Annotations'

It would also have been correct, and philosophically more expected,
had this been written “adequate theories of intentionality”—i.e.,
theories of intentionality-with-a-t,” the full gamut of issues involved

A1

in how it is that a sentence or structure or event o can be mean-
ingful or about something. | did however intend the more specific
intensionality-with-an-s.

As the discussion throughout this chapter makes evident, and
as is highlighted in dissertation §4c.i,> in any reflective system of
the sort envisaged one needs to deal not only with extensional is-
sues, having to do with the reference, denotation, or designation of
symbols and other intentional entities, but also with usually finer-
grained intensional notions of what they mean. As usual, the issue
comes up not only in the human case, where reflection typically in-
volves thinking about the intensional (meaningful) content of other
thoughts and epistemic states, but also in computational contexts

In many respects the architecture presented in this dissertation
and embodied in 3Lisp can be considered to provide, at least in the
first instance, only two kinds of referential access: extensional and
hyper-intensional. The only entities that can be named or referred
to, in 3Lisp, are: (i) entities that other structures or expressions
name or refer to—the default case, in which one refers to them by
using those other structures or expressions “transparently,” in an
extensional context; and (ii) other structures or expressions them-
selves, which is accomplished by using quotation (either «'» or
«“...”») or the explicit NaME operator (1I'),* thereby obtaining both
referential (¢) and causal () access to that entity as a causally-
efficacious mechanical ingredient.’

Even though reference to intensions is not supported in 3Lisp,
however,® that does not mean that intensional issues are off the

1. References are in the form page/paragraph/line; with ranges (of any type)

2. «Refer to the “three spellings of intentionality” sidebar—but where is that?

3. Included here as ch. 3c.

5. Except cf. A79.
6. That is: the ability, given any expression or structure X, to construct a differ-

107

Draft Version 0.82 — 2019 - Jan

1b . 108

table—as indeed they cannot be in any functioning computational
system. As (rather verbosely) discussed in dissertation §4c.i (includ-
behavior associated with the primitive closure bound to the name
LAMBDA in the global environment, can only be understood in inten-
sional terms.

As explained there, the “function” (i.e., something like purpose)
of a composite expression®” of the form ‘(LAMBDA PATTERN BODY)’ is
roughly to “capture” both the declarative and procedural intension
that the expression BODY has in the the context where the composi-
tive LAMBDA term occurs, in such a way as to allow that intension
to be used or invoked in other contexts. The issue is that the in-
tensions of expressions are in general context-dependent. Lacking a
theory of intensions, | was not able to provide 2Lisp and 3Lisp with
a mechanism with which to name, denote, or refer to the inten-
sion that BoDY has in that original context.®® What reduction of the
expression (LAMBDA PATTERN BODY) in context C does, however, is to
produce a structure s (a closure) that is co-intensional with BODY in
c (i.e., has the same intension that BoDY does in c), but that is in-
tensionally (as well as extensionally) context-independent, so that
s can be used in any other context cl requiring a structure that has
the intension that BoDY had in c.

No matter how useful, however, a mechanism that allows one
to construct context-independent co-intensional expressions is still
a far cry from being able to designate such intensions explicitly. The
for which 3Lisp was intended to be a design exercise. As mentioned
there, moreover (cf. also annotation A3 of ch. 3a), one of the ways

| imagined accomplishing this, in Mantiq, was by defining the struc-

ent expression or structure Y, such that the extension of v is the intension of x.
6.7. In 2/3Lisp terminology, each occurrence of the term ‘expression’ in this
and the next paragraph should be ‘impression.” but | have used ‘expression’
for simplicity: as regards the issues at hand, the difference between expres-
sions and impressions is immaterial. (The expression/impression distinction
is a perfect example of the sort of distinction that the fan-calculus is designed
to make only perspectivally visible.)

6.8. The reflective mechanisms did allow programs to designate the context
itself, taken to consist of a processor continuation, an environment, and a
structure being processed, plus the always available background structural

Draft Version 0.82 — 2019 - Jan « 4.

A2

field.

7. See A24, below.

tural field sufficiently abstractly so as to be able to fuse structural
identity with an otherwise-motivated notion of intension or mean-
ing (so that testing whether two structures were structurally the
same could stand in for—could serve as the subpersonal correlate
for’—determining whether they meant the same thing). By defining
the structural field sufficiently abstractly, that is, en route to what
| conceived as a “field-theoretic” view of computation, | hoped at
least to reduce, and perhaps ultimately even dismantle, the distinc-
tion between intensional and hyper-intensional reference.

Even at the time, | viewed traditional model-theoretic accounts
of meanings in terms of functions from possible worlds to truth-
values as too coarse-grained for semantical as well as structural
reasons—insufficiently articulated as regards issue of deixis and
context-dependent reference, etc.,”” as well as raising computa-
tionally intractable issues of identity, and therefore inappropriate
candidates for fusion.

| still believe that it would be well-worth exploring this design
idea of adopting a “field-theoretic” approach to the structural field
of a computational process that honours intensionally-motivated
constraints—one that, at least if implemented on currently recogniz-
able hardware, would need to be backed by sophisticated relaxation
algorithms to compute these more motivated but less fine-grained
notions of structural identity. The situation is hugely complicated,
however, by the fact that | no longer believe that “the intension” of
an expression or structure is a well-defined notion. At the very least,
the declarative “route” (¢) from sign to signified needs to be con-
sidered as much more continuous, or at least as a path with arbi-
trarily many distinct “points” along it, in order to deal appropriately
with the complex sorts of deictic and indexical dependence that
natural language illustrates and that a system like Mantiq would
require. An adequate exploration of these issues therefore remains
for future work.””

-1/-1 While the first two issues (formulating an epistemologically ade-

quate descriptive language and unifying that with a theory of com-
putation or procedural consequence) were not addressed in 3Lisp,

109

Draft Version 0.82 — 2019 - Jan

1b . 110

as described in ch. 2 it was my intent to address both of them in
Mantiq.

A3 .1//-2:-1 For more discussion of the dual-calculus nature of Prolog see
50/1:21/1.

A4 -2/1/-3:-2 At this point, in describing “a program able to reason about and
affect its own interpretation,” | had not yet distinguished the vari-
ous meanings of the term ‘interpretation’ that will be discriminated
later in the chapter (in particular, descriptive vs. procedural mean-
ings). In this context what | primarily had in mind was the more
computationally prominent procedural notion of interpretation as
program execution, rather than the representational or declarative
sense familiar from logic and philosophical semantics.

AS -3/1/-4 As mentioned in annotation A2 (at -......) of the dissertation pre-

references that refer to chapters in the dissertation, of which only
chapter 1 is included in this Volume,® so as to distinguish them from
references to chapters in the present volume.

confused as to whether the declarative or representational interpre-
tation of computational states had to be externally attributed—Dby,
as it is said, we “external observers”—or whether that was only a
contingent fact about current systems, with the possibility remain-
ing open of computer systems achieving their own genuine or au-
thentic original intentionality.’ This and a number of other pas-
be attributed—an empirically reasonable enough point of view in
1981 (when the dissertation was written), given the state of existing
computer systems, and the philosophical strength of the “formal
symbol manipulation” construal of computation. But even though |
did not feel that most practicioners in artificial intelligence grasped
the gravity of what original intentionality would require (full-blown
normativity, essentially), | was nevertheless already unquiet about
the adequacy of the formal symbol manipulation thesis. As a result,
therefore, as pointed out in other places (e.g., see -44/1 and A24)
it was not my intent to take as definite stand on the issue as these

(§...), especially as regards “opening” and “closing” designation relations.
8. For reference to an internet-accessible version of the entire dissertation see

Draft Version 0.82 — 2019 - Jan « 4.

gest that some declarative interpretation was tacitly attributed—a
separate and equally indefensible claim.)
A7 -4/0/2:5 This comment that 2Lisp “makes explicit much of the understand-

>

ing of Lisp that tacitly organises most programmers’ understanding’
would have been stronger if it had made the normativity more cen-
tral—e.g., by saying that 2Lisp makes explicit how it is that its pro-
cessing regimen honours programmers’ attribution of represen-
in a sound inference regimen, the derivability relation honours the
pre-theoretic attribution of referential meaning). That is: it would
have been good to have make explicit the fact that programmer’s

, it was misleading,

and strictly incorrect, to suggest that declarative import and pro-
cedural consequence be independently formulated. My overall in-
tent was for declarative import to precede procedural consequence,
both ontologically and explanatorily (modulo issues about dynami-

happens to program fragments, how they are executed—would then
be defined so as to honour that declarative import, just as deriva-
tion is defined in a sound logic to honour semantic interpretation.
Theoretically, the procedural consequence (execution) could be de-
fined entirely arbitrarily, but in practice not only would that not be
the intent, but it would vitiate both the whole point and the intel-
ligibility of the resulting system.

