
	 1b · Chapter 1

	 1b · 1

Draft Version 0.82 — 2019 · Jan · 4

		 Procedural Relection in Programming Languages

	 3b	 Introduction

The successful development of a general reflective calculus
based on the knowledge representation hypothesis will de-
pend on the prior solution of three problems:

1.	 The provision of a computationally tractable and epis-
temologically adequate descriptive language;

2.	 The formulation of a unified theory of computation
and representation; and

3.	 The demonstration of how a computational system
can reason effectively and consequentially about its
own inference processes.

The first of these issues is the collective goal of present knowl-
edge representation research; though much studied, it has met
with only partial success. The problems involved are enor-
mous, covering such diverse issues as adequate theories of in-
tensionality, methods of indexing and grouping representation
al structures, and support for variations in assertional force. In
spite of its centrality, however, it will not be pursued here, in
part because it is so ill-constrained. The second, though it is
occasionally acknowledged to be important, is a much less well
publicised issue, having received (so far as I know) almost no
direct attention. As a consequence, every representation sys-
tem proposed to date exemplifies what I will call a dual-calcu-

lus approach: a procedural calculus (usually Lisp) is conjoined
with a declarative formalism (an encoding of predicate logic,
frames, etc.). Even such purportedly unified systems as Prolog1
can be shown to manifest this dual-calculus structure. I will

a1

a2

1. Prolog has been presented in a variety of papers; see for example Clark
and McCabe (1979), Roussel (1975), and Warren et al. (1977). The con-
ception of logic as a programming language (with which I radically dis-
agree) is presented in Kowalski (1974 and 1979).

a3

1b · 2	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

in passing suggest that this dual-calculus style is unnecessary
and indicative of serious shortcomings in our conception of
the representational endeavour. However this issue too will be
largely ignored.

In this dissertation my focus instead will be on the third
problem: the question of making the inferential or interpre-
tive aspects of a computational process themselves accessible
as a valid domain of reasoning. I will show how to construct
a computational system whose active interpretation is con-
trolled by structures themselves available for inspection,
modification, and manipulation, in ways that allow a process
to shift smoothly between dealing with a given subject or task
domain, and dealing with its own reasoning processes over
that domain. In computational terms, the question is one of
how to construct a program able to reason about and affect
its own interpretation—i.e., of how to define a calculus with a
reflectively accessible control structure.

	 1a	General Overview
The term “reflection” does not name a previously well-defined
question to which I propose a particular solution (although
logic’s reflection principles are not unrelated). Before I can pres-
ent a theory of what reflection comes to, and how it can be
demonstrated, therefore, I will have to give an account of what
reflection is. In the next section, by way of introduction, I will
identify six characteristics that I take to distinguish all reflec-
tive behavior. Then, since I will be primarily concerned with
computational reflection, I will sketch the model of com-
putation on which the analysis will be based, and will set the
general approach to reflection to be adopted into a computa-
tional context. In addition, once a working vocabulary of com-
putational concepts has been set out, I will be able to define
what I will mean by procedural reflection—an even smaller
and more circumscribed notion than computational reflection

a4

	 1b · Chapter 1

	 1b · 3

Draft Version 0.82 — 2019 · Jan · 4

in general. All of these preliminaries are necessary in order to
enable the formulation of an attainable set of goals.

Thus prepared, I will set forth on the analysis itself. As a
technical device, over the course of the dissertation I will de-
velop three successive dialects of Lisp to serve as illustrations,
and to provide a technical ground in which to work out in de-
tail the theory of reflection to be proposed. I should say at the
outset, however, that this focus on Lisp should not mislead
the reader into thinking that the basic reflective architecture
I propose—or the principles endorsed in its design—are in
any important sense Lisp specific. Lisp was chosen because it
is simple, powerful, and uniquely suited for reflection in two
ways: it already embodies protocols whereby programs are
represented in first-class accessible (data) structures, and it is
a convenient formalism in which to express its own meta-the-
ory—especially given that I will use a variant of the λ-calculus
as a mathematical meta-language (this convenience holds es-
pecially in a statically scoped dialect of the sort that I will ulti-
mately adopt). Nevertheless, as I will discuss in the concluding
chapter [of the dissertation], it would be possible to construct
a reflective dialect of Fortran, Smalltalk, or any other proce-
dural calculus, by pursuing essentially the same approach as I
will demonstrate here for Lisp.

The first Lisp dialect (called 1Lisp) will be an example
intended to summarize current practice, primarily for com-
parison and pedagogical purposes. The second (2Lisp) differs
rather substantially from 1Lisp, in that it is modified with ref-
erence to a theory of declarative denotational semantics (i.e.,
a theory of the denotational significance of s-expressions) for-
mulated independent of the behavior of (what computer science
calls) the “interpreter.” The interpreter is then subsequently
defined with respect to this theory of attributed semantics, so
that the result of processing of an expression—i.e., the value
of the function computed by the basic interpretation pro-

a6

a5

1b · 4	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

cess—is a normal-form co-designator of the input expression.
I will call 2Lisp a semantically rationalized dialect, and will
argue that it makes explicit much of the understanding of Lisp
that tacitly organises most programmers’ understanding of
Lisp but that has never been made an articulated part of Lisp
theory. Finally, a procedurally reflective Lisp called 3Lisp will
be developed, semantically and structurally based on 2Lisp,
but modified so that reflective procedures are supported, as a
vehicle with which to engender the sorts of procedural reflec-
tion we will by then have set as our goal. 3Lisp differs from
2Lisp in a variety of ways, of which the most important is the
provision, at any point in the course of the computation, for a
program to reflect and thereby obtain fully articulated “descrip-
tions,” formulated with respect to a primitively endorsed and
encoded theory, of the state of the interpretation process that
was in effect at the moment of reflection. In this particular
case, this will mean that a 3Lisp program will be able to access,
inspect, and modify standard 3Lisp normal-form designators
of both the environment and continuation structures that
were in effect a moment before.

More specifically, 1Lisp, like Lisp 1.5 and all Lisp dialects
in current use, is at heart a first-order language, employing
meta-syntactic facilities and dynamic variable scoping proto-
cols to partially mimic higher-order functionality. Because of
its metasyntactic powers (paradigmatically exemplified by the
primitive quote), 1Lisp contains a variety of inchoate reflective
features, all of which I will examine in some detail: support
for metacircular interpreters, explicit names for the primi-
tive processor functions (eval and apply), the ability to men-
tion program fragments, protocols for expanding macros, and
so on and so forth. Though I will ultimately criticise much of
1Lisp’s structure (and its underlying theory), I will document
its properties in part to serve as a contrast for the subsequent
dialects, and in part because, being familiar, 1Lisp can serve as
a base in which to ground the analysis.

a7

a8

	 1b · Chapter 1

	 1b · 5

Draft Version 0.82 — 2019 · Jan · 4

After introducing 1Lisp, but before attempting to construct
a reflective dialect, I will subject 1Lisp to rather thorough se-
mantical scrutiny. This project, and the reconstruction that re-
sults, will occupy well over half the dissertation. The reason is
that the analysis will require a reconstruction not only of Lisp
but of computational semantics in general. I will argue in par-
ticular that it is crucial, in order to develop a comprehensible
reflective calculus, to have a semantical analysis of that calcu-
lus that makes explicit the tacit attribution of significance that
I will claim characterizes every computational system. I take
this attribution of semantical import to computational expres-
sions to be prior to any account of what happens to those ex-
pressions: thus I will argue for an analysis of computational
formulae in which declarative import and procedural con-

sequence are independently formulated. I claim, in other
words, that programming languages are better understood in
terms of two semantical treatments—one declarative, one pro-
cedural—rather than in terms of a single one, as is exemplified
by current approaches (although interactions between them
may require that these two semantical accounts be formulated
in conjunction).

This semantical reconstruction is at heart a comparison
and combination of the standard semantics of programming
languages on the one hand, and the semantics of natural hu-
man languages and of descriptive and declarative languages
such as predicate logic, the λ-calculus, and mathematics, on
the other. Neither will survive intact: the approach I will ul-
timately adopt is not strictly compositional in the standard
sense (although it is recursively specifiable), nor are the declar-
ative and procedural facets entirely separate. In particular, the
procedural consequence of executing a given expression may
affect the subsequent context of use that determines what an-
other expression declaratively designates. Nor are the conse-
quences of this approach minor. For example, I will show that

a9

a11

a10

a12

1b · 6	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

the traditional notion of evaluation, in terms of which all Lisps
to date have been defined, is both confusing and confused, and
must be separated into independent notions of reference and
simplification. I will be able to show, in particular, that 1Lisp
“evaluator” de-references some expressions (such meta-syntac-
tic terms as (quote x), for example), and does not dereference
others (such as the numerals and t and nil). I will argue in-
stead for what I will call a semantically rationalized dialect,
in which the simplification and reference primitives are kept
strictly distinct.

The basic thesis on which this work depends is that seman-
tical cleanliness (along the lines suggested above) is by far the
most important pre-requisite to any coherent treatment of
reflection. However, as well as advocating semantically rational-
ized computational calculi, in the Lisp case I will also espouse
an aesthetic I call category alignment, by which I mean that
there should be a strict category-category correspondence
across the four major axes in terms of which a computation
calculus is analyzed: (i) notation; (ii) abstract structure; (iii)
declarative semantics; and (iv) procedural consequence (a
mandate satisfied by no extant Lisp dialect). In particular, in
the dialects I design and present here, I will insist: that each
notational class be parsed into a distinct structural class; that
each structural class be treated in a uniform way by the primi-
tive processor; that each structural class serve as the normal-
form designator of each semantic class; and so forth.

