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4 · Reflection and Semantics in Lisp

	 1	 Introduction
For three reasons, Lisp’s self-referential properties have not 
led to a general understanding of what it is for a computa-
tional system to reason, in substantial ways, about its own op-
erations and structures. First, there is more to reasoning than 
reference; one also needs a theory, in terms of which to make 
sense of the referenced domain. A computer system able to 
reason about itself—what I will call a reflective system—will 
therefore need an account of itself embedded within it. Sec-
ond, there must be a systematic relationship between that em-
bedded account and the system it describes. Without such a 
connection, the account would be useless—as disconnected as 
the words of a hapless drunk who carries on about the evils of 
inebriation, without realizing that his story applies to himself. 
Traditional embeddings in Lisp are inadequate in just this 
way; they provide no means for the implicit state of the Lisp 
process to be reflected, moment by moment, in the explicit 
terms of the embedded account. Third, a reflective system 
must be given an appropriate vantage point at which to stand, 
far enough away to have itself in focus, and yet close enough 
to see the important details.

This paper presents a general architecture, called proce-

dural reflection, to support self-directed reasoning in a se-
rial programming language. The architecture, illustrated in a 
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revamped Lisp dialect called 3Lisp, solves all three problems 
with a single mechanism. The basic idea is to define an infinite 
tower of procedural self-models, very much like metacircular 
interpreters (Steele and Sussman 1978b), except connected to 
each other in a simple but critical way. In such an architecture, 
any aspect of a process’ state that can be described in terms 
of the theory can be rendered explicit, in program accessible 
structures. Furthermore, as we will see, this apparently infi-
nite architecture can be finitely implemented.

The architecture allows the user to define complex pro-
gramming constructs (such as escape operators, deviant vari-
able passing protocols, and debugging primitives) by writing 
direct analogues of the metalinguistic semantical expressions 
that would normally be used to describe them. As is always 
true in semantics, the metatheoretic descriptions must be 
phrased in terms of some particular set of concepts; in this 
case I have used a theory of Lisp based on environments and 
continuations. A 3Lisp program, therefore, at any point dur-
ing a computation, can obtain representations of the environ-
ment and continuation characterizing the state of the com-
putation at that point. Thus, such constructs as throw and 
catch, which must otherwise be provided primitively, can be 
easily defined as user procedures (and defined, furthermore, 
in code that is almost isomorphic to the λ-calculus equations 
one normally writes, in the metalanguage, to describe them). 
And all this can be done without writing the entire program 
in a continuation-passing style, of the sort illustrated in Steele 
(1976). The point is not to decide at the outset what should 
and what should not be explicit, in other words (in Steele’s 
example, continuations must be passed around explicitly from 
the beginning). Rather, the reflective architecture provides a 
method of making some aspects of the computation explicit, 
right in the midst of a computation, even if they were implicit 
a moment earlier. It provides a mechanism, in other words, of 
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reaching up and “pulling information out of the sky,” when un-
expected circumstances warrant it, without having to worry 
about it otherwise.

The overall claim is that reflection is simple to build on a se-
mantically sound base, where “semantically sound” means more 
than that the semantics be carefully formulated. Rather, I 
assume throughout that computational structures have a se-
mantic significance that transcends their behavioral import—
or, to put this another way, that programs and computational 
structures are about something, over and above the effects they 
have on the systems they inhabit. Lisp’s nil, for example, not 
only evaluates to itself forever, but also (and somewhat inde-
pendently) stands for Falsehood. A reconstruction of Lisp se-
mantics, therefore, must deal explicitly with both declarative 
and procedural aspects of the overall significance of computa-
tional structures. This distinction is different from (though I 
will contrast it with) the distinction between operational and 
denotational semantics. It is a reconstruction that has been 
developed within a view that programming languages are 
properly to be understood in the same theoretical terms used 
to analyze not only other computer languages, but even natu-
ral languages.

This strategy forces us to distinguish between a structure’s 
value and what it returns, and to discriminate entities, like 
numerals and numbers, that are isomorphic but not identical 
(both instances of the general intellectual hygiene of avoid-
ing use/mention errors). Lisp’s basic notion of evaluation, I 
will argue, is confused in this regard, and should be replaced 
with independent notions of designation and simplification. 
The result is illustrated in a semantically rationalized dialect, 
called 2Lisp, based on a simplifying (designation-preserving) 
term-reducing processor. The point of defining 2Lisp is that 
the reflective 3Lisp can be very simply defined on top of it, 
whereas defining a reflective version of a non-rationalized 
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dialect would be more complicated and more difficult to 
understand.

The strategy of presenting a general architecture by devel-
oping a concrete instance of it was selected on the grounds 
that a genuine theory of reflection (perhaps analogous to the 
theory of recursion) would be difficult to motivate or defend 
without taking this first, more pragmatic, step. In §10, however, 
we will sketch a general “recipe” for adding reflective capabili-
ties to any serial language; 3Lisp is the result of applying this 
conversion process to the non-reflective 2Lisp.

It is sometimes said that there are only a few constructs 
from which programming languages are assembled, includ-
ing for example predicates, terms, functions, composition, 
recursion, abstraction, a branching selector, and quantifica-
tion. Though different from these notions (and not defin-
able in terms of them), reflection is perhaps best viewed as a 
proposed addition to that family. Given this view, it is helpful 
to understand reflection by comparing it, in particular, with 
recursion—a construct with which it shares many features. 
Specifically, recursion can seem viciously circular to the un-
initiated, and can lead to confused implementations if poorly 
understood. The mathematical theory of recursion, however, 
underwrites our ability to use recursion in programming lan-
guages without doubting its fundamental soundness (in fact, 
for many programmers, without understanding much about 
the formal theory at all). Reflective systems, similarly, initially 
seem viciously circular (or at least infinite), and are difficult 
to implement without an adequate understanding. The intent 
of this paper, however, is to argue that reflection is in fact as 
well-tamed a concept as recursion, and potentially as efficient 
to use. The long-range goal is not to force programmers to 
understand the intricacies of designing a reflective dialect, but 
rather to enable them to use reflection and recursion with 
equal abandon.
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	 2	 Motivating Intuitions
Before taking up technical details, it will help to layout some 
motivations and assumptions. First, by ‘reflection’ in its most 
general sense, I mean the ability of an agent to reason not 
only introspectively, about its self and internal thought pro-
cesses, but also externally, about its behavior and situation in 
the world. Ordinary reasoning is external in a simple sense; 
the point of reflection is to give an agent a more sophisticated 
stance from which to consider its own presence in that em-
bedding world. There is a growing consensus1 that reflective 
abilities underlie much of the plasticity with which we deal 
with the world, both in language (such as when one says 
Did you understand what I meant?) and in thought (such as 
when one wonders how to deliver bad news compassionately). 
Common sense suggests that reflection enables us to master 
new skills, cope with incomplete knowledge, define terms, ex-
amine assumptions, review and distill our experiences, learn 
from unexpected situations, plan, check for consistency, and 
recover from mistakes.

In spite of working with reflection in formal languages, 
most of the driving intuitions about reflection are grounded 
in human rationality and language. Steps towards reflection, 
however, can also be found in much of current computational 
practice. Debugging systems, trace packages, dynamic code 
optimizers, runtime compilers, macros, metacircular inter-
preters, error handlers, type declarations, escape operators, 
comments, and a variety of other programming constructs 
involve, in one way or another, structures that refer to or deal 
with other parts of a computational system. These practices 
suggest. as a first step towards a more general theory, defin-
ing a limited and rather introspective notion of procedural 
reflection: self-referential behavior in procedural languages, in 
which expressions are primarily used instructionally, to engen-

1. See Doyle (1980), Weyrauch (1980), Genesereth & Lenat (1980), and 
Batali (1983).
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der behavior, rather than assertionally, to make claims. It is the 
hope that the lessons learned in this smaller task will serve 
well in the larger account.

We mentioned at the outset that the general task, in defin-
ing a reflective system, is to embed a theory of the system in the 
system in such a way as to support smooth shifting between 
reasoning directly about the world and reasoning about that 
reasoning. Because we are talking of reasoning, not merely of 
language, we added an additional requirement on this embed-
ded theory, beyond its being descriptive and true: it must also 
be what we will call causally connected, so that accounts of 
objects and events are tied directly to those objects and events. 
The causal relationship, furthermore, must go both ways: from 
event to description, and from description back to event. (It 
is if we were creating a magic kingdom, where from a cake 
you could automatically get a recipe, and from a recipe auto-
matically get a cake.) In mathematical cases of self-reference, 
including both self-referential statements, and models of 
syntax and proof theory, there is of course no causation at all, 
since there is no temporality or behavior (mathematical sys-
tems don’t run). Causation, however, is certainly part of any 
reflective agent. Suppose, for example, that you capsize while 
canoeing through difficult rapids, and swim to shore to fig-
ure out what you did wrong. You need a description of what 
you were doing at the moment the mishap occurred; merely 
having a name for yourself, or even a general description of 
yourself, would be useless. Also, your thinking must be able 
to have some effect; no good will come from your merely con-
templating a wonderful theory of an improved you. As well 
as stepping back and being able to think about your behav-
ior, in other words, you must also be able to take a revised 
theory and “dive back in under it,” adjusting your behavior so 
as to satisfy the new account. And finally, we mentioned that 
when you take the step backwards, to reflect, you need a place 
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to stand with just the right combination of connection and 
detachment.