A1 -5/1/-5:-1 A number of reasons led my to call both dimensions semantic. Su-
perficially, it was rhetorically important since, as mentioned at nu-
merous points throughout this volume, computer science uses the
term ‘semantics’ for the procedural dimension—based in part on
its adoption of a specificational view of programs, with the conse-
quence that an “interpreter” is taken in computer science to be an
engine that effects the behavior that a program is taken to specify.

M1

Draft Version 0.82 — 2019 - Jan

1b . 112

More substantially, though, in spite of giving representational se-
mantics or declarative import both ontological and explanatory
priority (cf. the preceding annotation), as mentioned in §3 of the

nevertheless deeply respectful of the overall dynamicism about
significance in general that computational experience pushes to-
wards, and hence sympathetic to a pragmatist orientation towards
both reasoning and ontology. As will emerge in §..., in character-
izing 3Lisp | ultimately formulate a single overarching account of a
computational process’s significance, of which the declarative and
procedural end up being aspects or projections, reciprocally tied

together both structurally (causally) and normatively.

A12

to what is discussed in §6 of the I ion. By “strictly compo-
sitional” I intended what | discuss there as the originating idea be-
hind compositionality: that that is assigned as the “meaning” of an
ingredient structure remains true to what, in at least some intuitive
sense, the term, in a contextually-dependent way, means or refers
to in that context, rather than to a full account of the contextual-
dependence of that meaning or reference (the latter being what the
“recursively-specifiable” algorithm needs to work with).

A13 -6/1/9 In using the predicate ‘abstract’ to characterize internal or ingredi-
etnal structures (the second analytic axis along which computation-
al calculi are described), | did not mean to suggest that such struc-
tures are Platonic or otherwise immaterially diaphanous, but merely
that the individuation of such structural elements can be, and in
the 2/3Lisp case definitely is, “more abstract,” in the sense of mak-
ing fewer distinctions, than are neeeded to make sense of (the con-
crete materialities of) written textual or notation expressions. How-
ever the term “internal structure” (rather than “abstract structure”
would have been more consonant with the ensuing discussion—e.g.,
where | say “each structural class be treated in a uniform way by the
primitive processor.”

gory alignment is an important aesthetic underlying the design of

Draft Version 0.82 — 2019 - Jan « 4.

2/3Lisp, the reason for that importance is not well explicated. There
is a little discussion here, mostly about how failures to be category
aligned tend to lead systems to resort to metasyntactic and meta-
structural access; see also the more extensive discussion at the end

the discussion in §... of [this volume’s] ch. 2. Nevertheless, after the
first reports on 3Lisp were published, | was struck by the fact that

the idea of category alignment was treated by most people | spoke

with as at least extraneous, perhaps a distracting red herring, and

perhaps even theoretically inelegant.

As usual, | believe the five things: (i) that the critical response has
some merit; but (ii) unfortunately, perhaps because of that merit,
the original proposal was too quickly dismissed or ignored, at the
cost of understanding either of the underlying issue or of what the
proposed solution was aiming to—and to some extent did—accom-
plish; (iii) that the concerns raised in the criticism are conceptually
orthogonal to the merits of what was being proposed; and (iv) that
as a result it should be—indeed is—possible to develop a solution
that does justice to both the proposal and the critique; but (v) that,
perhaps surprisingly, the development of a solution that simultane-
ously honours the original insight but avoids the issues raised in
the critique will be much harder than one might initially suspect,
requiring radical revisions in our overarching metaphysical and on-
tological frameworks.

What is right about the critique, to pick up the first of these
points, is that it is endemic to programming practice to define more
complex or abstract data structures out of simpler ones. Tying in-
stances of such structures to the type structure of their implemen-
tation code not only fails to matter much, but contravenes some
of the most important mandates of structured programming—that
one not make one’s code excessively implementation-dependent.
Clearly, this aesthetic is deeply recognized in class-and object-ori-
ented languages, and is embodied in the notion of an abstract data
type. Whatever it is that motivates the category alignment mandate,
therefore, should clearly be framed in terms of user-defined class-
es or types, not in terms of the primitive data structures that imple-
ment them. This is a very serious issue, discussed at some length in

13

Draft Version 0.82 — 2019 - Jan

1b - 114

§:, at -/.../. The class hierarchies paradigmatic of object-oriented
languages provide some guidance towards how it might be ap-
proached; but because of their lack of declarative semantics what
pursuing this direction would come to is not yet clear.

What is nevertheless right about category alignment, to turn
to the second point—or at least right about the intuition that led
me to propose it—are two things. The first, adduced in this para-
gratuitous use of semantic ascent, in the form of quotation and
other practices fundamental to genuine reflection. This is the thrust
failure of category alignment leads to excessive (formally necessary
but conceptually unwarranted) uses of quotation and calls to the
primitive function APPLY. As these examples suggest, even at this rela-
tively superficial level, sans category alignment, reflection gets very
confusing, very fast."

The second consideration motivating category alignment cuts
deeper. It is almost fundamental to reflective processes that they
tend to deal with the structures over which they are operating—i.e.,
the structures at one level below, which their own variables and
data structures and arguments etc. denote—in terms of those struc-
tures’ procedural and declarative semantical categories. Sometimes
that is not true; sometimes there is something particular about an
object-level structure or situation that requires dedicated focused
reflective attention. But it is in the nature of things that it is typically
in terms of the (more or less reified'") categorical structure of the
object level domain that reflective procedures are most commonly
defined.

Because of the formality condition, however—or anyway what-
ever it is that is right about the formality condition, whatever the
formality condition turns into on a participatory construal, etc.—all
that the reflective process has effective access to is structure, not se-
mantics. And so being able to define structural type predicates that

10. Cf. my comment «where?», in discussing the differences between 2/3Lisp
and Scheme, that, en route to reflection, quotation needs first to be under-
stood, then to be disciplined, and finally to be unleashed.

11. That is one of reflection’s advantages, that it can reify what is implicit one

Draft Version 0.82 — 2019 - Jan « 4.

sort structures according to their semantical character is critically
important.”” In the data-structure-oriented Lisp environment cat-
egory or type alignment was a simple way of doing this. Once sup-
port for data abstraction is explicitly introduced, as for example it is
in class systems and most object-oriented languages, more complex

versions of such “alignment” would be simpler to provide.'**

12.7
>

As mentioned in ch. 2 the issue is that declarative seman-

tics (¢) does not cross implementation boundaries—including the
“implementation boundary” separating an abstract data type or
class from the structures and operations that implement it. That
implies that, in a system of such sort, when a programmer defined a
category or class, they would not only need, as at present, to define
its behavior, but would also have to specify its declarative import
or representational semantics, or at least say enough about it to
ensure that the programmer-specified behavior honoured (deferred
to) the appropriate norms."” And to do that would require adver-
sion to a fully adequate ontological theory of the subject or task
domain of the program itself, rather than merely the subject or task
domain of the language processor. l.e., it would require, or involve,
or however one wants to put it, developing an account of program
semantics, not merely of programming language semantics.
that should be taken up. That was perhaps the main goal for 4Lisp,
the envisaged next step in the series of design studies en route to
proved daunting. The fact that | was not easily able to surmount
them is why 4Lisp was never developed, and why Mantiq has yet
to be designed. It was in part to address them that | wrote On the
Origin of Objects, which from this perspective can be viewed as an
attempt to discern a metaphysical framework that could be service-
able for a task of this sort. Developing the insights articulated there
into a theoretical system that could form the basis of computa-

12. 1 once thought of this property as that of being syncategorematic, on
the mistaken view that ‘syncategorematic’ mean syntactic (i.e., structural)
in virtue of categories—or perhaps more simply, syntactically (or struc-
turally) categorical. | still somewhat rue the fact that that was an egregious
back-formation.