Category alignment is an aesthetic with consequence. I will
show that the 1Lisp programmer (i.e., all existing Lisp pro-
grammers) must in certain situations resort to meta-syntactic
machinery merely because 1Lisp fails to satisfy this mild re-
quirement (in particular, 1Lisp lists, which are themselves a
derivative class formed from some pairs and one atom, serve
semantically to encode both function applications and enu-
merations). Though it by no means has the same status as se-

a13

	 1b · Chapter 1

	 1b · 7

Draft Version 0.82 — 2019 · Jan · 4

mantical hygiene, categorical elegance will also prove almost
indispensable, especially from a practical point of view, in the
drive towards reflection.

Once these theoretical positions have been formulated, I will be
in a position to design 2Lisp. Like Scheme and the λ-calculus,
2Lisp is a higher-order formalism: consequently, it is statically
scoped, and treats the function position of an application as a
standard extensional position. 2Lisp is of course formulated
in terms of the rationalized semantics, according to which
declarative semantics must be formulated for all expressions
prior to, and independent of, the specification of how they are
treated by the primitive processor. Consequently, and unlike
Scheme, the 2Lisp processor is based on a regimen of nor-

malisation, according to which each expression is taken into
a normal-form designator of its referent, where the notion of
normal-form is defined in part with reference to the semantic
type of the symbol’s designation, rather than (as in the case of
the λ-calculus) in terms of the further non-applicability of a
set of syntactic reduction rules.

2Lisp’s normal-form designators are environment inde-
pendent and side-effect free; thus the concept of a closure can
be reconstructed as a normal-form function designator. Since
normalisation is a form of simplification, and is therefore des-
ignation-preserving, meta-structural expressions (terms that
designate other terms in the language) are not de-referenced
upon normalisation, as they are when evaluated. I therefore
call the 2Lisp processor semantically flat, since it stays at a
semantically fixed level (although explicit referencing and de-
referencing primitives are also provided, to facilitate explicit
shifts in level of designation).

3Lisp is straightforwardly defined as an extension of 2Lisp,
with respect to an explicitly articulated procedural theory of

a14

a15

a16

1b · 8	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

3Lisp embedded in 3Lisp structures. This embedded theory,
called the reflective model, though superficially resembling
a metacircular interpreter (as shown by a glance at the code,
given in figure 15 on p. ·99), is causally connected to the work-
ings of the underlying calculus in critical and primitive ways.
The reflective model is similar in structure to the procedural
fragment of the meta-theoretic characterization of 2Lisp that
was encoded in the λ-calculus: it is this incorporation into a
system of a theory of its own operations that makes 3Lisp, like
any possible reflective system, inherently theory relative. For
example, whereas environments and continuations will up until
this point have been theoretical posits, mentioned only in the
theorist’s meta-language as a way of explaining Lisp’s behav-
ior, in 3Lisp such entities move from the semantical domain
of the external theoretical meta-language into the semantical
domain of the object language, in such a way that environment
and continuation designators emerge as part of the primitive
behavior of 3Lisp protocols.

More specifically, arbitrary 3Lisp reflective procedures

can bind as arguments (designators of) the continuation and
environment structure of the interpreter that would have been
in effect at the moment the reflective procedure was called, had
the machine been running all along in virtue of the explicit
interpretation of the prior program, mediated by the reflective
model. Furthermore, by constructing and/or modifying these
designators, and resuming the process below, such a reflective
procedure may arbitrarily control the processing of programs
at the level beneath it. Because reflection may recurse arbi-
trarily, 3Lisp is most simply defined in terms of the following
ideal:

An infinite tower of 3Lisp processes, each engendering the
process immediately below, in virtue of running a copy of
the reflective model.

a17

a18

a19

	 1b · Chapter 1

	 1b · 9

Draft Version 0.82 — 2019 · Jan · 4

Under such an account, the use of reflective procedures
amounts to running simple procedures at arbitrary levels in
this reflective hierarchy. Both a straightforward implementa-
tion and a conceptual analysis are provided to demonstrate
that such a machine is nevertheless finite.

3Lisp’s reflective levels are not unlike the levels in a typed
logic or set theory, although of course each reflective level con-
tains an ω-order untyped computational calculus essentially
isomorphic to (the extensional portion of) 2Lisp. Reflective
levels, in other words, are at once stronger and more encom-
passing than are the order levels of traditional systems. The
locus of agency in each 3Lisp level, on the other hand, that
distinguishes one computational level from the next, is a no-
tion without precedent in logical or mathematical traditions.

The architecture of 3Lisp allows us to unify three concepts of
traditional programming languages that are typically indepen-
dent (three concepts we will have explored separately in 1Lisp):

1.	 The ability to support metacircular interpreters;
2.	 The provision of explicit names for the primitive in-

terpretive procedures (eval and apply in standard Lisp
dialects); and

3.	 The inclusion of procedures that access the state of
the implementation (usually provided as part of a pro-
gramming environment, for debugging purposes).

I will show how all such behaviors can be defined within a
pure version of 3Lisp (i.e., independent of implementation),
since all aspects of the state of the 3Lisp interpretation process
are available, with sufficient reflection, as objectified entities
within the 3Lisp structural field.

The dissertation concludes by drawing back from the details
of Lisp development, in order to show how the techniques

1b · 10	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

employed in this one particular case could be used in the
construction of other reflective languages—reflective dialects
of current formalisms, or other new systems built from the
ground up. I will show, in particular, how this approach to
reflection may be integrated with notions of data abstraction
and message passing—two (related) concepts commanding
considerable current attention, that might seem on the sur-
face incompatible with the notion of a system-wide declarative
semantics. Fortunately, I will be able to show that this early
impression is false—that procedurally reflective and semanti-
cally rationalized variants on these types of languages could be
readily constructed as well.

Besides the basic results on reflection, there are a variety of
other lessons to be taken from the investigation, of which the
integration of declarative import and procedural consequence
in a unified and rationalized semantics is undoubtedly the
most important. The rejection of evaluation, in favour of sepa-
rate simplification and de-referencing protocols, is the major,
but not the only, consequence of this revised semantical ap-
proach. The matter of category alignment, and the constant
question of the proper use of metastructural machinery, while
of course not formal results, are nonetheless important per-
meating themes. Finally, the unification of a variety of prac-
tices that until now have be treated independently—macros,
metacircular interpreters, eval and apply, quotation, implemen-
tation-dependent debugging routines, and so forth—should
convince the reader of one of the dissertations most important
claims: procedural reflection is not a radically new idea; tenta-
tive steps in this direction have been taken in many areas of
current practice. The present contribution—fully in the tradi-
tional spirit of rational reconstruction—is merely one of mak-
ing explicit what we all already knew.

 • • •

a20

	 1b · Chapter 1

	 1b · 11

Draft Version 0.82 — 2019 · Jan · 4

I conclude this brief introduction with three footnotes.
First, given the flavour of the discussion so far, the reader

may be tempted to conclude that the primary emphasis of this
report is on procedural, rather than on representational, con-
cerns (an impression that will only be reinforced by a quick
glance through later [dissertation] chapters). This impression
is in part illusory; as I will explain at a number of points. these
topics are pursued in a procedural context because it is simpler
than attempting to do so in a poorly understood representa-
tional or descriptive system. All of the substantive issues, how-
ever, have their immediate counterparts in the declarative as-
pects of reflection, especially when such declarative structures
are integrated into a computational framework. This investi-
gation has been carried on with the parallel declarative issues
kept firmly in mind; the attribution of a declarative semantics
to Lisp s-expressions will also reveal my representational bias.
As I mentioned in the preface, the decision to first explore re-
flection in a procedural context should be taken as method-
ological, rather than as substantive. Furthermore, it is towards
a unified system that I ultimate want to aim. One of the morals
underlying this reconstruction is that the boundaries between
these two types of calculus should ultimately be dismantled.

Second, as this last comment suggests, and as the unified
treatment of semantics betrays, I consider it important to
unify the theoretical vocabularies of the declarative tradition
(logic, philosophy, and to a certain extent mathematics) with
the procedural tradition (primarily computer science). I view
the semantical approach adopted here as but a first step in that
direction; as suggested in the first paragraph, a fully unified
treatment remains an as-yet unattained goal. Nonetheless, I
have expended some effort in the work reported here to de-
velop and present a single semantical and conceptual position
that draws on the insights and techniques of both of these
disciplines.

a21

a22

1b · 12	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

Third and finally, as the very first paragraph of this chapter
suggests, the dissertation is offered as the first step in a general
investigation into the construction of generally reflective com-
putational calculi to be based on more fully integrated theories
of representation and computation. In spite of its reflective
powers, and in spite of its declarative semantics, 3Lisp cannot
properly be called fully reflective, since 3Lisp structures do not
form a descriptive language (nor would any other procedurally
reflective programming language that might be developed in
the future, based on techniques set forth here, have any claim
to the more general term). This is not so much because the
3Lisp structures lack expressive power (although 3Lisp has no
quantificational operators, implying that even if it were viewed
as a descriptive language it would remain algebraic), but rather
because 3Lisp expressions are devoid of assertional force. There
is, in brief, no way to say anything in such a formalism. One can
set x to 3, in 3Lisp or any other procedural (i.e., programming)
language; one can test whether x is 3; but one cannot say that
x is 3. Nevertheless, I contend that the insights won on the be-
half of 3Lisp will ultimately prove useful in the development
of more radical, generally reflective systems.

In sum, I hope to convince the reader that, although it will
be of some interest on its own, 3Lisp is only a corollary of the
major theses adopted in its development.

	 1b	The Concept of Reflection
In this section I will look more carefully at the term “reflec-
tion,” both in general and in the computational case, and also
specify what I would consider an acceptable theory of such a
phenomenon. The structure of the solution I will eventually
adopt will be presented only in §1·e, after discussing in §1·c the
attendant model of computation on which it is based. and in
§1·d the conception of computational semantics to be adopted.
Before presenting any of that preparatory material, however, it
helps to know where we are headed.