Computational reflective systems, similarly, must provide 
both directions of causal connection, and an appropriate van-
tage point. Consider, for example, a debugging system that 
accesses stack frames and other implementation-dependent 
representations of processor state, in order to give the user an 
account of what a program is up to in the midst of a computa-
tion. First, stack-frames and implementation codes really are 
just descriptions, in a rather inelegant language, of the state of 
the process they describe. Like any description, they make ex-
plicit some of what was implicit in the process itself (this is one 
reason they are useful in debugging). Furthermore, because of 
the nature of implementation, they are always available, and 
always true. They have these properties because they play a 
causal role in the very existence of the process they implement, 
and therefore automatically solve the “event-to-description” 
direction of causal connection. Second, debugging systems 
must solve the “description-to-reality” problem, by providing 
a way of making revised descriptions of the process true of 
that process. They carefully provide facilities for altering the 
underlying state, based on the user’s description of what that 
state should be. Without this direction of causal connection, 
the debugging system, like an abstract model, could have no 
effect on the process it was examining. And finally, program-
mers who write debugging systems wrestle with the problem 
of providing a proper vantage point. In this case, practice has 
been particularly atheoretical; it is typical to arrange, very 
cautiously, for the debugger to tiptoe around its own stack 
frames, in order to avoid variable clashes and other unwanted 
interactions.

As we will see in developing 3Lisp, all of these concerns can 
be dealt with in a reflective language in ways that are both 
simple and implementation-independent. The procedural 
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code in the metacircular processor serves as the “theory” dis-
cussed above; the causal connection is provided by a mecha-
nism whereby procedures at one level in the reflective tower 
are run in the process one level above (a clean way, essentially, 
of enabling a program to define subroutines to be run in its 
own implementation). In one sense it is all straightforward; 
the subtlety of 3Lisp has to do not so much with the power 
of such a mechanism, which is evident, but with how such 
power can be finitely provided—a question we will examine 
in section 9.

Some final assumptions. I assume a simple serial model of 
computation, illustrated in figure 1, in which a computational 
process as a whole is divided into an internal assemblage of 
program and data structures collectively called the structural 

field, coupled with an internal process that examines and ma-
nipulates these structures. 
In computer science this 
inner process (or ‘homun-
culus’) is typically called 
the interpreter; in order 
to avoid confusion with 
semantic notions of inter-
pretation, I will call it the 
processor. While models 
of reflection for concur-
rent systems could un-

doubtedly be formulated, I claim here only that our particular 
architecture is general for calculi of this serial (i.e., single pro-
cessor) sort.

I will use the term structure for elements of the structural 
field, all of which are inside the machine, never for abstract 
mathematical or other “external” entities, such as numbers, 
functions, or radios. (Although this terminology may be con-
fusing for semanticists who think of a “structure” as a model, 

	 Figure 1 — A Serial Model of Computation
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I want to avoid calling them expressions, since the latter term 
connotes linguistic or notational entities. The aim is for a con-
cept covering both data structures and internal representa-

tions of programs, 
with which to cat-
egorize what we 
would in ordinary 
English call the 

structure of the overall process or agent.) Consequently, I call 
metastructural any structure that designates another struc-
ture, reserving metasyntactic for expressions designating lin-
guistic entities or expressions.2 Given our interest in internal 
self-reference, it is clear that both structural field and proces-
sor, as well as numbers and functions and the like, must be 
part of the semantic domain. Note that metastructural calculi 
must be distinguished from those that are higher-order, in 
which terms and arguments may designate functions of any 
degree (2Lisp and 3Lisp will have both properties).3

	 3	 A Framework for Computational Semantics
We turn, then, to questions of semantics. In the simplest case, 
semantics is taken to involve a mapping, possibly contextually 
relativized, from a syntactic to semantic domain, as shown in 

 
Figure 2 — A Simple Semantic Interpretation Function

2. In the dialects we consider, the metastructural capability must be 
provided by primitive quotation mechanisms, as opposed simply to be-
ing able to model or designate syntax—something virtually any calcu-
lus can do, using for example Gödel numbering—for reasons of causal 
connection.
3. Most programming languages, such as Fortran and Algol 60, are nei-
ther higher-order nor metastructural; the λ-calculus is the first but not 
the second, whereas Lisp 1.5 is the second but not the first (dynamic 
scoping is a contextual protocol that, coupled with the meta-structural 
facilities, allows Lisp 1.5 partially to compensate for the fact that it is 
only first-order). At least some incarnations of Scheme, on the other 
hand, are both (although Scheme’s metastructural powers are limited). 
As will emerge, 2Lisp and 3Lisp are very definitely both metastructural 
and higher-order.
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figure 2. The mapping (φ) is typically called an interpretation 
function (to be distinguished, as noted above, from the stan-
dard computer science notion of an interpreter). It is usually 
specified inductively, with respect to the compositional struc-
ture of the elements of the syntactic domain, which is typi-
cally a set of syntactic or linguistic sorts of entities. Semantic 
domains may be of any type whatsoever, including a domain 
of behavior; in reflective systems it will often include the syn-
tactic domain as a proper part. We will use a variety of differ-
ent terms for different kinds of semantic relationship; in the 
general case, we will call s a symbol or sign, and say that s signifies 
d, or conversely that d is the significance or interpretation of s.

In a computational setting, there are several different se-
mantic relationships—not different ways of characterizing 
the same relationship (as operational and denotational se-
mantical accounts are sometimes taken to be), but genuinely 
distinct relationships. These different relationships make for a 
more complex semantic framework, as do ambiguities in the 
use of words like ‘program.’ In many settings, such as in purely 
extensional functional programming languages, such distinc-
tions are inconsequential. But when we turn to reflection, self-
reference, and metastructural processors, these otherwise mi-
nor distinctions play a much more important role. Also, since 
the semantical theory we adopt will be at least partially em-
bedded within 3Lisp, the analysis will affect the formal design. 
Our approach, therefore, will be to start with basic and simple 
intuitions, and to identify a finer-grained set of distinctions 
than are usually employed. We will consider very briefly the 
issue of how current programming language semantics would 
be reconstructed in these terms, but the complexities involved 
in answering that question adequately would take us beyond 
the scope of the present paper.

At the outset, we distinguish three things: (i) the objects 
and events in the world in which a computational process 
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is embedded, including both real-world objects such as cars 
and caviar, and set-theoretic abstractions such as numbers 
and functions (i.e., we adopt a kind of pan-Platonic idealism 
about mathematics); (ii) the internal elements, structures, or 
processes inside the computer, including data structures, pro-
gram representations, execution sequences and so forth (these 
are all formal objects, in the sense that computation is formal 
symbol manipulation); and (iii) notational or communica-
tional expressions, in some externally observable and consen-
sually established medium of interaction, such as strings of 
characters, streams of words, or sequences of display images 
on a computer terminal. The last set are the constituents of 
the communication one has with the computational process; 
the middle are the ingredients of the process with which one 
interacts; and the first (at least presumptively) are the ele-
ments of the world about which that communication is held. 
In the human case, the three domains would correspond, re-
spectively, to world, mind, and language.

It is a truism that the third domain of objects—communi-
cation elements—are semantic. We claim, however, that the 
middle are semantic as well (i.e. that structures are bearers of 
meaning, information, or whatever). Distinguishing between 
the semantics of communicative expressions and the seman-
tics of internal structures will be one of the main features of 
the framework we adopt. It should be noted, however, that in 
spite of our endorsing the reality of internal structures, and 
the reality of the embedding world, it is nonetheless true that 
the only things that happen with computers (at least the only 
thing we will consider, since we ignore sensors and manipu-
lators) are communicative interactions. If, for example, I ask 
my Lisp to calculate the square root of 2, what I do is to type 
some expression like (sqrt 2.0) at it, and then receive back 
some other expression, probably quite like 1.414, by way of 
response. The interaction is carried out entirely in terms of ex-
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pressions; no structures, numbers, or functions are part of the 
interactional event. The participation or relevance of any of 
these more abstract objects, therefore, must be inferred from, 
and mediated through, the communicative act.

We will begin to analyze this complex of relationships using 
the terminology suggested in figure 3. By θ, very simply, we re-
fer to the relationship between external notational expressions 
and internal structures; by ψ, to the processes and behaviors 
those structural field elements engender (thus ψ is inherently 
temporal); and by φ to [the relationship to] the entities in the 
world that they designate. The relations φ and ψ are named, 
for mnemonic convenience, by analogy with philosophy and 
psychology, respectively, since a study of φ is a study of the 

relationship between struc-
tures and the world, whereas 
a study of ψ is a study of the 
relationships among symbols, 
all of which, in contrast, are 

“within the head” (of person or 
machine).

Computation is inherently 
temporal; our semantic analy-
sis, therefore, will have to deal 
explicitly with relationships 
across the passage of time. In 
figure 4, therefore, we have 
unfolded the diagram of fig-
ure 3 across a unit of time, so 
as to get at a full configuration 
of these relationships. The 

expressions nl and n2 are intended to be linguistic or com-
municative entities, as described above; sl and s2 are internal 
structures over which internal processing is defined. The rela-
tionship θ, which we will call internalization relates these two 

	 Figure 3 —	Semantic Relations in a 
		 Computational Process
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kinds of object, as appropriate given the device or process in 
question (we will say, in addition, that nl notates sl). For ex-
ample, in first order logic nl and n2 would be expressions, per-

haps written with letters, spaces, and ‘∃’ signs; sl and s2, to the 
extent they can even be said to exist, would be something like 
abstract derivation tree types of the corresponding first-order 
formulae. In Lisp, as we will see, nl and n2 would be the input 
and output expressions, written with letters and parentheses, 
or perhaps with boxes and arrows; sl and s2 would be the cons-
cells in the s-expression heap.