12.5. Simpler, perhaps—but not simple. Cf. «...».

115

Draft Version 0.82 — 2019 - Jan

1b . 116

tional analysis, design and construction is the task towards which
the design of the fan-calculus'* is oriented. (cont’d)
My belief remains strong that the resulting system would be
powerful, useful, and elegant—as does my resolve to design it. Thir-
ty years on from designing 3Lisp, however, | am not sure whether |
can honestly yet say that | am more than about halfway there.
a15 -7/1/8 Re ‘independent’: cf. A10, above, on passage -:35/1/-7, and annota-

tion ATl ofch. 3a,at-.../... .
A16 -7/2/-5:-1 It would have been simple, and for some readers helpful, to frame

some of these points in terms of the philosophical concepts of
semantic ascent and descent. Thus in characterizing the 2Lisp
processor as semantically flat | am saying that, in 2Lisp and 3Lisp,
normalisation (the default processing regimen) does not, but reflec-
tion does, engage in semantic ascent and descent.

A7 . The distinction between an object language and a meta-language

is invariably context-relative. Languages, including small fragments
and/or individual expressions, do not intrinsically have the status
of being at the object or meta level; they acquire any such status
only in relation to another language or expression or intentional sys-
tem. In simple contexts the meaning may be clear, but complexities
invariably arise in any context in which reflection, implementation,
theoretical description, and semantic ascent (and descent) are all
simultaneously at issue. In 3Lisp, for example, code at each level in
the tower is simultaneously object language from the point of view
of the level above, and meta-language from the perspective of the
level below.

In the passage in the text, however, the distinction being made
is not between levels, but beween whole systems. In particular, by
‘meta-language’ | am referring to the external descriptive language
that a theorist might use to describe or theorize 2Lisp or 3Lisp—
paradigmatically, the mathematical N-calculus. By ‘object language’
| mostly meant 2Lisp or 3Lisp—though in the case at issue, regard-
ing the designation of environments and continuations, the object
language would be specific passages of 2Lisp or 3Lisp that were
nevertheless “meta” to some other code or processing that those
passages were engendering or representing (at a reflective level, in
code for a meta-circular processor, etc.).

Draft Version 0.82 — 2019 - Jan « 4.

a18 -8/0/-2 Note that it is designators of environments and continuations that
are part of the protocol code. There is a strong sense, because of
the existence of these designators, that environments and continu-
ations are themselves part of the operational definition of 3Lisp,
but that is not strictly correct."** Better would be to say something
along the following lines: that environments and continuations are
extraordinarily good (realistically: indispensible) theoretical entities
in terms of which 3Lisp’s mechanical structures and ensuing behav-
iours can be found intelligible. However the truth of that statement
should be not taken as implying that environment structures and
continuation Structures are a primitive part of 3Lisp. To speak in
that way would be not only to confuse implementation with imple-
mented (computer science’s analogue of a use/mention error), but
also to fail to appreciate the importance of the declarative dimen-
sion of 3Lisp (and 2Lisp) semantics.

This characterization in terms of a limiting ideal is what in §
1
|| firmly believe the final statement in this paragraph: that nothing

call a ‘tower’ view of 3Lisp; see especially -

stands in the way of procedurally reflective, semantically rational-
ized versions of languages that support data abstraction, user-de-
fined classes, and message passing. In spite of the promise made in
the middle of the paragraph, however, the submitted dissertation
did not show in detail how this could be done. As discussed in ch.

lenges are considerable.

a21 -11/2/-1 Dismantling the distinction between declarative and procedural cal-
culi (the second design goal identified on the opening page of the
chatper) is of course one of the goal of Mantiq—in effect the subject

matter of this entire paragraph.

the term ‘semantic’ to characterize the unification of these aspects.

A23 -13/-1/8 «Reference Dennett, Haugeland, Searle, as appropriate...»

14, CF.§. of ch. 2.

14.5. | say “operational definition” because environments and continuations
are not required to be mechanical or causal parts of the implementation.
Overall, since | take computation to be intentional, and intentional systems to
be constitutively (even if not intrinsically—cf. the discussion at «...») semantic,
3Lisp, in my book, is not merely its mechanical projection, but is constituted

17

Draft Version 0.82 — 2019 - Jan

1b - 118

1/3), the writing is less than clear
about whether the declarative semantics must be attributed, or
could at least potentially be original.

More important here, however, is the following: because reflec-
tion is defined in terms of ¢, the question of whether or not a sys-
tem is or is not a reflective system depends on what one takes to be
the status of the declarative semantics. It is not a peculiarity of the
3Lisp approach to provide reflection in an architecture defined in
terms of a double (/@) semantical account, in other words. Rath-
er, the notion of reflection—of a system reasoning or engaging in
process that is @about its own operations and structures—requires
a prior, non-procedural notion of aboutness. Cf. the last sentence
in the subsequent paragraph, which talks of systems dealing with
their own ingredient structures and operations as explicit subject
matters.

Hence my sense that, no matter how otherwise gracious, Fried-
man entirely misses the point in attempting to define a notion of

“reflection without the metaphysics” «ref» (though cf. also A...)

0) had been phrased in terms of the personal/subpersonal

distinction (a framing | of which | was unaware at the time).'* Even
then, though, the issues are subtle.

If, qua person—i.e., at the personal level—I think about Virginia
Falls, then according to the Knowledge Representation Hypothesis
(krH) that happens in virtue of my brain’s constituting of a sub-
personal process p (formally) manipulating equally subpersonal
representations of Virginia Falls. My personal-level thoughts about
Virginia Falls, therefore, have, as their subpersonal correlates,
something like subpersonal symbolic representations of Virginia
Falls—i.e, subpersonal interior symbols denoting the falls. If there-
fore, at the personal level, | then reflectively think about my (per-
sonal) thoughts about Virginia Falls, then by the krH that must
happen in virtue of, at the subpersonal level, an internal processor
P manipulating internal symbols representing those personal-
level thoughts.

in part by its semantic interpretation. And there is no doubt that environ-

Draft Version 0.82 — 2019 - Jan « 4.

Now at this point the 3Lisp architecture makes an assumption,
which I will call y, that it is important to spell out. Depending on
one’s viewpoint, one might either characterize y as so obvious as
barely to deserve mention, or indict it as a devious sleight of hand.
Call my personal-level thoughts about Virginia Falls T;, and their
subpersonal correlates Rry. Similarly, call my reflective thoughts
about my thoughts about Virginia Falls T,, and their subpersonal
correlates rR,. What assumption <y has to do with is the declarative
semantics of R,.

According to the krRH, R, should be an internal representation
of T;. Instead, what the 3Lisp architecture presumes is that we can
treat R, as—can assume it is equivalent to, can in some sense take
it to be—a representation of R;. That is, we can define y as follows:

v Instead of taking the subpersonal correlate of a reflective
thought to represent a personal object-level'®
stead take it to represent the subpersonal correlate of that

object-level thought.

thought, we in-

Assumption vy underwrites the semantic interpretations of reflective
structures presented in the rest of the dissertation. By stipulation:
(i) @(T;)=Virginia Falls themselves, the cascading sheets of water;
and (ii) ¢(T,) = T, my falls-directed personal-level thoughts. Ac-
cording to the kRH, ¢(R,) is the same as ¢(T;)—that is, the same cas-
cading sheets of water."” T, and r, are distinguished by type or form,
that is, not by content. The former are thoughts, the latter are (for-
mal) representations, and both designate the same thing—namely,
waterfalls. At the meta or reflective level, however, the precondi-
tions arise for conceit y. By the krRH, @(T,) and ¢(R,) should again
coincide; they should both be T,. By vy, however—and thus what is
embodied in the 3Lisp architecture—instead of having ¢(R,)=T;, we
have ¢(R,)=R;.