	 1b · Chapter 1

	 1b · 13

Draft Version 0.82 — 2019 · Jan · 4

	 1b·i	The Reflection and Representation Hypotheses
In the prologue I sketched in broad strokes some of the roles
that reflection plays in general mental life. In order to focus
the discussion, this section consider in more detail what I will
mean by the more restricted phrase computational reflection.
On one reading this term might refer to a successful computa-
tional model of general reflective thinking. For example, if you
were able to formulate what human reflection comes to (more
precisely than I have been able to do), and were then able to
construct a computational model embodying or exhibiting
such behavior, you would have some reason to claim that you
had demonstrated computational reflection, in the sense of a
computational process that exhibited authentic reflective activity.

Though I have undertaken this work with this larger goal
in mind, my use of the phrase is more modest, in two impor-
tant ways.

First, in this dissertation I take no stand on the question of
whether computational processes are able to “think” or “reason”
at all, in, as it were, their own right. Certainly it would seem
that most of what we take computational systems to do is at-
tributed, in a way that is radically different from the situation
regarding our interpretations of the actions of other people.
In particular, humans are first-class bearers of what is called
semantic originality: they themselves are able to mean, with-
out some observer having to attribute meaning to them. Com-
putational processes, on the other hand, are at least not yet
semantically original; to the extent they can be said to mean or
refer at all, they do so derivatively, in virtue of some human
finding that a convenient description (I duck the question as
to whether it is a convenient truth or a convenient fiction).2 For
example, if, as you read this, you rationally and intentionally
say “I am now reading section 1b·i,” you succeed in referring to
this section, without the aid of attendant observers. You do

2. For a discussion of the semantical properties of computational sys-
tems see for example Fodor (1980), Fodor (1978), and Haugeland (1978).

a23

1b · 14	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

so because we define the words that way; reference and meaning
and so on are not just paradigmatically but definitionally what
people do. In other words your actions are the definitional lo-
cus of reference; the rest is hypothesis and falsifiable theory. If
on the other hand I “inquire” of my home computer as to the
address of a friend’s farm. and it “tells me” that it is on the west
coast of Scotland, the computer has not referred to Scotland
in any full-blooded sense—it hasn’t a clue as to what or where
Scotland is. Rather, it has merely typed out an address that is
probably stored in an ascii code somewhere inside it, and I
supply the reference relationship between that spelled word
and the country in the British Isles.

The reflection hypothesis spelled out in the prologue, about
how computational models of reflection might be constructed,
embodied this cautionary stance: I said there that in as much
as a computational process can be constructed to reason at all, it
could be made to reason reflectively in a certain fashion. Thus
I will take the topic of computational reflection to be restrict-
ed to those computational processes that, for similar purposes,
we find it convenient to describe as reasoning reflectively. In sum,
I avoid completely the question of whether the “reflectiveness”
embodied in our computational models is authentically borne,
or derivatively ascribed.

Setting aside worries about semantic originality is one re-
duction in scope; I also adopt another. Again, in the prologue,
I spoke of reflection as if it encompassed contemplative con-
sideration not only of one’s self but also of one’s world (and
one’s place therein). While I will discuss the relationship be-
tween reflection and self-reference in more detail below, it is
important to acknowledge that the focus of this investigation
is almost entirely on the “selfish” part of reflection: on what it is
to construct computational systems able to deal with their own
ingredient structures and operations as explicit subject matters.

The reasons for this constraint are worth spelling out. The

a24

a25

	 1b · Chapter 1

	 1b · 15

Draft Version 0.82 — 2019 · Jan · 4

restriction might seem to arise for simple reasons, such as that
this is an easier and better-constrained subject matter (I cer-
tainly do not consider myself in a position to postulate models
of thinking about external worlds). But in fact the restriction
arises for deeper reasons, again having to do with the reflec-
tion hypothesis. In the architectures I develop, I consider only
internal or interior processes, able to reflect on interior struc-
tures, which is the only world that those internal processes
conceivably can have any access to. Lisp processors (interpret-
ers), in particular, have no access to anything except fields of
s-expressions; they do not interact with the world directly, but
rather in virtue of running programs, engender more complex
processes that interact with the world.

This “interior” sense of language processors interacts cru-
cially with the reflection hypothesis, especially in conjunction
with the representation hypothesis. Not only can we restrict
to our attention to ingredient processes “reasoning about”
(computing over. whatever) internal computational structures,
we can restrict our attention to processes that shift their (ex-
tensional) attention to meta-structural terms. For consider: if it
turns out that I am a computational system, consisting of an
ingredient process p manipulating formal representations of
my knowledge of the world, then according to the representa-
tion hypothesis, when I think, say, about Virginia Falls on the
Nahanni River in northern Canada, my ingredient processor
p is manipulating representations that are about Virginia Falls.
Suppose. then, that I back off a step and comment to myself
that whenever I should be writing another sentence I have a
tendency instead to think about Virginia Falls. What do we
suppose that my processor p is doing now? Presumably (“pre-
sumably”, at least, according to the Knowledge Representation
Hypothesis, which, it is important to reiterate, we are under
no compulsion to believe) my processor p is now manipulating
representations of my representations of Virginia Falls. In other

1b · 16	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

words, because we are focused on the behavior of interior process-
es, not on compositionally constituted processes, our exclusive
focus on self-referential aspects of those processes is all we can
do (given our two governing hypotheses) to uncover the struc-
ture of constituted, genuine reflective thought.

The same point can be put another way. The reflection
hypothesis docs not state that, in the circumstance just de-
scribed, p will reflect on the knowledge structures represent-
ing Virginia Falls (in some weird and wondrous way)—this
would be an unhappy proposal, since it would not offer any
hope of an explanation of reflection. On pain of circularity, re-
flective behavior—the subject matter to be explained—should
not occur in the explanation. Rather, the reflection hypothesis
is at once much stronger and more tractable (although per-
haps for that very reason less plausible): it posits, as an ex-
planation of the mechanism of reflection, that the constituent
interior processes compute over a different kind of symbol. The
most important feature of the reflection hypothesis, in other
words, is its tacit assumption that the computation engender-
ing reflective reasoning, although it may be over a different
kind of structure, is nonetheless similar in kind to the sorts
of computation that regularly proceed over normal structures.
(In this way it makes good on the background project of natu-
ralizing reflection.)

In sum, it is methodological allegiance to the Knowledge
Representation Hypothesis, rather than a limited interest
in introspection, that underwrites my self-referential stance.
Though I will not discuss this meta-theoretic position further,
it is crucial that it be understood, for it is only because of it
that I have any right to call this inquiry a study of reflection,
rather than a (presumably less interesting) study of computa-
tional self-reference.

a26

a27

a28

	 1b · Chapter 1

	 1b · 17

Draft Version 0.82 — 2019 · Jan · 4

	 1b·ii	Reflection in Computational Formalisms
Turn, then, to the question of what it would be to make a com-
putational process reflective in the sense just described.

At its heart, the problem derives from the fact that in tra-
ditional computational formalisms the behavior and state of
the interpretation process are not accessible to the reasoning
procedures: the interpreter forms part of the tacit background
in terms of which the reasoning processes work. Plus, in the
majority of programming languages, and in all representation
languages, only the uninterpreted data structures lie within the
reach of a program. A few languages, such as Lisp and Snobol,
extend this basic provision by allowing program structures to
be examined, constructed, and manipulated as first class enti-
ties. What has never before been provided is a high level lan-
guage in which the process that interprets those programs is
also visible and subject to modification and scrutiny. Therefore
such matters as whether the interpreter is using a depth-first
control strategy, whether free variables are dynamically scoped,
how long the current problem has been under investigation, or
what caused the interpreter to start up the current procedure,
remain by and large outside the realm of reference of standard
representational structures. One way in which this limitation
is partially overcome in some programming languages is to al-
low procedures access to the structures of the implementation
(examples: mdl, Interlisp, etc.3), although such a solution is
inelegant in the extreme, defeats portability and coherence,
lacks generality, and in general exhibits a variety of misfeatures
that I will examine in due course. In more representational or
declarative contexts no such mechanism has been demonstrat-
ed, although a need for some sort of reflective power has ap-
peared in a variety of contexts (such as for overriding defaults,
gracefully handling contradictions, etc.).

A striking example comes up in problem-solving: the issue

3. Such facilities as are provided in MDL are described in Galley and
Pfister (1975); those in InterLISP, in Teitelman (1978).

a29

1b · 18	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

is one of enabling simple declarative statements to be made
about how the deduction operation should proceed For ex-
ample, it is sometimes suggested that a default should be im-
plemented by a deductive regime that accepts inferences of
the following non-monotonic variety (i.e., if “not p” cannot be
proved, then deduce p):

								 [1]

Though it is not difficult to build a problem solver that embod-
ies some such behavior (at least on some computable reading
of “not provable”), one typically does not want such a rule to be
obeyed indiscriminately, independent of context or domain.
There are, in other words, usually constraints on when such
inferences are appropriate—having to do with, say, how cru-
cially the problem needs a reliable answer, or with whether
other less heuristic approaches have been tried first. What
people writing problem-solver systems have wanted is a way
to write down specific instances of something like [1] that ex-
plicitly refer both to the subject domain and to the state of the
deductive apparatus, which, in virtue of being written down, lead
that inference mechanism to behave in the way described.

Particular examples are easy to imagine. Thus consider a
computational process designed to repair electronic circuits.
One can imagine that it would be useful to have inference rules
of the following sort: “Unless you have been told that the power
supply is broken, you should assume that it works”, or, “You should
make checking capacitors your first priority, since they are more
likely than are resistors to break down”. Furthermore, it would
be good to ensure that such rules could be modularly and flex-
ibly added and removed from the system, without each time
requiring surgery on the inner constitution of the inference
engine. Though we are skirting close to the edge of an infinite
regress, it is clear that something like this kind of protocol is a

	 1b · Chapter 1

	 1b · 19

Draft Version 0.82 — 2019 · Jan · 4

natural part of normal human conversation. From an intuitive
point of view it seems perfectly reasonable to say: By the way,
if you ever want to assume p, it would be sufficient to establish that
you cannot prove its negation. The question is whether we can
make formal sense out of this intuition.