In contrast, dl and d2 are elements or fragments of the em-
bedding world, and φ is the relationship that internal struc-
tures bear to them. φ, in other words, is the interpretation 
function that makes explicit what we will call the designation 

of internal structures (not the designation of linguistic expres-
sions or terms, which would be described by θ ∘ φ). The rela-
tionship between my mental token for T. S. Eliot, for example, 
and the poet himself, would be formulated as part of φ, where-
as the relationship between the public name ‘T. S. Eliot’ and 

Figure 4 — A Framework for Computational Semantics
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the poet would be expressed as φ(θ(“t.s.eliot”)) = T. S. Eliot. 
Similarly, φ would relate an internal “numeral” structure (say, 
the numeral 3) to the corresponding number. As mentioned 
at the outset, our focus on φ is evidence of our permeating se-
mantical assumption that all structures have designations—or, 
to put it another way, that all structures are symbols.4

The ψ relation, in contrast to θ and φ, always (and necessar-
ily, since it doesn’t have access to anything else) relates some 
internal structures to others, or at least to behaviors over them. 
To the extent that it would make sense to talk of a ψ in logic, 
it would be approximately the formally computed derivability 
relationship (⊢); in natural deduction or resolution schemes, 
ψ would be a subset of the derivability relationship, picking 
out the particular inference procedures those regimens adopt. 
In a computational setting, however, ψ would be the function 
computed by the processor (i.e., ψ is evaluation in Lisp).

The relationships θ, ψ, and φ have different relative impor-
tance in different linguistic disciplines, and different relation-
ships among them have been given different names. For ex-
ample, θ is usually ignored in logic, and there is little tendency 
to view the study of ψ, called proof theory, as semantical, al-
though it is always related to semantics, as in proving sound-
ness and completeness (which, incidentally, can be expressed 
as the equation ψ(s1,s2) ≡ [d1 ⊂ d2], if one takes ψ to be a rela-
tion, and φ to be an inverse satisfaction relationship between 

4. For what we might call declarative languages, there is a natural account 
of the relationship between linguistic expressions and in-the-world des-
ignations that need not make crucial reference to issues of processing 
(to which we will turn in a moment). It is for such languages, in par-
ticular, that the composition φ ∘ θ, which we might call it φ́ , would be 
formulated. And this, for obvious reasons, is what is typically studied 
in mathematical model theory and logic, since those fields do not deal 
in any crucial way with the active use of the languages they study. Thus, 
for example, φ́  in logic would be the interpretation function of standard 
model theory. In what we will call computational languages, on the other 
hand, questions of processing do arise.
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sentences and possible worlds that satisfy them). In addition, 
there are a variety of “independence” claims that have arisen 
in different fields. That ψ does not uniquely determine φ, for 
example, is the “psychology narrowly construed” and concomi-
tant methodological solipsism of Putnam, Fodor, and others 
(Fodor 1980). That θ is usually specifiable compositionally and 
independently of ψ or φ is essentially a statement of the auton-
omy thesis for language. Similarly, when θ cannot be specified 
independently of ψ, computer science will say that a program-
ming language “cannot be parsed except at runtime” (teco and 
the first versions of Smalltalk were of this character).

A thorough analysis of these semantic relationships, how-
ever, and of the relationships among them, is the subject of a 
different paper. For present purposes we need not take a stand 
on which of θ, ψ, or φ has a prior claim on being “semantics,” 
but we do need a little terminology to make sense of it all. For 
discussion, therefore, we will refer to the “φ” of a structure as 
its declarative import, and to its “ψ” as its procedural conse-

quence. It is also convenient to identify some of the situations 
when two of the six entities (nl, n2, sl, s2, dl and d2) are identical. 
In particular, we will say that sl is self-referential if sl = dl, that ψ 
de-references sl if s2 = dl, and that ψ is designation-preserving (at 
sl) when dl = d2 (as it always is, for example, in the λ-calculus, 
where ψ—α and β-reduction—do not alter the interpretation 
in the standard model).

It is natural to ask what a program is, what programming 
language semantics gives an account of, and how (this is a re-
lated question) φ and ψ relate in the programming language 
case. An adequate answer to this, however, introduces a maze 
of complexity that will be considered in future work. To ap-
preciate some of the difficulties, note that there are two differ-
ent ways in which we can conceive of a program, suggesting 
different semantical analyses. On the one hand, a program 
can be viewed as a linguistic object that describes or signifies 
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a computational process consisting of the data structures and 
activities that result from (or arise during) its execution. In 
this sense a program is primarily a communicative entity, not 
so much playing a role within a computational process as ex-
isting outside the process and representing it. Putting aside for 
a moment the question of what it is meant to communicate to, 
we would simply say that a program is in the domain of θ, and, 
roughly, that φ ∘ θ of such an expression would be the compu-
tation described. The same characterization would, of course, 
apply to a specification; indeed, the only salient difference 
might be that a specification would [allow] using non-effec-
tive concepts in describing behavior. One would expect speci-
fications to be stated in a declarative language (in the sense 
defined in footnote 4), since specifications aren’t themselves to 
be executed or run, even though they speak about behaviors 
or computations. Thus, for program or specification b describ-
ing computational process c, we would have (for the relevant 
language) something like φ(θ(b))=c. If b were a program, there 
would be an additional constraint that the program somehow 
play a causal role in engendering the computational process c 
that it is taken to describe.

There is, however, an alternative conception, that places 
the program inside the machine as a causal participant in the 
behavior that results. This view is closer to the one implicitly 
adopted in figure 1, and it is closer (we claim) to the way in 
which a Lisp program must be semantically analyzed if we are 
to understand Lisp’s emergent reflective properties. In some 
ways this different view has a von Neumann character, in the 
sense of equating program and data. On this view, the more 
appropriate equation would seem to be ψ(θ(b))=c, since one 
would expect the processing of the program to yield the ap-
propriate behavior. One would seem to have to reconcile this 
equation with that in the previous paragraph, something it is 
not clear that it is possible to do.
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Thus this will require further work. What we can say here 
is that programming language semantics seems to focus on 
what, in our terminology, would be an amalgam of ψ and φ. 
For our purposes we need only note that we will have to keep 
ψ and φ strictly separate, while recognizing (because of context 
relativity and non-local effects) that the two parts cannot be 
told independently. Formally, one needs to specify a general 

significance function Σ, which recursively specifies ψ and φ 
together. In particular, given any structure s1, and any state of 
the processor and the rest of the field (encoded, say, in an en-
vironment, continuation, and perhaps a store), Σ will specify 
the structure, configuration, and state that would result (i.e., 
it will specify the use of s1), and also the relationship to the 
world that s1 signifies. For example, given a Lisp structure of 
the form (+ 1 (prog (setq a 2) a)), Σ would specify that the 
whole structure designated the number three, that it would 
return the numeral 3, and that the machine would be left in a 
state in which the binding of the variable a was changed to the 
(structural) numeral 2.

Before leaving semantics completely, it is instructive to ap-
ply our various distinctions to traditional Lisp. We said above 
that all interaction with computational processes is mediated 
by communication; this can be stated in the present terminol-
ogy by noting that θ and θ-1 (we will call the latter external-

ization) are a part of any interaction. Thus Lisp’s “read-eval-
print” loop is mirrored in this analysis as an iterated version of 
θ-1 ∘ ψ ∘ θ (i.e., if n1 is an expression that you type as input to 
a Lisp system, returning n2 as output, then n2 = θ-1(ψ(θ(n1))). 
The Lisp structural field, as it happens, has an extremely sim-
ple compositional structure, based on a binary directed graph 
of atomic elements called cons-cells, extended with atoms, nu-
merals, and so forth. The linguistic or communicative expres-
sions that we use to represent Lisp programs—the formal 
language objects that we edit with our editors and print in 
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books and on terminal screens—is a separate lexical (or some-
times graphical) object with its own syntax (of parentheses 
and identifiers in the lexical case; of boxes and arrows in the 
graphical).