This way of looking at things suggests that vy is a cheat. But there
is another way to understand vy, according to which v is not only far
less problematic, but actually well-motivated. Instead of taking sub-
personal meta-level representations to represent other subpersonal
symbols (instead of representing the personal-level thoughts those

ments and continuations are part of the 3Lisp dialect, so conceived.

15. «Reference: Dennett—was he first?»
16. Cf. A15, above.

19

Draft Version 0.82 — 2019 - Jan

1b . 120

symbols are correlated with), one could instead say that really, as
required be the krH, they dO represent the personal level thoughts,
but do so in virtue of bearing a closely-allied but nevertheless dis-
tinct relationship, pretty much like designation, to the correspond-
ing subpersonal correlates. Label that “closely-allied but neverthe-
less distinct relationship” ¢’. Then, using the example above: if we
take ¢(Rr,) to be T,, we would have the following:

1. ¢(T;) = Virginia Falls — stipulation
2. @(Rq) = Virginia Falls — (1) plus krH
3. (M) =T, — stipulation
4. @Ry =T, — (3) plus krH
5. ¢B(R,) =R, — proposal

That is, as these equations make clear, ¢’ would in a sense be the
subpersonal correlate of designation ().

What is haunting about this admittedly arcane discussion is that
in teasing apart distinctions (e.g., between personal-level thoughts
and their subpersonal correlates), and then following up the logical
implications of so doing, we end up teasing apart other things (des-
ignation and its subpersonal correlate), in a process that is reminis-
cent of the very problems that 3Lisp inadvertently introduced, by
being a stickler for use/mention distinctions. That is: whereas 3Lisp
was rigorous about distinguishing signs from what they signify, to
the point of ultimately becoming unusably fastidious, the present
discussion is doing the same thing as regards the personal/subper-
sonal distinction.
tational systems are permeated with cascades of relations between
and among entities or relations that for some purposes can be
seen as sufficiently similar so as not to warrant making a distinc-
tion between them, and for other (perhaps rare) purposes distin-
guishable (e.g., ¢ and ¢f, in the case at hand). To put it in the
terminology of On the Origin of Objects,'® for some purposes it
may be important to register a distinction between a thought and
its subpersonal correlate; for other purposes, not. The challenge is
to frame the background metaphysical/ontological/epistemologi-
cal assumptions, and the working theoretical framework, in ways

17. That is what it is to say that personal-level thinking is constituted by a
subpersonal processor manipulating internal representations.

Draft Version 0.82 — 2019 - Jan « 4.

that can honour this approach of doing justice to distinction in a
(normatively-driven) context-dependent way. The former, of course,
is the aim of 03; the latter, of the fan calculus project suggested in
the Introduction.

A27 -16/1 This paragraph, too,"” would have been more clearly explicated in

terms of a personal/subpersonal distinction. At issue is what sub-
personal activity underwrites or is correlated with a personal-level
reflection. On the surface, the claim is this: it does not consist of in-
terior process p reflecting on r,, which would seem circular. Rather,
the architectural idea is that P considers R,.

What is striking is that this claim is framed with reference to the
level-shifting view.”® The story on the tower view is more interesting.
In particular, on the tower view, one could say that, sure enough,
when, at the personal level, someone has a reflective thought T,
about base-level thought T,, that happens, subpersonally, in virtue
of the person’s interior (subpersonal) process p, reflecting on sub-
personal correlate r;. But then we discharge the threat of circularity
by offering an account of what it is for subpersonal process p; to
reflect on Rr,. Specifically, we iteratively apply the KrH, and say that
P,’s reflecting is “sub-subpersonally” realized in virtue of P, manipu-
lating R,.

While it has real merit, positing such an iterative application
of the krH is also somewhat ironic. It brings up the point made
one virtue of substantial architectures is that some questions need
not be answered. But it ties in as well to the point made in the previ-
ous annotation; that the very distinction between the level-shifting
and tower views is ultimately a choice between two behaviorally-
equivalent registrations.

Perhaps the most important moral, in this case, is that the rough
equivalence of these two views begins to undermine the integrity
or anyway absoluteness of the personal/subpersonal distinction
itself—a point towards which many other issues point as well.

«Needs work. Cf. comments in the PoPL paper. Also see earlier an-
notation, and comments at the beginning, about the relationship

18. See also “Representation and Registration,” ch.... of Volume ii.
19. Cf. the former annotation, A26.

121

Draft Version 0.82 — 2019 - Jan

1b . 122

between self-reference, introspection, and reflection...»

A29 -17/2/8 Snobol (“String Oriented Symbolic Language”), a string-processing
language developed at AT&T Bell Laboratories in the 1960s, had the
distinctive property of allowing strings to be treated as programs,
thereby enabling programs to be dynamically constructed and ex-
ecuted on the fly. Famous for treating patterns as a first-class data
type, Snobol served in some ways as a precursor to such modern
scripting and text-oriented languages as Perl.

I» |n

technical” or “mathematical” or something of the sort—not syntac-

talk about reflection needing “actually to matter” to the process
in which it occurs. Unfortunately, the sense that | had in mind, or
at least that | could make good on at the time, was more one of
having concrete physical consequence than of being impor-
tant. | was perfectly well aware that a more encompassing norma-
tive sense of mattering was fundamental to the long-term goal of
genuine reflection.”” However, as discussed at numerous places in
this chapter (e.g., see -43/-1), | was under no illusion that 3Lisp
achieved the requisite semantic originality that genuine mattering
would require. For these reasons, it would have been better to have
written more modestly of something like effective consequence.

tremendously important—not only to the design of 3Lisp and other
procedurally reflective systems, but for an understanding of reflec-
tion in the general case. It is certainly a staple of mundane personal
psychology: to be able, in advance, to “set oneself up” so as to
ensure that later, when some circumstance arises, one will at that
point stop and reflect (e.g., about what to do or not do).

are not “internal to the language” is incautiously stated. For one
thing, what is clearly meant is that environments and continuations
are not objectified “within” the language—do not exist as discrete
objects. Whether they exist as relational or configural realities de-

21. See -59/0/10, -62/0/4, -62/-1, and -104/1/-3:-1. «...also refer to annota-

Draft Version 0.82 — 2019 - Jan « 4.

pends on how the language is registered—i.e., can only be answered
with respect to a theory of the language, rather than being a fact
of the language “per se” (as if such a thing existed, or made sense).
In addition, by “within” or “internal” | clearly meant as part of its
mechanical/behavioural footprint, rather than “complete with (de-
clarative) semantic interpretation.” The tacitness of this assump-
tion would have confused no readers; but given my commitment
to viewing computation as intentional | should have expressed the

reflexive (as opposed to reflective) thought is something | thought
at the time the dissertation was written (1981), and so | have left
it standing. However, it is not a statement | would blithely endorse
in 2014. Increasingly, | have come to believe that there are ways
in which it is possible to have a “I am now thinking” thought refer
to itself, or perhaps more accurately to include itself within its
referential domain, without invoking a Necker-cube like reverbera-
tion between one state and another—perhaps in something like the
way in which non-well-founded set theory?® supports the notion of
a set having itself as a member. Descartes’ cogito** does not seem
semantically ill-formed, after all, even it feels a little phenomeno-
logically unstable—though the shifting-back-and-forth that accom-
panies thinking about it may derive from a double self-reference,
involving not only (reflexively) thinking that one is thinking, but also
(reflectively) thinking—or recognizing—that one is in fact doing that.