It is clear that the problem is not so much one of what to
say, but of how to say it (to some kind of theorem-prover, for
example) in a way that on the one hand does not lead to an
infinite regress, and that on the other genuinely affects its be-
havior. All sorts of technical question arise. It is not obvious
what language to use, for example; or even to whom such a
statement should be directed. Suppose, for example, that we
were supplied with a monotonic natural-deduction based
theorem prover for first order logic. Could we supply it with
[1] as an ordinary material implication? Certainty not. At least
in the form given above, it is not even a well-formed sentence.
There are various ways we could encode it as a sentence—one
way would be to use set theory, and to talk explicitly about
the set of sentences derivable from other sentences, and then
to say that if the sentence ‘¬p’ is not in a certain set, then ‘p’
is. The problem is that while such a sentence might contrib-
ute to a model of the kind of inference procedure we desire, in
any ordinary theorem prover simply adding it to the stock of
implication that it has to work with would not thereby cause
the inference mechanism itself behave non-monotonically in the
described way. To do this would not be to construct a non-
monotonic reasoning system, but rather to build a monotonic
one prepared to reason about a non-monotonic one. While
such a formulation might be of interest in the specification
of the constraints a reasoning system must honour (a kind of
“competence theory” for non-monotonic reasoning4), it would
not help us, at least on the face of things, with the question of
how a system using defaults might actually be deployed. An-
other option, of course, would be to build a non-monotonic

4. Reiter (1978), McDermott and Doyle (1978), Bobrow (1980).

a30

1b · 20	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

inference engine from scratch, using expressions like [1] to
constrain its behavior, along the lines of abstract program
specifications. But this would solve the problem by avoiding
it—the whole question was how to use such comments on
the reasoning procedure coherently within the structures of the
problem-specific application.

Yet another possibility—one I will focus on for a mo-
ment—would be to design a more complex inference mecha-
nism to react appropriately not only to sentences in the stan-
dard object language, but to meta-theoretic expressions of the
form [1]. Although no system of just this sort has been dem-
onstrated, such a program is readily imaginable, and various
dialects of Prolog—perhaps most clearly the ic-prolog of
Imperial College5—are best viewed in this light The problem
with such solutions, however, is their excessive rigidity and in-
elegance, coupled with the fact that they do not really solve
the problem in any case. What a Prolog user is given is not
a unified or reflective system, but a pair of two largely inde-
pendent formal systems: a basic declarative language in which
facts about the world can be expressed, and a separate proce-
dural language, through which the behavior of the inference
process may be controlled. Although the elements of the two
languages are mixed in a Prolog program, they are best under-
stood as separate aspects. One set (the structure of clauses,
implications, and predicates, the identity of variables, and so
forth) constitutes the declarative language, with the standard
semantics of first-order logic. Another (the sequential order-
ing of the sentences and of the predicates in the premise, the
“consumer” and “producer” annotations on the variables, the
“cut” operator, and so forth) constitute the procedural language.
Of course the flow of control is affected by the declarative as-
pects, but this is just like saying that the flow of control of an
algol program is affected by its data structures.

Thus the claim that to use Prolog is to “program in logic” is

5. Clark and McCabe (1979).

	 1b · Chapter 1

	 1b · 21

Draft Version 0.82 — 2019 · Jan · 4

in my view misleading: rather, what happens is that one essen-
tially writes programs in a new (and, as it happens, rather lim-
ited) control language, using an encoding of first-order logic
as the declarative representation language. Of course this is a
dual system with a striking fact about its procedural compo-
nent: all conclusions that can be reached are guaranteed to be
valid implications of prior structures in the representational
field. As mentioned above, however, dual-calculus approaches
of this sort seem ultimately rather baroque, and is certainly
not conducive to the kind of reflective abilities we are after. It
would be far more elegant to be able to say, in the same language
as the target world is described, whatever it was salient to say
about how the inference process was to proceed.

For example, to continue with the Prolog example, one would
like to say both father(benjamin,charles) and cut(clause-13)
or data-consumer(variable-4) in one and the same language,
with both subject to the same semantical and procedural treat-
ment. The increase in elegance, expressive power, and clarity
of semantics that would result are too obvious to belabour:
just a moment’s thought leads to one realize that only a single
semantical analysis would be necessary (rather than two); the
reflective capabilities could recurse without limit (Prolog and
other dual-calculus systems intrinsically consist of just a single
level); a meta-theoretic description of the system would have
to describe only one formal language, not two; descriptions
of the inference mechanism, would be immediately available,
rather than having to be extracted from procedural code; and
so forth.

This ability to pass coherently between two situations—in
the reflective case to have the structures that normally con-
trol the interpretation process be fully and explicitly visible to
(and manipulable by) the reasoning process, and in the other
to allow the reasoning process to sink into them, so that they
may take their natural effect as part of the tacit background in

1b · 22	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

which the reasoning process works—this ability is a particular
form of reflection that I will call procedural reflection (“pro-
cedural” because I are not yet requiring that those structures at
the same time describe the reasoning behaviors they engender;
that is the larger task not yet taken on). Although ultimately
limited, in the sense that a procedurally reflective calculus is by
no means a fully reflective one, even this more modest notion
is on its own a considerable subject of inquiry.

	 1b·iii	Six General Properties of Reflection
Given the foregoing sketch of the task, it is appropriate to ask,
before plunging into details, whether we can have any sense in
advance of what form the solution might take. Six properties
of reflective systems can be identified straight away—features
that any ultimate solution should exhibit, however it ends up
being structured and/or explained.

	 1b.iii.α	 Causal connection
First, the notion is one of self-reference, of a causally-connect-
ed kind, stronger than the notion explored by mathemati-
cians and philosophers over much of the last century. What
is needed is a theory of the causal powers required in order
for a system’s possession of self-descriptive and self-modelling
abilities to actually matter to it—a requirement of substance,
since full-blooded, actual behavior is our ultimate subject
matter, not simply the mathematical characterization of for-
mal relationships.

In dealing with computational processes, we are dealing
with artefacts behaviorally defined, after all, unlike systems
of logic, which are functionally defined abstractions that in no
way behave or participate with us in the temporal dimension.
Although any abstract machine of Turing power can provably
model any other—including itself—there can be no sense in
which such self-modelling is even noticed by the underlying

a31

	 1b · Chapter 1

	 1b · 23

Draft Version 0.82 — 2019 · Jan · 4

machine (even if we could posit an animus ex machina to do
the noticing). If, on the other hand, our aim is to build a com-
putational system of substantial reflective power, we will have
to build something that is affected by its ability to “think about
itself.” This holds no matter how accurate the self-descriptive
model may be; you simply cannot afford simply to reason
about yourself as disinterestedly and inconsequentially as if
you were someone else.

Similar requirements of causal connection hold of human
reflection. Suppose, for example, that after taking a spill into
a river I analyze my canoeing skills and develop an account
of how I would do better to lean downstream when exiting
an eddy. Coming to this realization is useful just in so far as
it enables me to improve. If I merely smile in vacant pleasure
at an image of an improved me, but then repeat my ignomini-
ous performance—if in other words my reflective contemplations
have no effect on my subsequent behavior—then my reflection
will have been in vain. It is crucial, in other words, to make
the move from description to reality. In addition, just as the re-
sult of reflecting has to affect future non-reflective behavior, so
does prior non-reflective behavior have to be accessible to re-
flective contemplation; one must equally be capable of moving
from reality to description. It would have been equally futile if,
when I initially paused to reflect on the cause of my dunking,
I had been unable to remember what I had been doing just
before I capsized.

In sum, the relationship between reflective and non-reflec-
tive behavior must be of a form such that both information
and effect can pass back and forth between them. These re-
quirements will impinge on the technical details of reflective
calculi: we will have to strive to provide sufficient connection
between reflective and non-reflective behavior so that the right
causal powers can be transferred across the boundary, without
falling into the opposite difficulty of making them so inter-

1b · 24	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

connected that confusion results. (An example is the issue of
providing continuation structures to encode control flow: we
will provide separate continuation structures for each reflective
level, to avoid unwanted interactions, but we will also have to
provide a way in which a designator of the lower level continu-
ation can be bound within the environment of the higher one,
so that a reflective program can straightforwardly refer to the
continuation of the process below it).

The interactions between levels can grow rather complex.
Suppose, to take another example, that you decide at some
point in your life that whenever some type of situation arises
(say, when you start behaving inappropriately in some fash-
ion), that you will pause to calm yourself down, and to review
what has happened in the past when you have let your basic
tendencies proceed unchecked. The dispassionate fellow that
you must now become is one that embodies, in their current
and on-going being, a decision made now at some future point to
reflect. Somehow, without acting in a self-conscious way from
now until such a circumstance arises, you have to make it true
that when the situation does arise, you will have left yourself
in a state that will cause the appropriate reflection to happen
then. By the same token, in the technical formalisms we design,
we have to provide the ability to descend (“drop down”) from a
reflected state to a non-reflected one, having left the base level
system in such a state so that, when certain situations occur in
the future, the system will automatically reflect at that point,
and thereby obtain access to the reasons that were marshalled
in support of the original decision.

	 1b.iii.β	 Theory relativity
Second, reflection has something, although just what remains
to be seen, to do with self-knowledge, as well as with self-ref-
erence—and knowledge, as has often been remarked, is inher-
ently theory-relative (in a way that pure self-reference is not).

a32

	 1b · Chapter 1

	 1b · 25

Draft Version 0.82 — 2019 · Jan · 4

Just as one cannot interpret the world except through using
the concepts and categories of a theory, one cannot reflect on
one’s self except in terms of the concepts and categories of a
theory of self. Furthermore, as is the case in any theoretical
endeavour, the phenomena under consideration under-deter-
mine the theory that accounts for them, even when all the data
are to be accounted for. In the more common case, when only
parts of the phenomenal field are to be treated by the theory,
an even wider set of alternative theories emerge as possibili-
ties. In other words, when you reflect on your own behavior, you
must inevitably do so in a somewhat arbitrary theory-relative way.