There is in Lisp is a relatively close correspondence between 
expressions and structures; it is one-to-one in the graphical 
case, but the standard lexical notation is both ambiguous 
(because of shared tails) and incomplete (because of its in-
ability to represent cyclical structures). The correspondence 
need not have been as close as it is; the process of converting 
from external syntax or notation to internal structure could 
involve arbitrary amounts of computation, as evidenced by 
read macros and other syntactic or notational devices. But the 
important point is that it is structural field elements, not nota-
tions, over which most Lisp operations are defined. If you type 
«(rplaca '(a . b) 'c)»,† for example, the processor will change 
the CAR of a field structure; it will not back up your termi-
nal and erase the eleventh character of your input expression. 
Similarly, Lisp atoms are field elements, not to be confused 
with their lexical representations (called “p-names”). Again, 
quoted forms such as (quote abc) designate structural field el-
ements, not input strings. The form (quote …), in other words, 
is a structural quotation operator; notational quotation is dif-
ferent, usually notated with string quotes (as in «"abc").5

†As noted in «…where?…», French quotation marks (‘«’ and ‘»’) are 
used throughout to quote expressions. Internal structures are not quoted. 
(To put it pedantically: when, in English language text, reference needs 
to be made to an internal 2/3Lisp structure, that is done by including, as 
part of the English, without additional quotation marks, the 2/3Lisp ex-
pression that notatates the structure to which reference is being made.)
5. The string «(quote abc)» notates a structure that designates another 
structure that in turn could be notated with the string «abc». The string 
«"abc”», on the other hand, notates a structure that designates the string 
«abc» directly.
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	 4	 Evaluation Considered Harmful
The claim that all three relationships (θ, φ, and ψ) figure 
crucially in an account of Lisp is not a formal one. It makes 
an empirical claim on the minds of programmers, and can-
not be settled by pointing to any current theories or imple-

mentations. Nonetheless, it is 
unarguable that Lisp’s numerals 
designate numbers, and that the 
atoms t and nil (at least in pred-
icative contexts) designate truth 
and falsity—no one could learn 
Lisp without learning this fact. 
Similarly, (eq 'a 'b) designates fal-
sity. Furthermore, the structure 
(car '(a . b)) designates the atom a; 
this is manifested by the fact that 
people, in describing Lisp, use ex-
pressions such as “if the car of the 
list is lambda, then it’s a procedure,” 
where the term “the car of the list” 
is used as a referring expression of 
English, not as a quoted fragment 
of Lisp (and English, or natural 
language generally, is by definition 
the locus of what designation is). 
(quote a), or 'a, is another way of 

designating the atom a; that’s just what quotation is. Finally, 
we can take atoms like car and + to designate the obvious cor-
responding functions.

What, then, is the relationship between the declarative im-
port (φ) of Lisp structures and their procedural consequence 
(ψ)? Inspection of the data given in figure 5 shows that Lisp 
obeys the following constraint (more must be said about ψ in 

Figure 5 — lisp Evaluation vs. 
Designation; Some Examples
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those cases where φ(ψ(s)) = φ(s), since the identity function 
would satisfy this equation):

	 ∀s ∊S [ if [ φ(s) ∊ S ]	 then	[ ψ(s) = φ(s) ]	 [1] 
		  else	 [ φ(ψ(s)) = φ(s) ]]

All Lisps, including Scheme (Steele and Sussman 1978a), in 
other words, dereference any structure whose designation is 
another structure, but will return a co-designating structure 

for any whose des-
ignation is outside 
of the machine 
(figure 6). Where-
as evaluation is 
often thought to 
correspond to the 
semantic inter-
pretation function 

φ, in other words, 
and therefore to 
have type expres-
sions → values, 
evaluation in Lisp 
is often a desig-
nation-preserving 
operation. In fact, 
no computer can 
evaluate a struc-
ture like (+ 2 3), if 

that means “returning what is designated,” at least on the Pla-
tonist understanding of number I am working with, any more 
than it can evaluate the name Hesperus or peanut butter.

Obeying equation [1] is highly anomalous. It means that 
even if in a case in which one knows what y is, and knows that 
x evaluates to y, one still does not know what x designates. It 

	 Figure 6	 —	 lisp’s “Dereference 
			   If You Can” Evaluation Protocol
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licenses such semantic anomalies as (+ 1 '2), which will evalu-
ate to 3 in all extant Lisps. Informally, we will say that Lisp’s 
evaluator crosses semantical levels, and therefore obscures 
the difference between simplification and designation. Given 
that processors cannot always de-reference (since by assump-
tion the co-domain is limited to the structural field), it seems 
that they should always simplify, and therefore obey the fol-
lowing constraint (diagrammed in figure 7):

	 ∀s ∊ S [[ φ(ψ(s)) = φ(s) ] ⋀ [normal-form(ψ(s) ]]	 [2]

The content of this equation clearly depends entirely on the 
content of the predicate normal-form (if normal-form 
were λx.true, then ψ could be the identity function). In the 

λ-calculus, the notion of normal-
formedness is defined in terms of 
the processing protocols (α- and 
β-reduction), but we cannot use 
any such definition here, on threat 
of circularity. Instead, we say that 
a structure is in normal form if 
and only if it satisfies the following 
three independent conditions:

1.	 It is context-independent, in the sense of having the 
same declarative (φ) and procedural (ψ) import inde-
pendent of the context of use;

2.	 It is side-effect-free, implying that the processing of 
the structure will have no effect on the structural field, 
processor state, or external world; and

3.	 It is stable, meaning that it must simplify to itself in all 
contexts, so that ψ will be idempotent.

We would then have to prove, given a language specification, 
that equation [2] is satisfied.

Two notes. First, I won’t use the terms ‘evaluate’ or ‘value’ for 

Figure 7 — A Normalisation Protocol
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expressions or structures, referring instead to normalisation 

for ψ, and designation for φ. I will sometimes call the result 
of normalising a structure its result or what it returns. There is 
also a problem with the terms ‘apply’ and ‘application’; in stan-
dard Lisps, apply is a function from structures and arguments 
onto values, but its us, like ‘evaluate,’ is rife with use/mention 
confusions. As illustrated in figure 8, we will use ‘apply’ for 
mathematical function application—i.e., to refer to a relation-
ship between a function, some arguments, and the value of the 
function applied to those arguments—and the term ‘reduce’ 

to relate the three 
structures that des-
ignate functions, 
arguments, and 
values, respectively. 
Note that I still use 
the term ‘value’ (as 
for example in the 
previous sentence), 
but only to name 
that entity onto 
which a mathemat-
ical function maps 
its arguments.

Second, the idea of a normalising processor depends on 
the idea that symbolic structures have a semantic significance 
prior to, and independent of, the way in which they are treated 
by the processor. Without this assumption we could not even 
ask about the semantic character of the Lisp (or any other) 
processor, let alone suggest a cleaner version. Without such 
an assumption, more generally, one cannot say that a given 
processor is correct, or coherent, or incoherent; it is merely 
what it is. Given one account of what it does (like an imple-
mentation), one can compare that to another account (like a 

Figure 8 — Application vs. Reduction
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specification). One could also prove that it has certain prop-
erties, such as that it always terminates, or uses resources in 
certain ways. One could prove properties of programs written 
in the language it runs (from a specification of the algol pro-

cessor, for example, one might prove that a particular program 
sorted its input). However, none of these questions deal with 
the fundamental question about the semantical nature of the 
processor itself. We are not looking for a way in which to say 

that the semantics of (car '(a . b)) is a because that is how the 
language is defined; rather, we want to say that the language 
was defined that way because a is what (car '(a . b)) designates. 
Semantics, in other words, can be a tool with which to judge 
systems, not merely a method of describing them.

Figure 9 — The Category Structure of Lisp 1.5

Figure 10 — The Category Structure of 2Lisp
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	 5	 2·Lisp: A Semantically Rationalized Dialect
Since we have torn apart the notion of evaluation into two 
constituent notions, we need to start at the beginning and 
build Lisp over again. 2Lisp is a proposed result. Some sum-
mary comments can be made. First, I have reconstructed what 
I call the category structure of Lisp, requiring that the catego-
ries into which Lisp structures are sorted, for various purpos-
es, “line up” (giving the dialect a property I will call category 

alignment). More specifically, Lisp expressions are sorted 

An Overview of 2Lisp
We begin with the objects. Ignoring input/output categories such as 
characters, strings, and streams, there are seven 2Lisp structure types, 
as illustrated in the table below. The numerals (notated as usual) and 
the two Boolean constants (notated «$t» and «$f») are unique (i.e., ca-
nonical), atomic, normal-form designators of numbers and truth-values, 
respectively. Rails (notated «[a1 a2 … ak]») designate sequences; they re-
semble standard Lisp lists, but we distinguish them from pairs in order 
to avoid category confusion, and give them their own name, in order to 

avoid confusion with sequences (or vectors or tuples), which are nor-
mally taken to be Platonic ideals. All atoms are used as variables (i.e., as 
context-dependent names); as a consequence, no atom is normal-form, 
and no atom will ever be returned as the result of processing a struc-
ture (although a designator of it may be). Pairs (sometimes also called 
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into categories by notation, by structure (atoms, cons pairs, 
numerals), by procedural treatment (the “dispatch” inside 
the traditional eval), and by declarative semantics (the type 
of object designated). Traditionally, as illustrated in figure 9, 
these categories are not aligned; lists, a derived structure type, 
include some of the pairs and one atom (nil); the procedural 
regimen treats some pairs (those with lambda in the car) in 
one way, most atoms (except t and nil) in another, and so forth. 
In 2Lisp we require the notational, structural, procedural, and 

redexes, and notated «(a1 . a2)») designate the value of the function des-
ignated by the CAR applied to the arguments designated by the CDR. By 
taking notational form «(a1 a2 … ak)» to abbreviate «(a1 . [a2 a3 … ak])» 
instead of Lisp’s traditional «(a1 . (a2 . … (ak . nil)…)))», we preserve the 
standard look of Lisp programs, without sacrificing category alignment. 
(Note that in 2Lisp there is no distinguished atom nil, and «()» is a 
notational error—corresponding to no structural field element.) Clo-
sures (notated «{closure: … }») are normal-form function designators, 
but they are not canonical, since it is not generally decidable whether 
two structures designate the same function. Finally, handles are unique 
normal-form designators of all structures; they are notated with a lead-
ing single quote mark (thus «'a» notates the handle of the atom notated 
«a», and «'(a . b)» notates the handle of the pair notated «(a . b)», etc. 
Because designation and simplification are orthogonal, quotation is a 
structural primitive, not a special procedure (although quote is easy to 
define as a user function in 3Lisp).