The epistemic achievement necessary to genuine reflexion, |
believe, would involve entertaining a reflexive thought quietly, as
it were—to hold a self-encompassing thought, in such a way that
awareness of its reflexive self-referentiality (or semantic self-inclu-
sion) does not lead one into a kind of vibrating or alternating epis-
temic state. While not necessarily easy, | believe not only that this
can be accomplished, but also—perhaps oddly, perhaps not—that
doing so relates to a number of forms of self-referential discipline
that have been developed in various Asian and other meditative and
mystical traditions. At a more mundane level, and apparently unlike
some others, | do not believe that either the meaning or the truth

of such statements as that “all statements are perspectival” need in
tions A36, 38, and A39>
22. See e.g. Haugeland’s “Truth and Rule Following” «ref».
123

Draft Version 0.82 — 2019 - Jan

1b . 124

any way be undermined by the fact that they apply, among other
things, to themselves.
not only those states, processes, expressions, etc., that are strictly
self-referential, in the sense of being their own semantic extension
(e.g., “this very five word phrase”), but also those that we might call
self-applicable, in the sense of including themselves within their
referential or semantic extension (such as “all phrases in English”).
By ‘reflective,’ in contrast, as here, | refer to processes of “stepping
part or aspect or period of oneself. There is no doubt, according
to this distinction, that even if computational models of reflexion
are possible, 3Lisp was correctly described as a model of computa-
tional reflection. (Cf. also §1:b-i
A35 -28/2 Cf. the previous annotation (A34, re -56/2/4:8). As always, “step-

ping back” must be defined with reference to an encompassing
frame of declarative or representational semantics (¢), and hence,
because of semantical deference, depends on a background struc-

guage, that does not imply that one cannot achieve a normatively
governed vantage point from which to regard language with some
detachment. It is just that that detachment will not be complete (at
which point | would call it disconnection rather than detachment).

reason for the internality of the causal relationship has more direct-

ly to do with effective procedural consequence than with anything
authentically normative (though of course the former is required in
order to honour the latter).

A39:32/:1:33/0CF. A31, above (:52/:2/:4).

A40-3

that computational processes are formal, in the sense of operat-
ing independently of their semantic interpretation, but | had yet to
question another widespread assumption: that computational ar-

Draft Version 0.82 — 2019 - Jan « 4.

rangements are abstract—or anyway, as is being said here, tempo-
ral but not otherwise physical. | have come to profoundly disagree
with this view, believing that computational processes are as much
denizens of the material or physical world as, for example, are we.
See both 03 and Aos.

 «Reference the discussions in other papers—popL? Prologue? cc? |
forget where this is talked about, complete with those /B figures,
etc.»

Ad2 -35/2 The “process reduction” model presented here might informally
be taken to be reductionist, in the informal sense that it analyses
something (processes) in terms of their ingredients (other processes,
plus interactions and structural fields of symbols). Not only is it
far from the notion of reductionism that has come in for attack
in numerous discursive traditions, however; it does not even meet
normal criteria on being naturalistic, since the ingredient processes,
being themselves computational, are assumed to be semantic.

More substantive is the question of why | called these serial and
parallel reductions, rather than serial and parallel implementa-
tions, which would be the more usual framing. | still think the ‘re-
duction’ phrasing has merit, in putting the emphasis on how the
(exterior) process is understood, rather than focusing on the me-
chanical issue of constructing it.

Ad3 -36/1/3:4 In the dissertation | called these interpretive and communicative

reductions, respectively, but in retrospect that choice of terminolo-

gy seems strikingly ill-advised. For one thing, to employ the adjective

‘interpretive’ for those processes that contain a single interior locus

of agency is too committed to the computer science sense of the

term ‘interpreter,” which | have explicitly set aside in favour of ‘pro-
cessor.” Similarly, to employ ‘communicative’ for interacting mul-
tiple interior loci of agency commits to their interaction being one
of “communication”—i.e., to involve the exchange of meaningful
entities, which is a more specific claim about the nature of process-
process interaction that | want to be committed to at this level.?®

The predicates “serial” and “parallel” seem both simpler and more

consonant with general computational practice. Because this termi-

23. «Ref Axcel, others?»

24. Independent of the ‘ergo sum’ part.

25. By analogy, cf. John Haugeland’s characterization of digitality («ref») in
terms of ‘reading’ and ‘writing’—a similarly unwarranted use of intentional

125

Draft Version 0.82 — 2019 - Jan

1b . 126

nological change reflects a substantial intervention, however (not
merely a correction of spelling, e.g.), | have marked the uses of both
terms with brackets here and through the rest of the chapter.

Ad44 -36/1/6 In the dissertation this was written “how these processes communi-
cate” (emphasis added); | have changed it to ‘interact’ in line with

) This is the lay English rather than technical computer science sense
of ‘interpreted’; | would now say “registered.”

Cf. also ... «Point also to other papers and commentaries as
appropriate»

| continue to believe that the relation between programs and pro-

gramming languages is of far more theoretical importance than is

tween the semantics of programming language and the semantics

of particular programs. «...»

A48 -41/1/4:5 The last sentence in this @ is too strong. | had not yet developed the
language of registration (cf. 03 and “Representation and Registra-

tion”, ch.... of Volume 11). In its terms, | would rephrase the first
sentence of the paragraph as follows: “To implement Lisp, in other
words, all that is required is the provision of a process that can be
registered as consisting of the Lisp structural field and the interior
Lisp processor.” So stated, the claim would be so obvious as not
to have been worth making. The point is that the dissertation was
written in the grip of an untenably naive realism, which occasionally

A49 -41/-1/3 The use of Y’ in this paragraph has nothing to do with the use of
the same symbol for the procedural consequence portion of full
semantical significance in the 2/3Lisp framework (i.e., of the {/¢
pair). For this example it would have been better to use a different
label.

A50 -41/n11 The reference was to Fodor (1983).

Aa51 -42/1/2:3 The characterizations of interpreters (in the computer science sense
of the word), compilers, etc., given over the previous several pages,
are all framed behaviorally, rather than in terms of declarative or
representational semantics. And so it might seem as if a mathemati-
cal theorization would require formalising only 15, not ¢ or a more

generalised significance function 3. But as discussions throughout

vocabulary, in my view, to characterize forms of interaction that are not nec-

Draft Version 0.82 — 2019 - Jan « 4.

the chapter make evident, | believe that no analysis that does not
treat @ and declarative import generally would get at the heart of
the computational phenomenon.

A52 -42/2/2 | believe this statement is false. Locality must be defined, but only
topologically; to require a metric or measure is too strong.

A53 -42/3/7 As reported on Wikipedia,26 the first evidence of a COME-FROM in-
struction appeared under the label ‘cMFRM’ in humorous lists of
fraudulent assembly language instructions. It was elaborated upon
in Clark, R. Lawrence, “We don’t know where to GoTo if we don’t
know where we’ve come FrRoM”, Datamation, 1973, written in re-
sponse to Edsger Dijkstra’s “Go To Statement Considered Harmful”
«refr.

A54 -43/1/-10 The sense of interpretation intended on the line, and throughout
the paragraph, is clearly declarative semantical interpretation—
not the procedural processsing sense of computer science.

AS5 -43/1 This and the subsequent paragraph are clearly an informal and not
especially clear amalgam of Fodor’s formality condition, Dennett’s
intentional stance, and a distinction between original (authentic)
and attributed (derived) intentionality (Haugeland ...). Fodor’s
classic formulation of the formality condition appeared in 1981, the
year this dissertation was written;”” Dennett’s Intentional Stance
was not published until six years later (Dennett 1987), though for-
mulations had appeared earlier.”®

For numerous reasons | no longer believe that ‘computational’ is
best understood as a predicate on explanations. My current sense is
that the best way to understand the reason | thought so then is that
grip of an excessively naive realism—or anyway did not yet have vo-
cabulary in terms of which to say anything different. The language
of registration (03) would have allowed the points to be much more
simply and effectively presented.

Note, moreover, even setting aside issues of theoretical vocabu-
lary, that the thesis that computational semantics is necessarily at-
tributed or derivative (see A6, above) does not imply that ‘compu-
tational’ is a predicate on explanations. As | have said elsewhere,”
to say that intentionality is derivative is not to say that it is not real,

essarily intentional at all.

26. «Ref»
27. «<Fodor 1981.»

127

Draft Version 0.82 — 2019 - Jan

1b . 128

itis real as derivative. A theory of derived intentionality can still be
perfectly ontological; it would just need to explain the ontological
conditions for the interpretation being attributed. (In terms of
metaphysical status, all that derivative intentionality denies is that
the intentionality is intrinsic—but that is a different thing. It would
be a stringently impoverished metaphysics, to say the least, that re-
stricted reality to the intrinsic.)