One of the mandates must be set for any reflective calculus,
therefore, is that it be provided, represented in its own inter-
nal language, with an (in some appropriate sense) complete
theory of how it is formed and of how it works. Theoretical
entities may be posited by this account that facilitate an ex-
planation of behavior, even though those entities cannot be
claimed to have a theory-independent ontological existence
in the behavior being explained. 3Lisp will be provided with
a “theory” of 3Lisp in 3Lisp, for example, reminiscent of the
metacircular interpreter demonstrated in McCarthy’s original
report6 and in the reports of Sussman and Steele7—but caus-
ally connected in novel ways. In providing this primitively sup-
ported reflective model, I adopt a standard account, in which
a number of notions commonly used to describe Lisp play a
central role—such as that of an environment, just mentioned,
and a parallel notion of a continuation. In spite of their famil-
iarity, however, these have historically remained Lisp-external
notions, being used only to describe (and model) Lisp, rather than
figuring as first-class objects internal to the language in any di-
rect sense. It is impossible in a non-reflective Lisp to define a
predicate true only of environments, since environments as
such do not exist in such dialects. Because its reflective ca-

6. McCarthy et al. (1965).
7. Sussman and Steele (1975); Steele and Sussman (1978a).

a33

1b · 26	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

pacities are defined in terms of an environment and contin-
uation-based theory, the notion of an environment becomes
language-internal to 3Lisp—with environment-representing
structures being passed around as first-class entities.

There are other possible Lisp theories, some of which dif-
fer substantially from the one I have chosen. For example, it is
possible to replace the notion of environment altogether (note
that the λ-calculus is explained without any such device). If a
reflective dialect were defined in terms of this alternative theo-
retical account (call such a language 3Lisp′), environments
would no longer be a language-internal concept. It would be
likely, however, that this theory would posit other kinds of ob-
ject, or other notions (such as α- and β-reduction), and in vir-
tue of being reflective in 3Lisp′ those notions would become
language-internal. In order to reflect you have to use some
theory and its associated theoretical concepts and entities.

	 1b.iii.γ	 ‘Reflective’ vs. ‘reflexive’
The third general point about reflection regards its name. I
have deliberately chosen the term ‘reflective,’ as opposed to
‘reflexive,’ since there are various senses (other recent research
reports not withstanding8) in which no computational pro-
cess, in any sense I can understand, can succeed in narcissisti-
cally thinking about the fact that it is at that very instant thinking
about itself thinking about itself thinking...and so on and so on,
like a transparent eye in a room full of mirrors.The kind of
reflecting I will consider—the kind that 3Lisp demonstrates
how, technically, to define, implement, and control—requires
that in the act of reflecting the process “take a step back” in
order to allow the interpreted process to consider what it was
just up to from a different vantage point, to bring into view
symbols and structures that describe its state “just a moment
earlier.” From the mere fact of a system’s having a name for
itself it does not follow that the system thereby automatically

8. Greiner and Lenat (1980), Genesereth and Lenat (1980).

a34

	 1b · Chapter 1

	 1b · 27

Draft Version 0.82 — 2019 · Jan · 4

acquires the ability to focus on its current instantaneous self, for
in the process of “stepping back” or reflecting, the “mind’s eye”
moves out of its own view, being replaced by an (albeit pos-
sibly complete) account of itself. (Though this description is
surely more suggestive than incisive, the technical work to be
presented will help to make it precise.)

	 1b.iii.δ	 Fine-grained control
Fourth, in virtue of reflecting a process can always obtain a
finer-grained control over its behavior than would otherwise
be possible. What was previously an inexorably atomic step-
ping from one state to the next is opened up so that each move
can be analyzed, countered, and so forth—and also be broken
down into constituent parts. As we will see in detail, in this
way reflective powers give a system a far more subtle and more
catholic—if less efficient—way of reacting to a world. The re-
quirement here is the usual one: for what was previously im-
plicit to be made explicit, albeit in a controlled and useful way,
without violating the ultimate truth that not everything can
be made explicit in a finite mechanism. This ability enables a
system designer to satisfy what might otherwise be taken to be
incompatible demands: (i) the provision of a small and elegant
kernel calculus, with crisp definition and strict behavior; and
at the same time (ii) the ability for the user (by using reflec-
tion) to be able to modify or adjust the behavior of this kernel
in peculiar or extenuating circumstances. One of reflection’s
great powers is that it allows such simplicity and flexibility to
be achieved simultaneously.

	 1b.iii.ε	 Partial detachment
This leads to the fifth general comment, which is that the abil-
ity to reflect never provides a complete separation, or an ut-
terly objective vantage point from which to view either oneself
or the world. No matter now reflective any given system or

1b · 28	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

person may be, it remains a truism that there is ultimately no
escape from being the person in question. Though as the dis-
sertation proceeds I will increasingly downplay any connec-
tion between the formal work presented here and human abil-
ities, it is still perhaps helpful to say that the kind of reflection
to be presented here is closer to what is known as detachment
or awareness than it is to a strict kind of self-objectivity (this
is why I have been and will remain systematically imprecise
about whether reflection is fundamentally a way to think about
oneself or a way to think about the world).

The environment example just mentioned provides an il-
lustration in a computational setting. As we will see in detail,
the environment in which are bound the symbols that a pro-
gram is using is, at any level, merely part of the embedding
background in which the program is running. The program
operates within that background, dependent on it but—in
the normal (unreflective) course of events—unable to access it
explicitly. The operation of reflecting makes explicit what was
just implicit: it renders visible what was tacit, what was in the
background. In doing so, however, a new background fills in to
support the reflective deliberations. Again, the same is true of
human reflection: you and I can interrupt our conversation in
order to sort out the definition of a contentious term, but—as
has often been remarked—we do so using other terms. Since
language is our inherent medium of communication, we can-
not step out of it to view it from a completely independent
vantage point. Similarly, while the systems I will show how to
build can at any point back up and mention what was previ-
ously used, in doing so more structured background will come
into implicit use.

This lesson, of course, has been a major one in philosophy
at least since Peirce; certainly Quine’s famous comment about
Ncurath’s boat holds as true for the systems we design as it
does for us designers.9

9. Quine (1953a), p. 79 in the 1963 edition.

a35

	 1b · Chapter 1

	 1b · 29

Draft Version 0.82 — 2019 · Jan · 4

	 1b.iii.ζ	 Kernel requirements
Sixth and finally, the ability to reflect is something that must
be built into the heart or kernel of a calculus. There are theo-
retically demonstrable reasons why reflective powers cannot
be “progrrammed up” as an addition to a calculus (though one
can of course implement a reflective machine in a non-reflective
one: the difference between these two must always be kept in
mind). The reason for this claim is that, as discussed in the
first comment, being reflective is a stronger requirement on
a calculus than simply being able to model the calculus in the
calculus, something of which any machine of Turing power
is capable (this is the “making it matter” that was alluded to
above). This will be demonstrated in detail; the crucial differ-
ence, as suggested above, comes in connecting the self-model
to the basic interpretation functions in a causal way, so that
(for example and very roughly) when a process “decides to as-
sume something,” it can thereby in fact assume it, rather than
simply constructing a model or self-description or hypothesis
that represents itself as assuming it. As well as “backing up” in
order to reflect on its thoughts or operations, in other words,
a reflective process must be able to “drop back down again” to
consider the world directly, in accord with the consequences
of those reflections. Both parts of this involve a causal con-
nection between the explicit programs and the basic work-
ings of the abstract machine, and such connections cannot
be “programmed into” a calculus that does not support them
primitively.

	 1b·iv	Reflection and Self-Reference
At the beginning of this section I said that my investigation
of reflection in general would primarily concern itself, because
of operating under the knowledge representation hypothesis,
with the self-referential aspects of reflective behavior. There has
been in the last century no lack of investigation into self-ref-

a36

1b · 30	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

erential expressions in formal systems, especially since it has
been exactly in these areas where the major results on paradox,
incompleteness, undecidability, and so forth, have arisen. It is
therefore helpful to compare the present enterprise with these
theoretical precursors.

Two facets of the computational situation show how very
different our concerns here will be from these more tradition-
al studies. First, although I do not formalise this, there is no
doubt in my work that I consider the locus of referring to be
an entire process, not a particular expression or structure (espe-
cially not a solitary expression or structure). Even though I will
posit declarative semantics for individual expressions, I will
also make evident the fact that the designation of any given
expression is a function not only of that expression itself, but
also of the state of the processor at the point of that expression’s
use. And to the extent that “use” is even a coherent term for
symbolic activity, it is the processor that uses the symbol; the
symbol does not use itself. To the extent that we want a system
to be self-referential, then, we want the process as a whole to be
able to refer, to first approximation, to its whole self, although
in fact this usually reduces to a question of it referring to some
of its own ingredient structure.

Achieving this goal is not only not met by providing the
system with self-referential structure, but even more strongly,
I avoid such self-referential structures entirely, exactly to avoid
many of the intractable (if not inscrutable) problems that arise
in such cases. Because of its λ-calculus base, it is perfectly pos-
sible in 3Lisp to construct apparently self-designating expres-
sions (at least up to type-equivalence: token self-reference is
more difficult). But from a practical point of view the system
of levels I will embrace will by and large exclude such local
self-reference from our consideration. Truly self-referential
expressions, such as This sentence is six words long, are unargu-
ably odd, and certain instances of them, such as the clichéd

a37

	 1b · Chapter 1

	 1b · 31

Draft Version 0.82 — 2019 · Jan · 4

This sentence is false, are undeniably problematic (strictly
speaking, of course, the sentence “This sentence is six words
long” contains a self-reference, but is not itself self-referential;
however we could use instead the composite term “this five
word noun phrase”—though it is not as immediately evident
that this leads to trouble). None of these truths impinge par-
ticularly on our quite different concerns.