We turn next to the functions (and use ‘⟹’ to mean “normalises to”). 
There are the usual arithmetic primitives (+, -, *, and /). Identity (signi-
fied with «=») is computable over the full semantic domain except func-
tions; thus (= 3 (+ 1 2)) ⟹ $t, but (= + (lambda [x] (+ x x))) will generate 
a processing error, even though it designates truth. The traditionally 
unmotivated difference between eq and equal turns out to be an ex-
pected difference in granularity between the identity of mathematical 
sequences and their syntactic designators; thus:
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An Overview of 2Lisp, cont’d… 

			   (=	 [1 2 3]	[1 2 3]) 	 ⟹	 $t 
			   (= '	[1 2 3]  '	[1 2 3])	 ⟹	 $f 
			   (=	 [1 2 3]  '	[1 2 3])	 ⟹	 $f

(In the last case one structure designates a sequence and one a rail.) 
1st and rest are the car/cdr analogues on sequences and rails; thus 
(1st [10 20 30]) ⟹ 10; and (rest [10 20 30]) ⟹ [20 30]. car and cdr 
are defined over pairs; thus (car '(a . b)) ⟹ 'a (because it designates a), 
and (cdr '(+ 1 2)) ⟹ '[1 2]. The pair constructor is called pcons (thus 
(pcons 'a 'b) ⟹ '(a . b)); the corresponding constructors for atoms, rails, 
and closures are acons, rcons, and ccons. There are 11 primitive char-
acteristic predicates: 7 for the internal structural types (atom, pair, rail, 
boolean, numeral, closure, and handle) and 4 for the external types 
(number, truth-value, sequence, and function). Thus:

			   (number 3)			   ⟹	 $t 
			   (numeral '3)			  ⟹	 $t 
			   (number '3)			  ⟹	 $f 
			   (function +)			  ⟹	 $t 
			   (function '+)		 ⟹	 $f

Procedurally intensional if and cond are defined as usual; block (as in 
Scheme) is like standard Lisp’s progn. body, pattern, and environment 
are the three selector functions on closures. Finally, functions are usual-
ly “defined” (i.e., conveniently designated in a contextually relative way) 
with structures of the form (lambda simple args body) (the term simple 

semantic categories to correspond one-to-one, as illustrated in 
figure 10 (this is a bit of an oversimplification, since atoms and 
pairs—representing arbitrary variables and arbitrary function 
application structures or redexes—can designate entities of 
any semantic type).

A summary of 2Lisp is given the sidebar (“An Overview 
of 2Lisp,” on the previous two pages and below†), but some 

† Labeled ‘figure 11’ in the POPL version.
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will be explained presently); thus (lambda simple [x] (+ x x)) normalises 
to a closure that designates a function that doubles numbers; ((lambda 
simple [x] (+ x x)) 4) ⟹ 8.

2Lisp is higher-order, and therefore lexically scoped, like the λ-cal-
culus and Scheme. However, as mentioned earlier and illustrated with 
the handles in the previous paragraph, it is also metastructural, provid-
ing an explicit ability to name internal structures. Two primitive pro-
cedures, called up and down (usually abbreviated «↑» and «↓», respec-
tively) help to mediate this metastructural hierarchy (there is otherwise 
no way to add or remove quotes—'2 will normalise to '2 forever, never 
to 2. Specifically, ↑STRUC designates the normal-form designator of the 
designation of STRUC; i.e., ↑STRUC designates what STRUC normalises to 
(therefore ↑(+ 2 3) ⟹ '5). Thus:

	   	(lambda simple [x] x)	 —	designates a function 
	  '	(lambda simple [x] x)	 —	designates a pair or redex 
	 ↑	(lambda simple [x] x) 	 —	designates a closure

(Note that «↑» is call-by-value but not declaratively extensional.) Simi-
larly, ↓STRUC designates the designation of the designation of STRUC, 
providing that the designation of STRUC is in normal-form (therefore 
↓'2 ⟹ 2). ↓↑STRUC is always equivalent to STRUC, in terms of both des-
ignation and result; so is ↑↓STRUC when it is defined. Thus if double is 
bound to (the result of normalising) (lambda [x] (+ x x)), then (body 
double) generates an error, since body is extensional and double desig-
nates a function, but (body ↑double) will designate the pair (+ x x).

comments can be made here. Like most mathematical and 
logical languages, 2Lisp is almost entirely declaratively exten-
sional. Thus (+ 1 2), an abbreviation for (+ . [1 2]), designates 
the value of the application of the function designated by the 
atom + to the sequence of numbers designated by the rail 
[1 2]. In other words, (+ 1 2) designates the number three, of 
which the numeral 3 is the normal-form designator; (+ 1 2) 
therefore normalises to the numeral 3, as expected. 2Lisp is 
also usually call-by-value (what we one can think of as “pro-
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cedurally extensional”), in the sense that procedures by and 
large normalise their arguments. Thus (+ 1 (block (print "hel-
lo") 2)) will normalise to 3, printing out «hello» in the process.

Many properties of Lisp that must normally be posited in 
an ad hoc way fall out directly from our analysis. For example, 
one must normally state explicitly that some atoms, such as t 
and nil and the numerals, are self-evaluating; in 2Lisp, the fact 
that the Boolean constants are self-normalising follows direct-
ly from the fact that they are normal-form designators. Simi-
larly, closures are a natural category, and distinguishable from 
the functions they designate (there is ambiguity, in Scheme, 
as to whether the value of + is a function or a closure). Finally, 
because of category alignment, if x designates a sequence of 
the first three numbers (i.e., it is bound to the rail [1 2 3]), 
then (+ . x) will designate the number six and normalise to the 
numeral 6; no metatheoretic machinery is needed for this “un-
currying” operation (in regular Lisp one must use (apply '+ x); 
in Scheme, (apply + x)).

There are numerous properties of 2Lisp that we will ignore 
in this paper. The dialect is defined (in Smith 1982) to include 
side-effects, intensional procedures (that do not normalise 
their arguments), and a variety of other sometimes-shunned 
properties, in part to show that our semantic reconstruction 
is compatible with the full gamut of features found in real 
programming languages. Recursion is defined with explicit 
fixed-point operators. 2Lisp is an eminently usable dialect (it 
subsumes Scheme but is more powerful, in part because of 
the metastructural access to closures), although it is ruthlessly 
semantically strict.

	 6	 Self-Reference in 2·Lisp
We turn now to matters of self-reference.

Traditional Lisps provide names (eval and apply) for the 
primitive processor procedures; the 2Lisp analogues are nor-
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malise and reduce. Ignoring for a moment context arguments 
such as environments. and continuations, (normalise '(+ 2 3)) 
designates the normal-form structure to which (+ 2 3) nor-
malises, and therefore returns the handle '5. Similarly:

(normalise '(car '(a. b)))			  ⟹	 ''a
(normalise (pcons '= '[2 3]))	 ⟹	 '$f

(reduce '1st '[10 20 30])			  ⟹	 '10

More generally, the basic idea is that φ(normalise) = ψ, to be 
contrasted with φ(↓), which is approximately φ, except that 
because ↓ is a partial function we have φ(↓ ∘ normalise) = φ. 
Given these equations, the behavior illustrated in the forego-
ing examples is forced by general semantical considerations.

In any computational formalism able to model its own 
syntax and structures,6 it is possible to construct what are 
commonly known as metacircular interpreters, which we call 
metacircular processors (or mcps)—“meta” because they oper-
ate on (and therefore terms within them designate) other for-
mal structures, and “circular” because they do not constitute a 
definition of the processor. They are circular for two reasons. 
First, they have to be run by that processor in order to yield 
any sort of behavior (since they are programs, not processors, 
strictly). Second, the behavior they would thereby engender 
can be known only if one knows beforehand what that proces-
sor does. (Standard techniques of fixed points, furthermore, 
are of no help in discharging this circularity, because this kind 

6. Virtually any language, of course, has the requisite power to do 
this kind of modeling. In a language with metastructural abilities, the 
metacircular processor can represent programs for the MCP as them-
selves—this is always done in Lisp MCPs—but we need not define 
that to be an essential property. The term ‘metacircular processor’ is by 
no means strictly defined, and there are various constraints that one 
might or might not put on it. My general approach has been to view 
as metacircular any non-causally connected model of a calculus within 
itself; thus the 3Lisp reflective processor is not meta-circular, because it 
does have the requisite causal connections, and is therefore an essential 
part of the 3Lisp architecture.
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of modeling is a kind of self-mention, whereas recursive defi-
nitions are more self-use.). Nonetheless, such processors are 
pedagogically illuminating, and play a critical role in the devel-
opment of procedural reflection.

The role of mcps is illustrated in figure 12, showing how, if 
we ever replace p in figure 1 with a process that results from p 
processing the metacircular processor mcp, it would still cor-
rectly engender the behavior of any overall program. Taking 

processes to be func-
tions from structures 
onto behavior, therefore 
(whatever behavior is—
functions from initial 
to final states, say), and 
calling the primitive 
processor p, we should 
be able to prove that 
p(mcp) ≈ p, where by ‘≈‘ 
we mean behaviorally 
equivalent in some ap-

propriate sense. The equivalence, of course, is a global equiva-
lence; by and large the primitive processor and the processor 
resulting from the explicit running of the mcp cannot be arbi-
trarily mixed. If a variable is bound by the underlying proces-
sor p, it will not be able to be looked up by the metacircular 
code, for example. Similarly, if the metacircular processor en-
counters a control-structure primitive, such as a throw or a 
quit, it will not cause the metacircular processor itself to exit 
prematurely, or to terminate. The point, rather, is that if an 
entire computation is run by the process that results from the 
explicit processing of the mcp by p, the results will be the same 
(modulo time) as if that entire computation had been carried 
out by p directly. mcps are not causally connected with the 
systems they model.