The main point in the text, however, is that the fundamental the-
sis argued in the dissertation—that reflection is straightforward to
understand and implement if built on a semantically clear base—
implies that developing an account of computational reflection,
and hence designing 3Lisp and like languages, requires not only
understanding such philosophical views about the nature of com-
puting, but effectively “building them in” to the resulting reflective
architecture.

A56-43/-1/-3:-2 The term ‘syntactically’ is used here as in philosophy, not]
as in computer science. At best, in computer science one would say A 57 maékes
‘structurally,” but the meaning would be so deeply assumed that to]

R no sensg!
dignify it with a label at all would seem odd.]

lieve that the formality condition is correct, but was still under its
influence in 1981.
haps in part because the project emerged from several years work-
ing the area of knowledge representation, | was singularly focused
on an ingrediential view of programs. | did not considered the posi-
tion, much more commonly held in computer science, of viewing a
program as a Specification of, rather than as an ingredient within,
a computational process.

A58-46/-2/1:2 Philosophical readers will find it awkward to characterize both as-

........................ ;

A59 : This paragraph—and in fact most of this section (1.d.i)—is an

early (to say nothing of rather inarticulate and embarrassingly ver-
bose) attempt to explain what in the Introduction | call semantic
deference.

papers—check»

28. «Check, and reference if appropriate»
29. «Where?»

Draft Version 0.82 — 2019 - Jan « 4.

than as a Lisp identifier, that it is formatted in this paragraph (three
times), and at various points elsewhere throughout the chapter,?*?
in a serif rather than sans-serif font—i.e., as ‘CAR’ rather than ‘car.’

| The referenced postscript is contained in 3.f.iv (p. 246-252) of the

full dissertation—not reproduced here, but to which a link is pro-

of semantics to deal with abstract data types. As well as investigat-
ing some examples (e.g., the use of a pair of real numbers to model
complex numbers—or more accurately, the use of a pair of “real nu-
merals” to “implement” a “complex numeral”), the main point of
the section is that if the denotation (¢) of a complex data type is de-
fined in terms of the denotations of the structures in terms of which
itis implemented, then the normalisation of a term representing an
instance of the abstract data type will (in 2Lisp and 3Lisp) still be
designation-preserving.

The topic is complex, however. For example, the disavowal of
the distinction between syntactic and semantic domains points to-

A64 49/1/3

psychology adverted to here, on the grounds that the former is

usually thought to have to do with events and processes ocurring
within the head, in contrast to the latter (pscyhology widely con-
strued), normally considered to involve reference to the external
world. The ¢/ distinction being introduced here is not vulnerable
to that critique, however, because no assumption is being made
that s involves only computationally-internal operations, or that ¢
is restricted to relations to external events and phenomena. On the
contrary, 3Lisp’s entire reflective edifice is constitutively character-
ized in terms of computationally-internal referential (¢) relations.

AG5- The statement that | will consider cases where s;=D;, while

strictly correct, is misleading. While it is true that self-reference of

30. ‘Fortunately’ because the traditional type/token distinction is profoundly
too simplistic to deal appropriately with the range of one-many relations than

129

Draft Version 0.82 — 2019 - Jan

1b . 130

of self-reference with which the study of reflection is concerned.
A66 -50/0/1 Strictly speaking, my reply “Mark Twain” is presumably an instance
or use of the referent of ‘the pseudonym of Samuel Clemens,” on
the assumption that the latter refers to a type—but the point is clear
enough. In general, as pointed out in the Cover («ref»), the disserta-
tion (fortunately®®) pays little attention to type-token distinctions.
A67 -50/0/5 See chapter 8 of On the Origin of Objects, pp. 243-67, for an
extended discussion of designation-preservation under the label

“preservation of reference.”
phrasing. What | meant was that, in the ordinary course of things,
derivability is not a “level-crossing” operation. One can interpret
the claim in a more mundane way as saying that if, from «;...o; one
were to derive 3 on the grounds that B is true if a;...cq are true, then
derivability has preserved the designation fruth. But as well as being
vapid, this is false; from falsehood one can derive anything, includ-
ing claims that are true. But that was far from my intent.

tural field; there is no need for multiple tokens or instances. So if,
within the context of a given process p,, there two distinct compos-
ite structures—such as for example ‘(+ 7 3)’ and ‘(if (=xy) 7 9)’—the
occurrences of ‘7’ are structurally identical, rather than each having
its own distinct “token” or “instance” of a common type. Think of
the complex structures as manifolds that encapsulate the self-same
unique numeral. That identity does not make the numeral into a
type, of course; a different 2Lisp process p,, with a distinct struc-
tural field, would in some sense have its “own” numeral 7.

The more flexible forms of identity possible within structural
fields makes the issue of types/tokens/instances/uses of types—that
is, the question of what is one and what is many—spectacularly
more complex in computational cases than in the familiar case of
written, lexical expressions. Theorizing such complexity, and provid-
ing facilities for viewing it as contextual or perspectival, are primary
aims of the proposed fan calculus.

Draft Version 0.82 — 2019 - Jan « 4.

A71 -54/1/-8 | put “operation” in quotes because of the claim that, au fond, quo-
tation should be understood as a referential or naming convention,
not as a procedure. As discussed in «where?», the operational con-
sequence () of quotation should be defined, derivatively, terms of
its referential function, rather than—as is so common in program-
ming languages—being taken as a primitive behavioral operation.
tions can be designated only by use of the complex expressions that
are needed to designate them. What | had in mind, when writing
that we could “remove atomic designators,” was that we could de-
fine a variant of Lisp that, like the N-calculus, did not allow defini-
tions, but instead required use of such full composite expressions in
every function position. But the phrasing in the text—“the ability to
name composite expressions as unities” (emphasis added)—is dou-
bly confusing, and wrong. It is not that in a dialect that allows defi-
nitions one names COMpPosite expressions; rather, one introduces
unitary names to name what those composite expressions denote
(i.e., functions). Secondly, the point is not that one names things as
unities, but that names are ways to refer to (arbitrary) things with
unities. What is unitary is the name, not the named. What | should
have said is that, in the \-calculus, one denotes functions with
composite expressions instead of with (instances) of unitary
names.

may seem to be a considerable discrepancy between the underlying

philosophical motivation for this point (about procedural conse-
quence affecting the context of declarative interpretation) and the
almost triviality of the technical examples brought forward as il-
lustration. In making this particular point, and more generally in
reciprocally defining declarative import (¢) and procedural con-
sequence () within an overarching general significance function
(2), as described in the next paragraph, | meant to do justice to

131

Draft Version 0.82 — 2019 - Jan

1b . 132

the dynamic, contextual dependences of reasoning and language

in general—such as our needing, in rational thought, to keep up, in

a fully participatory way, with a constantly evolving world, some

of which changes are the result of our own doing. Examples would

range from such simple examples as mundane temporal dependen-

cy (using ‘yesterday,” tomorrow, to refer to what we today refer to

with ‘today’) and performatives (“I promise to bring you coffee”)

to the sorts of consideration that underlie pragmatist epistemology

in general. Causing a side-effect to a variable hardly connotes the

richness of the phenomenon.

A76:-58/-1/1:3 This is the equivalent, in a computational context, of saying some-

thing that would be obvious, logically: that one cannot specify a

sound proof procedure (&) without first having in mind an interpre-

tation function for it to honour.

" This is too strongly stated. Full independence is not required; the

two accounts could be reciprocally co-constituted. What | should

have said is that defining a processing regimen in a calculus in
which there is nothing more to meaning than “how the symbol
or structure is treated” would not just evacuate the system of any

semantic or intentional interest; it would also deprive it, in my view,

of any claim to being a computational system at all—instead, reduc-

ing it to “naught but mere mechanism.” Oil refineries, after all, are

constructed of parts that have procedural consequence.’’ Compu-

tation, in my book, in spite of its abiding concern with mechanism

and effectiveness, is nevertheless a fundamentally intentional phe-

el was not adequately explained in the dissertation.