The second comment (illustrating how different 3Lisp and
procedural calculi are from mathematical and logical studies
of self-reference) is this: in traditional formal systems, the ac-
tual reference relationship between any given expression and
its referent (whether that referent is itself or a distal object) is
mediated by an externally attributed semantical interpretation
function. The sentence “This sentence is six words long” does
not actually refer, in any causal full-blooded sense, to anything;
rather, we English speakers take it to refer to itself. The refer-
ence relation connecting that sentence in its role as sign, and
that same sentence in its role as referent or significant, flows
through us.

As I said in the previous section in the discussion of causal
connection, in constructing reflective computational systems
it is crucial that the causal mediation not be deferred through
an external observer. Reflection in a computational system has
to be causally connected internally, even if the semantical under-
standing of that causal connection is externally attributed. For
example, in 3Lisp there is a primitive relationship that holds
between a certain kind of symbol, called a handle (a canoni-
cal form of meta-descriptive rigidly-designating name) and
another symbol that, semantically, each handle designates.
I.e., handles are the 3Lisp structural form of quotation. Sup-
pose that h1 is a handle, and that s1 is some structure that h1
refers to. Strictly speaking, there is an internal structural re-
lationship between h1 and S1, which we, as external semanti-
cal attributors, take in addition to be a reference relationship.

1b · 32	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

Until we can construct computational systems that are what I
have called semantically original. the semantical import of that
relationship will always remain externally mediated. But the
causal relationship between h1 and s1 must be internal: oth-
erwise there would be no way for the internal computational
processes to treat that relationship in any way that mattered.

This may be clearer if put a bit more formally. Suppose that
φ is the externally attributed semantical interpretation func-
tion, and that ζ is the primitive, effective structural function
that relates handles to those structures we call their referents.
It is ζ that will allow the processor to produce or obtain causal
access to a structure s given that h is its handle. Thus in the
prior example, it is true both that φ(h1)=s1, due to our exter-
nal semantical attribution of reference to h, and that ζ(h1)=s1.
More generally, we know, given the 3Lisp architecture, that:

	 ∀h,s [[handle(h) ∧ ζ(h)=s]] ≡ [φ(h)=s]]	 [2]

However, though in some sense it is strictly true, this equation
in no way reveals the structure of the relationship between φ
and ζ; it merely states their extensional equivalence. More re-
vealing of the fact that I take the relationship between handles
and referents to be a reference relation (if I may wantonly reify
relationships for a moment) is the following:

	 φ(ζ)=φ					 [3]

Of, rather, since not all symbols are handles. as:

	 φ(ζ) ⊂ φ				 	 [4]

The requirement that reflection matter, to summarize, is a cru-
cial facet of computational reflection—one without precedent
in pre-computational formal systems. What is striking is that
the mattering cannot be derived from the semantics, since it
would appear that mattering—which requires a real causal
connection—is a precursor to semantical originality, not some-

a38

a39

	 1b · Chapter 1

	 1b · 33

Draft Version 0.82 — 2019 · Jan · 4

thing that can follow semantical relationships. Put another
way, in the inchoately semantical computational systems I am
trying to build, the reference relationships between internal
meta-level symbols and their internal referents (the semanti-
cal relationships crucial in reflective considerations) may have
to be causal in two distinct ways: once mediated by us, who
attribute semantics to those symbols in the first place, and a
second time internally, so that the appropriate causal behavior,
to which we attribute semantics, can be engendered. On that
day when we succeed in constructing semantically original
mechanisms, those two presently independent causal connec-
tions may merge; until then we will have to content ourselves
with causally original but semantically derivative systems. The
reflective dialects I will propose will all be of this form.

	 1c	A Process Reduction Model of Computation
I next want to sketch the model of computation on which the
analysis and design of 3Lisp will depend.

I take processes to be the fundamental subject matter;
though I will not define the concept precisely, we can assume
that a process consists approximately of a connected or co-
herent set of events through time. The reification of processes
as objects in their own right—composite and causally engen-
dered—is a distinctive, although not distinguishing, mark of
computer science. Processes are inherently temporal, but not
otherwise physical: they do not have spatial extent, although
they must have temporal extent Whether there are more ab-
stract dimensions in which it is appropriate to locate a process
is a question I will sidestep; since this entire characterization is
by way of background for another discussion, I will rely more
on examples and on the uses to which we put these objects
than on explicit formulation.

I will depict processes as in figure 1, on the next page. The
boundary of the icon is intended to signify the boundary or

a40

1b · 34	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

surface of the process itself, taken to be the interface between
the process and the world in which it exists (I take objectify-
ing processes to involve “carving them” out of a world in which
they can then be said to be embedded). Thus the set of events
that collectively form the behavior of a coher-
ent process in a given world would consist of
all events on the surface of this abstract ob-
ject. This set of events could be more or less
specifically described: we might simply say
that the process had certain gross input/out-
put behavior (with “input” and “output” being
defined as a certain class of surface pertur-
bation—an interesting and non-trivial problem), or we might
account in tine detail for every nuance of the process’ behavior,
including the exact temporal relationships between one event
and the next, and so forth.

It is crucial to distinguish these more and less fine-grained
accounts of the surface of a process, on the one hand—its be-
havioral interface or interactions with its environment—from
compositional accounts of its interior, on the other. That a
process has such an “interior” is again a striking assumption
throughout computer science: the role of what in computer
science are universally called interpreters, though I myself
will use the term processors, is a striking example. Suppose
for instance that one were interact with a so-called “Lisp-
based editor.” It is standard to assume that the Lisp interpret-
er (processor) is an ingredient process within the process with
which you interact: moreover, it is understood to be the locus
of anima or agency inside your editor process, that in turn sup-
plies the temporal action or activity in the editor itself. That
is, of all the interior ingredients constituting the editor, only
the interpreter (processor) is understood to be active; all other
components—specifically, the “editor program” and any as-
sociated data structures—will be static or at least passive, at

a41

Figure 1

	 1b · Chapter 1

	 1b · 35

Draft Version 0.82 — 2019 · Jan · 4

least at this level of abstraction. Yet the one active ingredient
(interior) process never appears as the surface of the editor: no
user interaction with the editor (via the keyboard, say) is it-
self directly an interaction with the Lisp processor. Rather, the
Lisp processor, in conjunction with some appropriate (pas-
sive) Lisp program, together engender the behavioral surface
with which the user interacts.

Computer science has studied a variety of such architec-
tures—or classes of architecture; here I will briefly mention
just two, but will then focus, throughout the rest of the dis-
sertation, on just one. Every computational process, I will as-
sume (I will take on the question of which processes we are
disposed to call computational in a moment), has within it at
least one other process, which, singly or collectively, supplies
the animate agency of the overall constituted process.

I will call this model a process reduction model of com-
putation. since at each stage of computational reduction a given
process is reduced in terms of constituent symbols and other
processes. There may be more than one internal process (in
what are known as parallel or concurrent processes), or there
may be just a single one (known as serial processes). Reduc-
tions of processes that do not posit an interior process as the
source of the agency I will consider to be outside the realm of
computer science proper—though of course some such reduc-
tion must at some point be accounted for, if the engendered
process is ever to be realized. I will view these alternatives
forms of reduction—from process to, say, behaviors of physi-
cal mechanism—to fall more within physics or electronics (or
perhaps computer engineering) than within computer science
per se. What is critical is that at some stage in a series of com-
putational reductions this leap from the domain or processes
to the domain of mechanisms be taken, as for example in the
explaining how the behavior of a set of logic circuits consti-
tutes a processor (interpreter) for the microcode of a given

a42

1b · 36	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

computer. Given this one account of what may reasonably be
called the realization of a computational process, an entire
hierarchy of processes above it may obtain indirect realiza-
tion through a series of process reductions of the above form.

For example, if that micro-
code processor interprets a
set of instructions that are
the program for a macro
machine (say, a cpu), then
a macro processor—an in-
terpreter (processor) for
the resulting “machine lan-
guage” may be said to exist.

Similarly, that macro machine may in turn interpret (process)
a machine language program that implements snobol: thus
by two stages of “process composition” (i.e., the inverse of pro-
cess reduction) a snobol processor is also realized.

In order to make this talk of processors and so forth a little
clearer, it helps to diagram two different forms of process re-
duction: what I will call [parallel] reduction and [serial] reduc-
tion. Taking ‘⟹’ to mean “reduces to,” figure 2 depicts [parallel]
reduction, by showing that process p reduces to a set of five in-
terior processes (p1…p5). How these processes [interact] I will
not here say: I merely assume that those five ingredient pro-
cesses do interact in some fashion, so that taken as a composite
unity their total behavior is (i.e., can be “interpreted” as) the
behavior of the thereby-constituted process. Responsibility for
the surface of the total process p is assumed to be shared in
some way amongst the five ingredients. Examples of this sort
of reduction may be found at any level of the computational
spectrum—from metaphors of disk-controllers communicat-
ing with bus mediators communicating with central proces-
sors, to the message-passing metaphors in such Artificial In-
telligence languages as acti and Smalltalk and so forth.10

Figure 2

10. For references on the message-passing metaphor, see Hewitt et al. (1974)

a43

a45

a44

(cont’d)

	 1b · Chapter 1

	 1b · 37

Draft Version 0.82 — 2019 · Jan · 4

[Parallel] reductions will receive only passing mention in
this dissertation; I discuss them only in order to admit that
the model of reflection that I will propose is not (at least at
present) sufficiently general to encompass them. Instead I
will focus instead on the more common model that I am call-
ing [serial] reduction, pictured in figure 3. In such cases the
overall process is composed of what I will call a processor

and a structural field. The former ingredient is the locus
of active agency; as already mentioned, it is what is typically
called an ‘interpreter,’ but from here on I will avoid that term
(or when using it, do so within quotation marks), because of
its confusion with semantical notions of interpretation from
the declarative tradition (I will have much more to say about
this confusion in [dissertation] chapter 3). The latter ingredi-
ent is intended to include both the program or the program’s
data structures (or both); it is often taken to consist of a set
of symbols, although that term is so semantically loaded that

for the time being I will avoid
it as well.