	 Figure 12 —	Metacircular Processors
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The reason that we cannot mix code for the underlying pro-
cessor and code for the mcp and the reason that we ignored 
context arguments in the definitions above both have to do 
with the state of the processor p. In very simple systems (un-
ordered rewrite rule systems, for example, and hardware archi-
tectures that put even the program counter into a memory lo-
cation), the processor has no internal state, in the sense that it 
is in an identical configuration at every “click point” during the 
running of a program (i.e., all information is recorded explic-
itly in the structural field). But in more complex circumstances, 
there is always a certain amount of state to the processor that 
affects its behavior with respect to any particular embedded 
fragment of code. In writing an mcp one must demonstrate, 
more or less explicitly, how the processor state affects the pro-
cessing of object-level structures. By “more or less explicitly” we 
mean that the designer of the mcp has options: the state can 
be represented in explicit structures that are passed around 
as arguments within the processor, or it can be absorbed into 
the state of the processor running the mcp. (I will say that 
a property or feature of an object language is absorbed in a 
metalanguage or theory just in case the metatheory uses the 
very same property to explain or describe the property of the 
object language. Thus conjunction is absorbed in standard 
model theories of first-order logics, because the semantics of 
p ∧ q is explained simply by conjoining the explanation of p 
and q—specifically, in such a formula as: “ ‘p ∧ q’ is true just in 
case ‘p’ is true and ‘q’ is true.”)

The state of a processor for a recursively embedded func-
tional language, of which Lisp is an example, is typically rep-
resented in an environment and a continuation, both in mcps 
and in the standard metatheoretic accounts. (Note that these 
are notions that arise in the theory of Lisp, not in Lisp itself; 
except in self-referential or self-modeling dialects, user pro-
grams don’t traffic in such entitles.) Most mcps make the 
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(define READ-NORMALISE-PRINT 
	 (lambda simple [env stream] 
		  (block (prompt&reply (normalise (prompt&read stream) env) stream) 
				     (read-normalise-print env stream))))

(define NORMALISE 
	 (lambda simple [struc env] 
		  (cond	[(normal struc) struc] 
				    [(atom struc) (binding struc env)] 
				    [(rail struc) (normalise-rail struc env)] 
				    [(pair struc) (reduce (car struc) (cdr struc) env)])))

(define REDUCE 
	 (lambda simple [proc args env] 
		  (let [[proc! (normalise proc env)]] 
			   (selectq (procedure-type proc!) 
				    [simple (let [[args! (normalise args env)]] 
								        (if (primitive proc!) 
									         (reduce-primitive-simple proc! args!) 
									         (expand-closure proc! args!)))] 
				    [intensional	(if (primitive proc!) 
									         (reduce-primitive-intensional proc! args env) 
									         (expand-closure proc! args))] 
				    [macro (normalise (expand-closure proc! args) env))]))))

(define NORMALISE-RAIL 
	 (lambda simple [rail env] 
		  (if	 (empty rail) 
			   (rcons) 
			   (prep	(normalise (1st rail) env) 
					     (normalise-rail (rest rail) env)))))

(define EXPAND-CLOSURE 
	 (lambda simple [proc! args!] 
		  (normalise	(body proc!) 
						      (bind (pattern proc!) args! (environment proc!)))))

Figure 13 — A non-continuation-passing 2Lisp mcp

environment explicit. The control part of the state, however, 
encoded in a continuation, must also be made explicit in order 
to explain non-standard control operations, but in many mcps 
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(such as in (McCarthy 1965) and Steele and Sussman’s mcp 
for Scheme (see for example Sussman and Steele 1978b)), it 
is absorbed. Two versions of the 2Lisp metacircular proces-
sor, one absorbing and one making explicit the continuation 
structure, are presented in figures 13 and 14. Note, however, 
that in both cases the underlying agency or anima is not rei-
fied; it remains entirely absorbed by the processor of the mcp. 
We have no mechanism to designate a process (as opposed to 
structures), and no method of obtaining causal access to an 
independent locus of active agency (the reason, of course, be-
ing that we have no theory of what a process is).

	 7	 Procedural Reflection and 3·Lisp
Given the metacircular processors defined above, 3Lisp can 
be non-effectively defined in a series of steps. First, imagine a 
dialect of 2Lisp, called 2Lisp/1, where user programs were not 
run directly by the primitive processor, but by that processor 
running a copy of an mcp. Next, imagine 2Lisp/2, in which 
the mcp in turn was not run by the primitive processor, but 
was run by the primitive processor running another copy of 
the mcp. Etc. 3Lisp is essentially 2Lisp/∞, except that the mcp 
is changed in a critical way in order to provide the proper con-
nection between levels. 3Lisp, in other words, is what I will 
call a reflective tower, defined as an infinite number of copies 
of an mcp-like program, run at the “top” by an (infinitely fleet) 
processor. The claim that 3Lisp is well-founded is the claim 
that the limit exists—that is, that:

We will look at the revised mcp presently, but first some gen-
eral properties of this tower architecture. A rough idea of 
the levels of processing is given in figure 15: at each level the 
processor code is processed by an active process that interacts 
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with it (locally and serially, as 
usual), but each processor is in 
turn composed of a structural 
field fragment in turn processed 
by a reflective processor on top 
of it. What I will show is that 
the implied infinite regress is not 
problematic, and that the archi-
tecture can be efficiently real-
ized, since only a finite amount 
of information is encoded in all 
but a finite number of the bot-
tom levels.

	 Figure 15	 —	 The 3Lisp Reflective Tower

(define READ-NORMALISE-PRINT 
	 (lambda simple [env stream] 
		  (normalise (prompt&read stream) env 
			   (lambda simple [result] 
				    (block (prompt&reply result stream) 
						      (read-normalise-print env stream))))))

(define NORMALISE 
	 (lambda simple [struc env cont] 
		  (cond	[(normal struc) (cont struc)] 
				    [(atom struc) (cont (binding struc env))] 
				    [(rail struc) (normalise-rail struc env cont)] 
				    [(pair struc) (reduce (car struc) (cdr struc) env cont)])))

(define REDUCE 
	 (lambda simple [proc args env cont] 
		  (normalise proc env 
			   (lambda simple [proc!] 
				    (selectq (procedure-type proc!) 
					     [simple (normalise args env 
								         (lambda simple [args!] 
									         (if (primitive proc!) 
										          (reduce-primitive-simple proc! args! cont) 
										          (expand-closure proc! args! cont))] 
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7. Curiously, there are also intuitions about contemplative thinking, 
where one is both detached and yet directly present, that fit more with 
this view.

					     [intensional	(if (primitive proc!) 
										          (reduce-primitive-int proc! args env cont) 
										          (expand-closure proc! args cont))] 
					     [macro (expand-closure proc! args 
								         (lambda simple [result] 
									          (normalise result env cont)))])))))

(define NORMALISE-RAIL 
	 (lambda simple [rail env cont] 
		  (if	 (empty rail) 
			   (cont (rcons)) 
			   (normalise (1st rail) env 
				    (lambda simple [first!] 
					     (normalise-rail (rest rail) env 
						      (lambda simple [rest!] 
							       (cont (prep first! rest!)))))))))

(define EXPAND-CLOSURE 
	 (lambda simple [proc! args! cont] 
		  (normalise (body proc!) 
					       (bind (pattern proc!) args! (environment proc!)) 
					       cont)))

Figure 14 — A continuation-passing 2Lisp mcp

There are two ways to think about reflection. On the one 
hand, one can think of there being a primitive and noticeable 
reflective act, which causes the processor to shift levels rather 
markedly (this is the explanation that best coheres with some 
of our pre-theoretic intuitions about reflective thinking, in the 
sense of contemplation). On the other hand, the explanation 
given in the previous paragraph leads one to think of an infi-
nite number of levels of reflective processors, each implement-
ing the one below.7 On such a view, it is not coherent either 
to ask about what level the tower is running at, or to ask how 

a43



4 · 36	 Indiscrete Affairs · I

Draft Version 0.81 — 2018 · Mar · 3

many reflective levels are running: in some sense they are all 
running at once. Exactly the same situation obtains when you 
use an editor implemented in apl. It is not as if the editor and 
the apl interpreter are both running together, either side-by-
side or independently; rather, the one, being interior to the 
other, supplies the anima or agency of the outer one. To put 
this another way, when you implement one process in another 
process, you might want to say that you have two different pro-
cesses, but you don’t have concurrency; it is more a part/whole 
kind of relation. It is just this sense in which the higher levels 
in our reflective hierarchy are always running: each of them is 

Programming in 3Lisp
For illustration, we will look at a handful of simple 3Lisp programs. 
The first merely calls the continuation with the numeral 3; thus it is 
semantically identical to the simple numeral:

(define THREE 
	 (lambda reflect [[] env cont] 
		  (cont '3)))

Thus (three) ⟹ 3; (+ 11 (three)) ⟹ 14. The next example is an intension-
al predicate, true if and only if its argument (which must be a variable) 
is bound in the current context:

(define BOUND 
	 (lambda reflect [[var] env cont] 
		  (if	 (bound-in-env var env) 
			   (cont '$t) 
		   	 (cont '$f))))

or equivalently

(define BOUND 
	 (lambda reflect [[var] env cont] 
		  (cont ↑(bound-in-env var env))))

Thus (let [[x 3]] (bound x)) ⟹ $t, whereas (bound x) ⟹ $f in the global 
context. The following quits the computation, by discarding the con-
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in some sense within the processor at the level below, so that 
it can thereby engender it. We will not take a principled view 
on which account—a single locus of agency stepping between 
levels, or an infinite hierarchy of simultaneous processors—is 
correct, since they turn out to be behaviorally equivalent. (The 
simultaneous infinite tower of levels is often the better way to 
understand processes, whereas the shifting-level viewpoint is 
sometimes the better way to understand programs.)