As will become increasingly evident as this chapter proceeds,

and is spelled out in detail in the dissertation’s remaining chapters,

permeate computational systems—one of the primary motivations for the de-
velopment of a fan calculus.

31. Someone might object that programs specify or represent the behavior
they result in, whereas mechanical parts, of the sort out of which oil refineries
are built, simply have causal consequence. Perhaps that is so. The point is
that, in order to make out a distinction like this between specifying behavior
and merely leading to behavior, one needs an account of what it is to repre-
sent or specify (i.e., something like @).

Draft Version 0.82 — 2019 - Jan « 4.

reflective procedures are used in 3Lisp in those cases that would
involve the use of intensional procedures in non-reflective languag-
es¥—je., procedures that, in computational () terms, “do not
evaluate their arguments,” or, to put it more philosophically, proce-
dures whose argument positions are opaque or intensional, rather
than transparent or extensional. Quotation is a paradigmatic inten-
sional operator, but others are ubiquitous, such as: desires, belief
reports and other statements of epistemic state (such as memory
reports) in natural language and thought; possibility and necessity
operators, in logic; and LAMBDA, classical IF statements, “left-hand-
side” expressions in assignment statements, etc., in computing. In
3Lisp, reflective procedures are used to subsume all such intensional
practices.

One might expect it to follow that 3Lisp reflective procedures
would not “evaluate” (i.e., normalise) their arguments—or again, to
put it in philosophical terms, that the argument positions of reflec-
tive procedures would be opaque or intensional. Interestingly, that
is not so—at least not in any simple sense.

Note that line 18 of the rep is the only place where reflective pro-
cedures are ever invoked (that is: where their arguments are bound,
context, they are invoked perfectly extensionally—their argument
positions are perfectly “transparent.” In fact from a certain per-
spective one can correctly say, of 3Lisp, that all procedure calls are
extensional—that, ultimately, there are N0 opaque or intensional
argument contexts at all.

What is going on is this. If, in the course of regular “user” or
“object-level” code,” the processor encounters a redex of the form
(PROC @; @, ... @), where PROC names a “reflective procedure”* or
is bound to a reflective closure, then, before so much as glancing
at the expressions in argument positions a; @, ... oy, the proces-
sor effects a level-shift—“backing up,” to use the language of the
Prologue—so as to obtain an appropriately detached vantage point
from which to consider the situation. In 3Lisp, there is exactly one
such “appropriately detached vantage point”: line 18 of the rep.
From that vantage point, the structures in argument positions o,

32. Including not just 2Lisp and all prior dialects of Lisp, but all programming

languages other than 3Lisp.

133

Draft Version 0.82 — 2019 - Jan

1b . 134

a, ... oy are then referred to, perfectly extensionally. Sure enough,
to switch again to philosophical jargon, those structures are men-
tioned, not used. But—and this is the important point—mention
is a perfectly valid form of genuine extensional reference. It is
genuine extensional reference to the expressions or structures that
are occupying argument positions oy Q. ... 0.

More generally, that is, the 3Lisp architecture illustrates a non-
standard approach towards opaque or intensional contexts. Tradi-
tionally, we assume that functions or operators that take their argu-
ments in an opaque or intensional context work in the following
way: (i) they treat their arguments differently from standard-issue
(extensional) functions or operators, but (ii) they do so within the
context of the interpretation of the sentences or complexes in which
they occur. In 3Lisp, in contrast, a “reflective redex” in the sense
just described™ is understood as follows: (i) its occurrence signals a
shift in interpretive context, to the reflective (meta) level, but (ii) in
that different context the function or operator treats its arguments
in the standard transparent way. In sum, rather than viewing opac-
ity as a different kind of reference (reference is always extensional,
in 3Lisp—that is how reference is taken to work), 3Lisp views it as a
change in interpretive context.

| have not explored the merits or consequences of adopting this
alternative view of opacity in logic and language more generally—
but | believe it is a project that would be worthwhile. It is therefore
included on a list | maintain, to use a little Pennsylvania Dutch, of

“php dissertations needing written.”**

A80 -71/1 This paragraph is the one place in the chapter where | have added
entire sentences to the text, in order to make the intended point
clear. In the original dissertation, this paragraph consisted, in its
entirety, of:

“We will not take a principled view on which account—a single
locus of agency stepping between levels, or an infinite hier-
archy of simultaneous processors—is correct: they turn out,

34. The reason for the quotation marks will be explained in a moment.
35. l.e., aredex of the form (PROC a; @, ... o), where PROC names a reflective
procedure or (equivalently) is bound to a reflective closure.

Draft Version 0.82 — 2019 - Jan « 4.

rather curiously, to be behaviorally equivalent. For certain
purposes one is simpler, for others the other.”

The terminology of ‘level-shifting’ of ‘tower’ views is discussed in

......... put in a discussion of how important this is, and not
adequately emphasized in the dissertation: that the tower is the
normative ideal, that supplied the “specification” that the imple-
mentation has to meet. It is another case of the normative (defer-

ential) orientation that underlies all of this work...

A81 -75/4 This entire paragraph presages concerns about perspectival object
individuation discussed in A0s and targeted by the fan calculus.
was inserted at this point (following the words “and so forth”):

“It is important to recognize that the suggestion of constructing a
reflective variant of the \-calculus represents a category error.” A
few years later, however, contrary to this statement, | did informally
define a reflective version of the \-calculus, as a vehicle in terms of
which to explain reflection to Jon Barwise.” | have therefore omit-
ted the parenthetical from this version.

The motivation for the parenthetical remark is clear enough
from the surrounding text. At the time | viewed the \-calculus as
fundamentally a declarative language for denoting functions, not as
a procedural calculus. But on reflection | am not sure that is entirely
correct. a and B-reduction are deeply enmeshed in the definition of
the N-calculus, and although there is no requirement that terms be
reduced, and the Church-Rosser theorem allows one to side-step is-
sues of reduction order, and so forth, | believe that our terminology
is corrent: we are right to call the A-calculus a calculus, not simply a
language. That is: the X-calculus is more implicitly procedural than
is suggested by its inclusion in a list of “exemplars of the declarative
tradition.”

A83 -78/0/2 «The following overlaps with annotation A13 in the PoPL paper.
Combine into one (the POPL version is better, except that | should
include the “not pass functions upwards” comment from this one),
and then simply have one annotation refer to the other.»

In a colloquium in the Artificial Intelligence Laboratory at sri

philosophical insight that can be wrested from intensive engagement in the

135

Draft Version 0.82 — 2019 - Jan

1b . 136

International, in the spring of 1982, | gave one of the very first
talks on 3Lisp. As it happened, John McCarthy (inventor of Lisp,
and designer of Lisp 1.5) attended. Though as a young student |
was almost paralytically anxious about making this claim in front
of the great master, | nevertheless—not really having any other op-
tions—proceeded with what | had planned to say, and claimed that,
according to my analysis, traditional Lisp’s dynamic scoping proto-
cols were a “mistake,” to which quotation and other metastructural
manoeuvrings were a partial and rather awkward work-around. In
particular, they supplied “half” of the benefits of a true higher-or-
der language, by providing a way of handing closures downwards,
though there was no way to pass them upwards (“upwards” and
“downwards” in terms of the usual notion of a control stack; this has

nothing to do with levels in the reflective hierarchy).
| was surprised—and enormously relieved—that McCarthy very

graciously, if laconically, agreed.

structural category. There is merit in both approaches.*® (For con-
sistency, | have adopted the popl approach, in which they are their

A88-90/b2/-3:-1 «Ref Quine: from “On What There Is,” Review of Meta-

physics... ... ;included in From a Logical Point of View (Harper &
Row, New York: 1953)»

A90-91/-1/-7:-5 This claim is extremely important: that upon reflecting:

1. What is used prior to reflection is mentioned; and
2. What is tacit prior to reflection becomes used (not just reified).

details of a computational system

38. On the one hand, closures, like all other structural categories except at-
oms (variables) and pairs (redexes), are normal form. On the other hand, like
atoms and pairs, and unlike the other normal form categories, closures are

Draft Version 0.82 — 2019 - Jan « 4.