One benefit of the [serial]
model of process reduction is
that it can be used to under-
stand both language design
and the construction of par-
ticular programs. For example,
we can characterize Fortran in
its terms, by positing a Fortran

“processor” that computes over (examines, manipulates, con-
structs, reacts to, and so forth) elements of the Fortran struc-
tural field, which includes primarily an ordered sequence of
Fortran instructions, format statements, arrays, etc. Suppose
you were to set out to develop a Fortran “program” (really:
process) to manage your financial affairs—which for discus-

Figure 3

and Hewitt (1977); for ACT1 see Lieberman (1987); for Smalltalk see Gold-
berg (1981), Ingalls (1978).

a46

a47

1b · 38	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

sion I will call Chequers. To do this, you would specify a set
of Fortran data structures, and design a process to interact
with them. In terms of the model, those data structures—the
tables that list current balances, recent deposits, interest rates,
currency conversion factors, and so on—would constitute the
structural field of the first [serial] process reduction of Che-
quers. The “program” (i.e., process) you design to interact with
this data base I will simply call pc. Thus the first Chequers
[serial] reduction would be pictured in the model as depicted
in figure 4.

We are assuming, however, that pc is specified by a Fortran
program. pc is not itself that program—or any program, for
that matter; pc is a process, and programs are static, requiring
interpretation by a processor in order to engender processes or
behavior. Rather, pc can itself be understood in terms of a sec-
ond [serial] reduction, of the program c that, when processed
by the Fortran processor, yields process pc as a result. In toto,
that is, the development of Chequers involves have a double

[serial] reduction, depicted in
figure 5.

A host of questions would
have to be answered before
this model could be made pre-
cise (before, for example, one
could develop anything like an
adequate mathematical treat-
ment of these intuitions). For

example, the data structures in the foregoing example them-
selves have to be implemented in Fortran as well. However to
fill out the model just a little, we can suggest how we might, in
these terms, define a variety of commonplace terms of art of
computer science.

First, I take the computer science term ‘interpreter’ (which,

Figure 4

	 1b · Chapter 1

	 1b · 39

Draft Version 0.82 — 2019 · Jan · 4

to repeat, I will call a processor) to be used in the following way:

Interpreter: A process that is the interior process in an
[serial] reduction of another interior process.

For example, the process pc developed in the course or imple-
menting Chequers is not an interpreter, on this definition, be-
cause although it is an ingredient process (it is not, in particu-

lar, Chequers itself, but rather
interior to Chequers), it is nev-
ertheless interior only singly.
The process thereby consti-
tuted—viz., Chequers—is not
itself an interior process. On
the other hand, it is legitimate
to call the process that “inter-
prets” (i.e., processes) Lisp pro-
grams an interpreter, because
Lisp programs are structural

field arrangements that engender other interior processes that
work over data structures so as to yield yet other processes.

Second, I would argue that we use “compilation” as follows:

Compilation: The transformation or translation of a
structural field arrangement s1 to another structural field
arrangement s2, in such a way that the surface behavior of
the process q1 that would result from the processing of s1 by
some processor p1 is equivalent—modulo some appropriate
equivalence metric—to the surface behavior of the process
q2 that would result from the processing of s2 by some other
processor p2.

For example, I spoke above about a Fortran “processor,” but
of course such a processor is rarely if ever realized. Rather,
Fortran programs are typically compiled—usually into some
form of machine language. Consider the compiler that com-

Figure 5

1b · 40	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

piles Fortran into the machine language of the ibm 360. Then
the compilation of a particular Fortran program cF into an
ibm 360 machine language program c360 would be correct
just in case the surface of the process that would result from
the processing of cF by the (hypothetical) Fortran processor
would be equivalent to the process that will actually result by
the processing of c360 by the basic ibm 360 machine language
processor.

In sum, compilation is defined relative to two [serial] re-
ductions, and is mandated only to ensure equivalence, modulo
an appropriate metric, of resulting process surfaces.

Third, by ‘implementation’ I take it that we refer to two kinds
of construction.

Process Implementation (i.e., programming): The
construction of a structural field arrangement s for some
processor p such that the surface of the process that results
from the processing of s by p yields the desired behavior—
i.e., desired process q.

More interesting is to implement a computational language.
In terms of the model, we can characterize (serial) computer
languages as follows:

Computational Language: The architecture of a struc-
tural field and a behaviorally specified processor for it, in
which are specified both possible arrangements or configura-
tions of the field, and the behavior that would result from the
processing of them by the specified processor.

In terms of this definition, we can characterize the implemen-
tation of a language:

Language Implementation: The provision of a process
p that can be [serially] reduced to the structural field and
interior processor of the language being implemented.

	 1b · Chapter 1

	 1b · 41

Draft Version 0.82 — 2019 · Jan · 4

To implement Lisp, in other words, all that is required is the
provision of a process that behaviorally appears to be a consti-
tuted process consisting of the Lisp structural field and the in-
terior Lisp processor. Thus I am completely free of any actual
commitment as to the reality, if any, of the implemented field.

Typically, one language is implemented in another by con-
structing some arrangement or set of protocols on the data
structures of the implementing language to encode the struc-
tural field of the implemented language. and by constructing a
program in the implementing language that, when processed
by the implementing language’s processor, will yield a process
whose surface can be taken as a processor for the interpreted
language, with respect to that encoding of the implemented
language’s structural field. (By a program I refer to a structural
field arrangement within an interior processor—i.e., to the in-
ner structural field of a double reduction—since programs are
structures that are interpreted to yield processes that in turn
interact with another structural field [the data structures] so
as to engender a whole constituted behavior.)

Finally, it is straightforward to imagine how this model
could be used in cognitive theorizing. A weak computational
model of some mental phenomenon or behavior ψ would be
a computational process that was claimed to be superficially
equivalent to ψ (as always: modulo some equivalence metric).
Note that surface equivalence of this sort can be arbitrarily
fine-grained. Just because a given computational model pre-
dicts the most minute temporal nuances revealed by click-stop
experiments and so forth, that does not imply that anything
other than surface equivalence has been achieved In contrast, a
strong computational model would posit not only surface but
interior architectural structure. Thus for example Fodor’s recent
claim of mental modularity11 is a coarse-grained but strong
claim: he suggests that the dominant or overarching compu-
tational reduction of the mental is closer to a [parallel] than to
a [serial] reduction.

a48

11. Fodor (forthcoming).

a49

a50

1b · 42	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

 • • •
This has been the briefest of sketches of a substantial subject.
Ultimately, it should be formalised into a generally applicable
and mathematically rigorous account. In this dissertation I
will merely use its basic conceptual structure to organise the
analysis, and will also base the 3Lisp architecture on it. Even
for these purposes, however, it is important to identify three
properties that all structural fields must manifest.

First, over every structural field there must be defined a
locality metric or measure—since (in concert with physical
constraint) the interaction of a processor with a structural field is
always constrained to be locally continuous.

Informally, one can think of the processor looking at the
structural field with a pencil-beam flashlight—able to see and
react only to what is currently illuminated (more formally, the
behavior of the processor must always be a function only of its
internal state plus the current single structural field element
under investigation). Why it is that the well-known joke about
a come-from statement in Fortran is funny, for example, can
be explained only because this it violates this local accessibil-
ity constraint (it is otherwise perfectly well-defined). Note as
well that in logic, the λ-calculus, and so forth, no such locality
considerations come into play. In addition, the measure space
yielded by this locality metric need not be symmetrical, as Lisp
demonstrates; from the fact that a is accessible from b it does
not follow that b must be accessible from a.

Second—and this is a major point, with which we will need
to grapple considerably in our considerations of semantics—
structural field elements are taken to be significant or meaning-
ful. This is why we tend to call them symbols. In particular, I
will count as computational only those processes consisting of
ingredient structures and events to which we, as external ob-
servers, attribute semantical value or import.

a51

a53

a52

	 1b · Chapter 1

	 1b · 43

Draft Version 0.82 — 2019 · Jan · 4

The reason I do not consider a car to be a computer, even if
I am tempted to think of its electronic fuel injection module
computationally, hinges explicitly on this issue of semantical
attribution. The main components of a car we understand in
terms of mechanics—forces, torques, plasticity, geometry, heat,
combustion, and so on. These are not “interpreted” or seman-
tical notions; or to put the same point another way, explain-
ing a car does not require positing any externally attributed
semantical interpretation function in order to make sense of a
car’s inner workings. With respect to a computer, however—
whether abacus, calculator, electronic fuel injection system, or
a full-scale digital computer—the best explanation is exactly
in terms of the interpretation of the ingredients, even though
the machine itself is not allowed access to that interpretation
(for fear of violating the strictures of mechanism). Thus while
I may know that the arithmetic logical unit in my machine
works in such and such a way, I nevertheless “understand” its
workings in terms of addition, logical operations, and so forth,
all of which speak about the interpretations of its parts and
workings, rather than speaking about them directly. In other
words the proper use of the term “computational” is as a predi-
cate on explanations, not on artefacts.

The third constraint follows directly on the second: in spite
of this semantical attribution, the interior processes of a com-
putational process must interact with these structures and
symbols and other processes in complete ignorance and disre-
gard of any this externally-attributed semantical weight. This is
the substance of the claim that computation is formal symbol
manipulation—that computation has to do with the interac-
tion with symbols solely in virtue of their spelling or shape.
We computer scientists are so used to this formality condi-
tion—this requirement that computation proceed “syntacti-
cally”—that we are liable to forget that it is a major claim, and
are in danger of thinking that the simpler phrase “symbol ma-

a55

A56

a54

1b · 44	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

nipulation” means formal symbol manipulation. Nevertheless,
part of the semantical reconstruction to be undertaken here
will rest on a claim that, in spite of its familiarity, we have not
taken semantical attribution seriously enough.