3Lisp, as we said, is an infinite reflective tower based on 
2Lisp. The code at each level is like the continuation-passing 
2Lisp mcp of figure 14, but extended to provide a mechanism 

tinuation and simply “returning”:

(define QUIT 
	 (lambda reflect [[] env cont] 
		  'quit!))

There are a variety of ways to implement a throw/catch pair; the fol-
lowing defines the version used in Scheme:

(define SCHEME-CATCH 
	 (lambda reflect [[tag body] catch-env catch-c0nt] 
		  (normalise	body 
						      (bind tag 
						       	   ↑(lambda reflect [[answer] throw-env throw-cont] 
								           (normalise answer throw-env catch-cont)) 
							         catch-env) 
						      catch-cont)))

For example:

(let [[x 1]] 
	 (+ 2 (scheme-catch punt 
							       (* 3 (/ 4 (if	(= x 1) 
											           (punt 15) 
											           (- x 1)))))))

would designate seventeen and return the numeral 17.

… cont’d
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In addition, the reflection mechanism is so powerful that many tra-
ditional primitives can be defined; lambda, if, and quote are all non-
primitive (user) definitions in 3Lisp, defined as follows:

(define LAMBDA 
	 (lambda reflect [[kind pattern bodyJ env cont] 
		  (cont (ccons kind ↑env pattern body))))

(define IF 
	 (lambda reflect [[premise then else] env cont] 
		  (normalise premise env 
			   (lambda simple [premise!] 
				    (normalise (ef ↓premise! then else) env cont)))))

(define QUOTE 
	 (lambda reflect [[argJ env contJ (cont ↑arg)))

Some comments. First, the definition of lambda just given is, of course, 
circular; a noncircular but effective version is given in Smith and des 
Rivières (1984); the one given above, if executed in 3Lisp, would leave 
the definition unchanged, except that it is an innocent lie: in real 3Lisp 
kind is a procedure that is called with the arguments and environment, 
allowing the definition of (lambda macro …), etc. ccons is a closure 
constructor that uses simple and reflect to tag the closures for recogni-

whereby the user’s program can gain access to fully-articulated 
descriptions of that program’s operations and structures (thus 
extended, and located in a reflective tower, we will call this 
code the 3Lisp reflective processor). One gains this access by 
using what are called reflective procedures—procedures that, 
when invoked, are run not at the level at which the invocation 
occurred, but one level higher, at the level of the reflective pro-
cessor running the program, given as arguments those struc-
tures being passed around in the reflective processor.

Reflective procedures are essentially analogues of subrou-
tines to be run “in the implementation,” except that they are 

Programming in 3Lisp, cont’d… 
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tion by the reflective processor described in section 6. ef is an exten-
sional conditional that normalises all of its arguments; the definition of 
if defines the standard intensional version that normalises only one of 
the second two, depending on the result of normalising the first. Finally, 
the definition of quote will yield (quote a) ⟹ 'a. 

Finally, we have a trivial break package, with env and cont bound in 
the break environment for the user to see, and return bound to a pro-
cedure that will normalise its argument and pass that out as the result 
of the call to break:

(define BREAK 
	 (lambda reflect [[argJ env contJ 
		  (block (print arg primary-stream) 
			   (read-normalise-print ">>" 
				    (bind*	['env ↑envJ 
						      ['cont ↑contJ 
						      ['return ↑(lambda reflect [[a2] e2 c2] 
										            (normalise a2 e2 cont))] 
						      env) 
				    primary-stream))))

If viewed as models of control constructs in a language being imple-
mented, these definitions will look innocuous; what is important to re-
member is that they work in the very language in which they are defined.

in the same dialect as that being implemented, and can use all 
the power of the implemented language in carrying out their 
function (e,g,, reflective procedures can themselves use reflec-
tive procedures, without limit). There is not a tower of differ-
ent languages—there is a single dialect (3Lisp) all the way up. 
Rather, there is a tower of processors, necessary because there 
is different processor state at each reflective level.

Some simple examples will illustrate. Reflective procedures 
are “defined” (in the sense we described earlier) using the form 
(lambda reflect args body) where args—typically the rail 
[args env cont]—is a pattern that should match a 3-element 
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designator of, respectively, the argument structure at the point 
of call, the environment, and the continuation. Some simple 
examples are given in the “Programming in 3Lisp” sidebar, on 
the previous several pages,† including a working definition of 
Scheme’s catch. Though simple, these definitions would be 
impossible in a traditional language, since they make crucial 
access to the full processor state at point of call. Note also 
that although throw and catch deal explicitly with continua-
tions, the code that uses them need know nothing about such 
subtleties. More complex routines, such as utilities to abort 
or redefine calls already in process, are almost as simple. In 
addition, the reflection mechanism is so powerful that many 
traditional primitives can be defined: lambda, if, and quote are 
all non-primitive (user) definitions in 3Lisp, again illustrated 
in the sidebar. There is also a simplistic break package, to il-
lustrate the use of the reflective machinery for debugging pur-
poses. It is noteworthy that no reflective procedures need be 
primitive; even lambda can be built up from scratch.

The importance of these examples stems from the fact that 
they are causally connected in the right way, and will therefore 
run in the system in which they defined, rather than being 
models of another system. And, since reflective procedures 
are fully integrated into the system design (their names are 
not treated as special keywords), they can be passed around 
in the normal higher-order way. There is also a sense in which 
3Lisp is simpler than 2Lisp, as well as being more powerful; 
there are fewer primitives, and 3Lisp provides much more 
compact ways of dealing with a variety of intensional issues 
(like macros).

	 8	 The 3Lisp Reflective Processor
3Lisp can be understood through a close inspection of the 
3Lisp reflective processor (figure 17), the promised modifica-
tion of the continuation-passing 2Lisp metacircular proces-

† This sidebar was labeled ‘figure 16’ in the POPL version.
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sor mentioned above. normalise (line 7) takes a structure, 
environment, and continuation, returning the structure un-

	 1	 (define READ-NORMALISE-PRINT 
	 2	 .... (lambda simple [level env stream] 
	 3	 ........(normalise (prompt&read level stream) env 
	 4	 ........... (lambda simple [result]	 ; c-reply 
	 5	 ............... (block.(prompt&reply result level stream) 
	 6	 ......................... (read-normalise-print level env stream))))))

	 7	 (define NORMALISE 
	 8	 .... (lambda simple [struc env cont] 
	 9	 ........(cond [(normal struc) (cont struc)] 
	 10	 ..................[(atom struc) (cont (binding struc env))] 
	 11	 ..................[(rail struc) (normalise-rail struc env cont)] 
	 12	 ..................[(pair struc) (reduce (car struc) (cdr struc) env cont)]))

	 13	 (define REDUCE 
	 14	 .... (lambda simple [proc args env cont] 
	 15	 ........(normalise proc env 
	 16	 ........... (lambda simple [proc!]	 ; c-proc! 
	 17	 ............... (if (reflective proc!) 
	 18	 .................. (↓(de-reflect proc!) args env cont) 
	 19	 .................. (normalise args env 
	 20	 ...................... (lambda simple [args!]	 ; c-args! 
	 21	 ......................... (if (primitive proc!) 
	 22	 ..........................(cont ↑(↓proc! . ↓args!)) 
	 23	 ..........................(normalise (body proc!) 
	 24	 ................................. (bind (pattern proc!) args! (environment proc!)) 
	 25	 .................................cont))))))))

	 26	 (define NORMALISE-RAIL 
	 27	 .... (lambda simple [rail env cont] 
	 28	 ........(if (empty rail) 
	 29	 ........... (cont (rcons)) 
	 30	 ........... (normalise (1st rail) env 
	 31	 ............... (lambda simple [first!]	 ; c-first! 
	 32	 ..................(normalise-rail (rest rail) env 
	 33	 ...................(lambda simple [rest!]	 ; c-rest! 
	 34	 ...................... (cont (prep first! rest!)))))))))

Figure 17 — The 3Lisp Reflective Processor
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changed (i.e., sending it to the continuation) if it is in normal 
form, looking up the binding if it is an atom, normalising the 
elements if it is a rail (normalise-rail is 3Lisp’s tail-recursive 
continuation-passing analogue of Lisp 1.5’s evlis), and other-
wise reduces the CAR (procedure) with the CDR (arguments). 
reduce (line 13) first normalises the procedure, with a continu-
ation (c-proc!) that checks to see whether it is reflective (by 
convention, we use exclamation point suffixes on atom names 
used as variables to designate normal form structures). If it is 
not reflective, c-proc! normalises the arguments, with a con-
tinuation that either expands the closure (lines 23–25) if the 
procedure is non-primitive, or else directly executes it it if it is 
primitive (line 22).

