing reflective dialects of a side effect-free Lisp and of
Prolog, and on studying a reflective version of the \-calculus a48
(the last being an obvious candidate to be used as a basis for a
mathematical study of reflection).

Furthermore, the technique we used in defining 3Lisp can
be generalized rather directly to these other languages. In or-
der to construct a reflective dialect one needs (a) to formulate
a theory of the language analogous to the metacircular proces-
sor descriptions we have examined, (b) to embed this theory
within the language, and (c) to connect the theory with the
underlying language in an appropriate causally connected way,

flective procedures invocable in the object language but run in

the processor. It remains, of course, to implement the resulting
infinite tower; a discussion of general techniques is presented
in des Rivitres & Smith (1984). '

" Included here as ch.s.

Draft Version 0.81 — 2018 - Mar - 3

It is partly a consequence of using Lisp that we have used
non-data-abstracted representations of functions and envi-
ronments; this facilitates side effects to processor structures
without introducing unfamiliar machinery. It is clear that
environments could be readily abstracted, although it would
remain open to decide what modifying operations would be
supported (changing bindings is one, but one might wish to
excise bindings completely, splice in new ones in, etc.). In stan-
dard \-calculus-based metatheory there are no side effects
(and no notion of processing) ; environment designators must
therefore be passed around (“threaded”) in order to model
environment side effects. It should be simple to define a side
effect-free version of 3Lisp with an environment-threading re-
flective processor, and then to define SETQ and other such rou-
tines as reflective procedures. Similarly, we assume in 3Lisp
that the main structural field is simply visible from all code;
one could define an alternative dialect in which the field, too,
was threaded through the processor as an explicit argument,
as in standard metatheory.

The representation of procedures as closures is trouble-
some (indeed, closures are failures, in the sense that they en-
code far more information than should be required in order
to identify a function in intension; the problem being that we
don't yet know what a function in intension might be). 3Lisp
unarguably provides too fine-grained (i.e., metastructural) ac-
cess to function designators, including continuations and the
like. Given an abstract notion of procedure, it would be natu- a49
ral to define a reflective dialect that used abstract structures
to encode procedures, and then to define reflective access in
such terms. We did not follow this direction here only in order as0
to avoid taking on another very difficult problem, but we will
move in this direction in future work.

These considerations all illustrate a general point: in de-
signing a reflective processor, one can choose to bring into

Draft Version 0.81 — 2018 - Mar - 3

view more or less of the state of the underlying process. It is all
a question of what you want to make explicit, and what you
want to absorb. 3Lisp, as currently defined, reifies the environ-
ment and continuation, making explicit what was implicit one
level below. It absorbs the structural field (and partly absorbs
the global environment); in addition, as mentioned earlier, it
completely absorbs the animating agency of the whole com-
putation. If one defines a reflective processor based that also
absorbs the representation of control (i.e., like the mcp in fig-
code the control structure of the code being processed), then
reflective procedures could not affect the control structure. In
any real application, it would need to be determined just what
parts of the underlying dialect required reification. One could
perhaps define a dialect in which a reflective procedure could
specify, with respect to a very general theory, what aspects it
wanted to get explicit access to. Then operations that needed as1
only environmental access, like BOUND?, could avoid having to
traffic in continuations.

A final point. I have talked throughout about semantics,
but have presented no mathematical semantical accounts of
any of these dialects. To do so for 2Lisp is relatively straight-
forward (see Smith forthcoming), but I have not yet worked as2
out the appropriate semantical equations to describe 3Lisp. It a53
would be simple to model such equations on the implemen-
ion 9, but to do so would be a fail-
ure; rather, one should take the definition of 3Lisp in terms

tation mentioned in se

of the infinite virtual tower (i.e., take the limit as n @ = of
2Lisp/n), and then prove that the implementation strategies
of §9 are correct. This awaits further work. In addition, I want
to explore what it would be to deal explicitly, in the semanti-
cal account, with anima or agency, and with causal connection,
that are so crucial to the success of any reflective architecture.
These various tasks will require more radical reformulations
of semantics than have been considered here.

Draft Version 0.81 — 2018 - Mar - 3