Not only did these points influence the approach to real-world on-
tology sketched in 03; they also infected the ideas | was mulling on,

|«

at the time, about fusing higher-order and intensiona
38.5

objectifica-

I still believe that a substantial issue remains lurking here, with
which a proper theory of cognition should come to grips: relations
between and among processes of

1. Reification—leading us to find the world intelligible in terms of
objects;

2. Semantic ascent—generating quotation, meta-level concepts
and expressions, and other forms of symbolic or cognitive
“mention”);

3. The use of higher-order structures (such as higher-order func-
tions); and

4. Reflection—what we might call “procedural ascent and de-
scent,” involving all the issues adumbrated here, about step-
ping back, detachment, vantage point, etc.

In our formal efforts to be rigorously clear about the differences
among these notions, we sometimes fail to recognize their similar-
ity—and more seriously, what may be their common genealogy.

Note that Friedman and Wand’s “Reification: Reflection With-
out Metaphysics,” a paper | cite as indicative of the general reaction
to 3Lisp, which set its semantical approach aside, can be under-
stood in this light to be an attempt to wrestle with the first issue on
this list without addressing the other three.

A91-92/0/-3:-1 It remains true, more than three decades later, that we do not yet
have a semantical account of procedural reflection—and thus, by
my lights, an adequate computational account of it either. This fact
undoubtedly played some part in the decision to annotate and pub-
lish these papers now.
the one characteristic of 3Lisp that was recognized and provided
in subsequently proposed reflective languages, such as Friedman’s
Brown.

A93 -93/0 Cf. the discussion of the relation between the tower and levevl-shift-

_Cf. (this volume’s) ¢

137

Draft Version 0.82 — 2019 - Jan

1b . 138

munity Meeting” in April 1981. The language has had a long and
rich history since then. See Steele & Gabriel (1993).
A96 -95/4 This list should have a fifth entry, on studies of self-knowledge (cf.

............. .

hat declarative semantics does not cross implemen-
tation boundaries is an extraordinarily serious issue, which has yet
to be theorized.

A97_'_ :

Suppose that architecture or virtual machine v is implemented
on top of language or system x. The question has to do with which
of various properties p; exemplified by x (the underlying system) are

“inherited” by—i.e., true of—system v, in virtue of the implementa-
tion relation holding between them. The answers are both com-
plex and illuminating. There is no way that v can be a “real-time”
system, for example (in the sense of providing metric guarantees
about certain kinds of behavior, such as providing support for a
routine to run exactly once per second), unless x is also real-time.
So, to adopt a convenient way of speaking, | would say that “be-
ing real-time” crosses implementation boundaries downwards.
That is: from a system’s being real-time—i.e, providing behaviour
subject to metrical, not merely topological, time constraints—one
can conclude that the system on or in which it is implemented is
also real-time, and hence that the same is true of all such systems
below it, down to and including the hardware. Conversely, “being
a finite state machine” is a property that crosses implementation
boundaries upwards, since there is no way to implement a machine
with an indefinitely unbounded store on top of one that has no
such store. Needless to say, being a finite state machine does not
cross implementation boundaries downwards; you can perfectly
well implement a finite state machine in Lisp, which is not one.

The present point is that declarative semantical properties in
general—and thus reflection in particular, since it is defined in terms

not unique designators.

38.7. A standard excercise that | assign, in introductory courses on the phi-
losophy of computing, is to ask students to explain, for each item in a list of
properties, whether or not they “cross implementation boundaries” upwards
and/or downwards—not just being real-time and being a finite state ma-
chine, discussed in the text, but also: being digital, supporting recursion,

Draft Version 0.82 — 2019 - Jan « 4.

of declarative semantics—do not cross implementation boundar-
ies in either direction. From neither X nor Y’s being reflective, in the
above example, can one deduce anything about whether the other
is reflective.

For further discussion see comments in § «?» of the Introduction,
38.7

and Aos.
A98 -99/-3 As discussed in ch. 2, | believe it is fair to say that the hopes ex-
pressed in this paragraph were entirely in vain. Dan Friedman, of
Indiana University, was one of the most enthusiastic proponents of
reflection in the programming language community; | owe him a
tremendous debt of gratitude for the enthusiasm and support he
offered subsequent to the publication of the poprL paper introducing
However as perhaps best illustrated in his own paper with Mitchell
Wand,* the first thing that most people did, in bringing reflection
into their own work, was to dismiss every one of these six claims.

For some of the reasons for this dismissal see the discussions

logic, philosophy of language, philosophy of mind), the formal rep-

resentational tradition (mathematical logic, computer science data
bases, the aland knowledge representation communities, etc.), and
the programming language community; and (ii) the inadequacy of
extant theoretical frameworks in all of these fields—inadequacies
that | expect will not be overcome until the boundaries between and
among them grow more permeable.

A99 :100/1/-7 See also ch. 6.

A100:101/1/3 This statement remains true: | still intend to develop a reflective
descriptive system. Cf. the discussion of the fan calculus in §6 of the

a101 -103/1 This paragraph contains glimmers of the intuitions that will form

duction, and in ch. 2.

It is no accident that this issue, and the importance of relating

being continuous (analoge) vs. being discrete (analog), being correct,
being physical, etc.—including, not least, being computational.
39. “Reification: Reflection Without Metaphysics” (Friedman & Wand, 1984).

139

Draft Version 0.82 — 2019 - Jan

1b . 140

to the world as a whole, constitute the final substantive sentences
in the chapter.

a102:103/1/7:13 These two sentences prefigure the issue that in the Intro-
duction | label blanket mechanism:** an approach that what |
take to be the most important set of considerations affecting com-
putational architectures—declarative semantics and normative def-
erence—in favour of a purely internal and purely causal account of
how things work.

A103 -104/0 It was not until 1987 that Rodney Brooks made his famous state-
ment that the “representation” should be discarded in Artificial In-
telligence systems—in favour of a view that, in his words, treated

“the world as its own best model”;*°

see also his “Intelligence With-
out Reason” and “Intelligence Without Representation.”*’ What |
take to be significant about the widely-heralded “sea-change” ush-
ered in by the work of Brooks and others* is the fact that it betrays
what | am here attributing to Weyhrauch: a somehow tacit but deep
assumption that “representation” meant constructing within the
machine a replica of the world as a whole that could be used in
its place—as opposed to what cognitive scientists and philosophers
of mind take a representational theory of mind to involve, which is
that a person “represents” the world only in the sense of employ-
ing some interpreted symbols or structures with semantic content
involving facts, entities, and states of affairs in the world. Even an
internal structure with content along the lines of “Make sure you
look out constantly and check the intersection to make sure that it
is empty” would count as a representation on the latter view, but
apparently not the former.

It is hardly surprising that the “full simulation” view of represen-
tation needed to be eschewed—though to take that as a rejection of
representation altogether is both a rather extreme (and even bina-
ristic) reaction. Brooks later softened his view, saying that systems
should use representation “only when necessary”—which opens the
door to what representation had originally meant.

For more on Brooks and on the circumstances in which, in my
view, representation is required, etc., see “Rehabilitating Represen-

39.5. See especially §....
40. Brooks 1987.

Draft Version 0.82 — 2019 - Jan « 4.

“WysiwyG” (“what you see is what you get”) document preparation
system, implemented on the Xerox “Alto” minicomputer—arguably
the first personal computer ever built, developed in the early 1970s
at the Xerox Palo Alto Research Center (PARC). The first 3Lisp imple-
mentation was developed in MacLisp, a dialect of Lisp implemented
under “Its” (“Incompatible Time-Sharing System”) at the Artificial
Intelligence Laboratory at miT, running on Digital Equipment Cor-
poration pop-6 and pop-10.

A105-106/0/-1 Sure enough, the implementation listed in the appendix to the dis-
sertation did contain a bug—and a serious one, at that. Though it
handled reflective procedures correctly, and in general constructed,
passed around, and called continuations appropriately, it failed to
deal correctly with the rare case of reflective continuations called
in the course of normally processed code (which, from a level-
shifting point of view, require an instantaneous double level shift).

141

Draft Version 0.82 — 2019 - Jan