Consider (reduce '+ '[x 3] env id), where x is bound to the 
numeral 2 and + to the primitive addition closure in env. At 
line 22, proc! will designate the primitive addition closure, and 
args! will designate the normal-form rail [2 3]. Since addition 
is primitive, we must simply do the addition. (proc! . args!) 
would not work, because proc! and args! are at the wrong lev-
el; they designate structures, not functions or arguments. For 
a brief instant, therefore, we dereference them (with ↓), do the 
addition, and then regain our meta-structural viewpoint with 
the ↑.8 If the procedure is reflective, however, it (as shown in 

8. One way to understand this is to realize that the reflective processor 
simply asks its processor to do any primitives that it encounters. I.e., 
it passes responsibility up to the processor running it. In other words, 
each time one level uses a primitive, its processor runs around setting 
everything up, finally reaching the point at which it must simply do the 
primitive action, whereupon it asks its own processor for help. But of 
course that processor will also come racing towards the edge of the same 
cliff, and will similarly duck responsibility, handing the primitive up yet 
another level. In fact every primitive ever executed is handed all the way 
up to the top of the tower. There is a magic moment, when the thing 
actually happens, and then the answer filters all the way back down to 
the level that started the whole procedure. It is as if the deus ex machina, 
living at the top of the tower, sends a lightning bolt down to some level 
or other, once every intervening level gets appropriately lined up (rather 
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line 18 of figure 17) is called directly, not processed, and given 
the obvious three arguments (args, env, and cont) that are be-
ing passed around. The ↓(de-reflect proc!) is merely a mecha-
nism to purify the reflective procedure so that it doesn’t reflect 
again, and to de-reference it to be at the right level (we want 
to use, not mention, the procedure that is designated by proc!). 
Note that line 18 is the only place that reflective procedures 
can ever be called; this is why they must always be prepared to 
accept exactly those three arguments.

Line 18 is the essence of 3Lisp; it alone engenders the full 
reflective tower, for it says that some parts of the object lan-
guage—the code processed by this program—are called di-
rectly in this program. It is as if an object level fragment were 
included directly in the meta language, which raises the ques-
tion of who is processing the meta language. The 3Lisp claim 
is that an exactly equivalent reflective processor is processing 
this code, without vicious threat of infinite ascent.

A reflective procedure, in sum, arrives in the middle of the 
processor context. It is handed environment and continuation 
structures that designate the processing of the code below it, 
but it is run in a different context, with its own (implicit) en-
vironment and continuation, which in turn is represented in 
structures passed around by the processor one level above it. 
Thus it is given causal access to the state of the process that 
was in progress (answering one of our initial requirements), 
and it can of course cause any effect it wants, since it has com-
plete access to all future processing of that code. Furthermore, 
it has a safe place to stand, where it will not conflict with the 
code being run below it.

like the sun, at Stonehenge and the Pyramids, reaching down through 
a long tunnel at just one particular moment during the year). Except, 
of course, that nothing ever happens, ultimately, except primitives. In 
other words the enabling agency, which must flow down from the top of 
the tower, consists of an infinitely dense series of these lightning bolts, 
with something like 10% of the ones that reach each level being allowed 
through to the level below. All infinitely fast.

A44
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These various protocols illustrate a general point. As men-
tioned at the outset, part of designing an adequate reflective 
architecture involves a trade-off between being so connected 
that one steps all over oneself (as in traditional implementa-
tions of debugging utilities), and so disconnected (as with 
metacircular processors) that one has no effective access to 
what is going on. The 3Lisp tower, we are suggesting, provides 
just the right balance between these two extremes, solving the 
problem of vantage point as well as of causal connection.

The 3Lisp reflective processor unifies three traditionally in-
dependent capabilities in Lisp: (i) the explicit availability of 
eval and apply, (ii) the ability to support metacircular proces-
sors, and (iii) explicit operations (like MacLisp’s retfun and 
Interlisp’s freturn) for debugging purposes. It is striking that 
the latter facilities are required in traditional dialects, in spite 
of the presence of the former, especially since they depend 
crucially on implementation details, violating portability and 
other natural aesthetics. In 3Lisp, in contrast, all information 
about the state of the processor is fully available within the 
language.

	 9	 Threat of Infinity, and a Finite Implementation
The argument as to why 3Lisp is finite is complex in detail, 
but simple in outline and substance. Basically, one shows that 
the reflective processor is tail-recursive in two senses: (a) it 
runs programs tail-recursively, in that it does not build up 
records of state for programs across procedure calls (only on 
argument passing); and (b) it itself is fully tail-recursive, in the 
sense that all recursive calls within it (except for unimport-
ant subroutines) occur in tail-recursive position. The reflective 
processor can therefore be executed by a simple finite state 
machine. In particular, it can run itself without using any state 
at all. Once the limiting behavior of an infinite tower of copies 
of this processor has been determined, therefore, that entire 
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chain of processors can be simulated by another finite state 
machine, of complexity only moderately greater than that 
of the reflective processor itself. (It is an interesting open re-
search question whether that “implementing” processor can be 
algorithmically derived from the reflective processor code.) A 
full copy of such an implementing processor—about 50 lines 
of 2Lisp—is provided in Smith & des Rivières (1984); a more 
substantive discussion of tractability will appear in Smith 
(forthcoming).

	 10	 Conclusions and Morals
Fundamentally, the use of Lisp as a language in which to ex-
plore programming semantics and reflection is of no great 
consequence; the ideas should hold in any similar circum-
stance. We chose Lisp because it is familiar, because it has 
rudimentary self-referential capabilities, and because there 
is a standard procedural self-theory (continuation-passing 
metacircular “interpreters”). Work has begun, however, on 
designing reflective dialects of a side effect-free Lisp and of 
Prolog, and on studying a reflective version of the λ-calculus 
(the last being an obvious candidate to be used as a basis for a 
mathematical study of reflection).

Furthermore, the technique we used in defining 3Lisp can 
be generalized rather directly to these other languages. In or-
der to construct a reflective dialect one needs (a) to formulate 
a theory of the language analogous to the metacircular proces-
sor descriptions we have examined, (b) to embed this theory 
within the language, and (c) to connect the theory with the 
underlying language in an appropriate causally connected way, 
as we did in line 18 of the reflective processor, by providing re-
flective procedures invocable in the object language but run in 
the processor. It remains, of course, to implement the resulting 
infinite tower; a discussion of general techniques is presented 
in des Rivières & Smith (1984). †
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It is partly a consequence of using Lisp that we have used 
non-data-abstracted representations of functions and envi-
ronments; this facilitates side effects to processor structures 
without introducing unfamiliar machinery. It is clear that 
environments could be readily abstracted, although it would 
remain open to decide what modifying operations would be 
supported (changing bindings is one, but one might wish to 
excise bindings completely, splice in new ones in, etc.). In stan-
dard λ-calculus-based metatheory there are no side effects 
(and no notion of processing); environment designators must 
therefore be passed around (“threaded”) in order to model 
environment side effects. It should be simple to define a side 
effect-free version of 3Lisp with an environment-threading re-
flective processor, and then to define setq and other such rou-
tines as reflective procedures. Similarly, we assume in 3Lisp 
that the main structural field is simply visible from all code; 
one could define an alternative dialect in which the field, too, 
was threaded through the processor as an explicit argument, 
as in standard metatheory.

The representation of procedures as closures is trouble-
some (indeed, closures are failures, in the sense that they en-
code far more information than should be required in order 
to identify a function in intension; the problem being that we 
don’t yet know what a function in intension might be). 3Lisp 
unarguably provides too fine-grained (i.e., metastructural) ac-
cess to function designators, including continuations and the 
like. Given an abstract notion of procedure, it would be natu-
ral to define a reflective dialect that used abstract structures 
to encode procedures, and then to define reflective access in 
such terms. We did not follow this direction here only in order 
to avoid taking on another very difficult problem, but we will 
move in this direction in future work.

These considerations all illustrate a general point: in de-
signing a reflective processor, one can choose to bring into 
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view more or less of the state of the underlying process. It is all 
a question of what you want to make explicit, and what you 
want to absorb. 3Lisp, as currently defined, reifies the environ-
ment and continuation, making explicit what was implicit one 
level below. It absorbs the structural field (and partly absorbs 
the global environment); in addition, as mentioned earlier, it 
completely absorbs the animating agency of the whole com-
putation. If one defines a reflective processor based that also 
absorbs the representation of control (i.e., like the mcp in fig-
ure 13, which uses the control structure of the processor to en-
code the control structure of the code being processed), then 
reflective procedures could not affect the control structure. In 
any real application, it would need to be determined just what 
parts of the underlying dialect required reification. One could 
perhaps define a dialect in which a reflective procedure could 
specify, with respect to a very general theory, what aspects it 
wanted to get explicit access to. Then operations that needed 
only environmental access, like bound?, could avoid having to 
traffic in continuations.

A final point. I have talked throughout about semantics, 
but have presented no mathematical semantical accounts of 
any of these dialects. To do so for 2Lisp is relatively straight-
forward (see Smith forthcoming), but I have not yet worked 
out the appropriate semantical equations to describe 3Lisp. It 
would be simple to model such equations on the implemen-
tation mentioned in section 9, but to do so would be a fail-
ure; rather, one should take the definition of 3Lisp in terms 
of the infinite virtual tower (i.e., take the limit as n → ∞ of 
2Lisp/n), and then prove that the implementation strategies 
of §9 are correct. This awaits further work. In addition, I want 
to explore what it would be to deal explicitly, in the semanti-
cal account, with anima or agency, and with causal connection, 
that are so crucial to the success of any reflective architecture. 
These various tasks will require more radical reformulations 
of semantics than have been considered here.
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