A book should be written on all these issues; I mention them
here only because they will play an important role in the up-
coming reconstruction of Lisp. There are obvious parallels and
connections to be explored, for example, between this external
attribution of significance to the ingredients of a computa-
tional process, and the issue of what would be required for a
computational system to be semantically original in the sense
discussed at the beginning of the previous section. This is not
the place for such investigations; but as §1·d and [disserta-
tion] chapter 3 will make clear, below, this attribution of sig-
nificance to Lisp structures must be part of the full declarative
semantics for Lisp. The present moral is merely that, although
including such interpretation within the scope of an account
of a language’s semantics has not (to my knowledge) been
done before, the attribution of semantic interpretation itself
is neither something new, nor something specific to Lisp’s cir-
cumstances. Externally attributed (declarative) significance is
a foundational part of computing, even if not yet fully recog-
nized in computer science.

	 1d	The Rationalization of
		 Computational Semantics

From even the few introductory sections that have been pre-
sented so far, it is clear that semantical vocabulary will perme-
ate the upcoming analysis. In discussing the Knowledge Rep-
resentation and Reflection hypotheses, I talked of symbols
that represented knowledge about the world, and of structures
that designated other structures. In the model of computation
just presented, I said that the attribution of semantic signifi-

	 1b · Chapter 1

	 1b · 45

Draft Version 0.82 — 2019 · Jan · 4

cance to the ingredients of a process was a distinguishing mark
of computing. Informally, no one could possibly understand
Lisp without knowing that the atom t stands for truth, and nil
for falsity. If we subscribe to the view that computer science
is about formal symbol manipulation, we admit not only that
the subject matter involves symbols, but also that any compu-
tations over them must occur in ignorance of their semanti-
cal weight (you cannot treat a non-semantical object, such
as an eggplant or a waterfall, formally, unless you first, non-
standardly, set it up as a symbol; the mere use of the predi-
cate ‘formal’ assumes that its object is significant, or has been
attributed significance, even if on the side). Even at the very
highest levels, when we say that a process—human or com-
putational—is reasoning about a given subject, or reasoning
about its own thought processes, we implicate semantics, since
the term ‘semantics’ can (at least in part) be viewed as merely a
fancy word for aboutness.

It is therefore necessary for me to add to last section’s ac-
count of processes and process reduction a corresponding
accounting of the semantical assumptions I will make and
techniques I will use, and to make clear what I mean when
we say that I will subject computational dialects to semantical
scrutiny.

	 1d·i	Pre-Theoretic Assumptions
When we engage in semantical analysis, I do not take it to be
our goal simply to provide a mathematically adequate specifi-
cation of the behavior of one or more procedural calculi that
would enable us, for example, to prove that programs will meet
some specification of what they were designed to do. That is: by
“semantics” I do not simply mean a mathematical formulation
of the properties of a system, formulated from a meta-theoretic
vantage point. (Unfortunately, in my view, in some writers the
term seems to be acquiring this weak connotation.) Rather, a57

1b · 46	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

I take semantics to have fundamentally to do with meaning
and reference and so forth—whatever they come to—as para-
digmatically manifested in human thought and language (as
was mentioned in §1b·i). I am therefore interested in seman-
tics for two reasons: first, because, as I said at the end of the
last section, all computational systems are marked by external
semantical attribution; and second, because semantics is the
study that will reveal what a computational system is reason-
ing about, and a theory of what a computational process is rea-
soning about is a pre-requisite to a proper characterization of
reflection.

Given this agenda, I will approach the semantical study of
computational systems with a rather precise set of guidelines.
In particular, I will require that any subsequent semantical
analyses answer to the following two requirements, emerging
from the two facts about processes and structural fields laid
out at the end of section:

1.	 They should manifest the fact that we understand
computational structures in virtue of attributing to
them semantical import;

2.	 They should make evident that, in spite of such at-
tribution, computational processes are formal, in that
they must be defined over structures independent of
their semantical weight.

These two principles alone entail the requirement of a double
semantics, since the attributed semantics mentioned in the
first premise includes not only a pre-theoretic understanding
of what happens to computational symbols, but also a pre-com-
putational intuition as to what those symbols stand for. It fol-
lows that we will have to make clear the declarative semantics
of the elements of (in our case) the Lisp structural field, as well
as establishing their procedural import

I will explore these results in more detail below, but in bare

a58

	 1b · Chapter 1

	 1b · 47

Draft Version 0.82 — 2019 · Jan · 4

outlines the argument is straightforward. Most of the results
are consequences of the following basic tenet (relativised here
to Lisp, for perspicuity, but the same would hold for any other
calculus):

What Lisp structures mean is not a function of how they are
treated by the Lisp processor. Rather, how they are treated is
a function of what they mean.

For example, I take it that the Lisp expression “(+ 2 3)” evalu-
ates to “5” for the undeniable reason that “(+ 2 3)” is under-
stood as a complex name of the number that is the successor
of four. We arrange things—we define Lisp in the way that
we do—so that the numeral 5 is the value because we know in
advance what (+ 2 3) stands for. To borrow a phrase from Bar-
wise and Perry, this reconstruction is an attempt to “regain our
semantic innocence”—an innocence that still permeates tradi-
tional formal systems (logic, the λ-calculus, and so forth), but
that has been lost in the attempt to characterize the so-called
“semantics” of computer programming languages.

That “(+ 2 3)” designates the number five is self-evident,
as are many other examples on which I will begin to erect
my denotational account. I have also already alluded to the
equally unarguable fact that (at least in certain contexts) t and
nil designate Truth and Falsity. Similarly, it is commonplace
use the term “car” as a descriptive function to designate the
first element of a pair, as for example in the English sentence
“I noticed that the car of that list is the atom lambda.” The
important point is that, in that English sentence, the phrase
“car of that list” occurs as a name or a designator—not as a
procedure call. Nothing happens, when I say it; it is not executed.
It is merely a way of pointing to something—to the first ele-
ment of the list pointed to by the ingredient phrase ‘that list.’
Similarly, it is hard to imagine an argument against the idea
that “(quote x)” designates x—in contrast to the claim, which

a60

a61

a59

1b · 48	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

is also often heard, that does not speak at all about naming or
designation, but only about procedural treatment: that quote
is a function that holds off the evaluator.

In sum, the moral is not so much that formulating the de-
clarative semantics of a computational formalism is difficult,
as that it must be recognized as an important thing to do.

	 1d·ii	Semantics in a Computational Setting
In the most general form that I will use the term semantics,12 a
semantical investigation aims to characterize the relationship
between a syntactic domain and a semantic domain—a re-
lationship typically studied as a mathematical function map-
ping elements of the first domain into elements of the second.
I will call such a function an interpretation function (it was
in order to be able to talk about this function, which must

be sharply distin-
guished from what is
called an ‘interpreter’
in computer science,

that I switched to the term processor). Schematically, that it, as
shown in figure 6, the function φ is taken to be an interpreta-
tion function from s to d.

In a computational setting, this simple situation is made
more complex because we are studying a variety of interact-
ing interpretation functions. In particular, figure 7 identifies
the relationships between the three main semantical functions
that will permeate the analysis of 3Lisp. θ is the interpretation
function mapping notations into elements of the structural
field, φ is the interpretation function making explicit our at-
tributed semantics to structural field elements, and ψ is the
function formally computed by the language processor. ω will
be explained below; it is intended to indicate a φ-semantic
characterization of the relationship between s1 and s2, whereas

12. See the postscript, however, where I in part disavow this fractured
notion of syntactic and semantic domains.

Figure 6

a62

	 1b · Chapter 1

	 1b · 49

Draft Version 0.82 — 2019 · Jan · 4

ψ indicates the formally computed relationship—a distinction
similar, as I will soon argue, to that between the logical rela-
tionships of derivability (⊢) and entailment (⊨).

The names have been chosen for mnemonic convenience:
‘ψ’ by analogy with psychology, since it is a study of the inter-
nal relationships between and among symbols, all of which
are within the machine (‘ψ’ in this sense is meant to signify
psychology narrowly construed, in the sense of Fodor, Putnam,
and others13). The label ‘φ’, on the other hand, chosen to sug-
gest philosophy, signifies the relationship between a set of sym-
bols and the world. By analogy, suppose we were to accept the
hypothesis that people represent or encode English sentences
in an internal mental language called mentalese (suppose, in
other words, that we accept the hypothesis that our minds
are computational processes). If you say to me “A composer

who died in 1750” and I
respond with “Johan Se-
bastian Bach”, then, in
terms of the figure, the
first phrase, qua sentence
of English, would be n1; it
would “notate” or “express”
the mentalese structure
n1, and the person who
lived in the seventeenth

and eighteenth centuries would be the referent d1. Similarly,
my reply would be n2, the mentalese fragment that I thereby
express would be s2, and d2 would again be the long-dead com-
poser. I.e., in this case d1 and d2 would be identical.

n1, s1, d1, n2, s2, and d2, in other words, need not necessarily
all be distinct; in a variety of different circumstances two or
more of them may be one and the same entity. I will exam-
ine cases, for example, of self-referential designators, where s1
and d1 are the same object. Similarly, if, on hearing the phrase

Figure 7

13. Fodor (1980).

a63

a65

a64

1b · 50	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

“the pseudonym of Samuel Clemens,” I reply “Mark Twain”,
then d1 and n2 are identical. By far the most common situa-
tion, however, will be as in the Bach example, where d1 and
d2 are the same entity—a circumstance in which I will say
that the function ψ is designation-preserving. As we will
see in the next section, the α-reduction and β-reduction of the
λ-calculus, and the derivability relationship (⊢) of logic, are
both designation-preserving relationships. Similarly, the 2Lisp
and 3Lisp processors I present will be designation-preserving,
whereas 1Lisp’s and Scheme’s evaluation protocols, as we have
already indicated, are not.

In the terms of this figure, the argument I will present in
[dissertation] chapter 3 will run roughly as follows. First I will
review both logic systems and the λ-calculus, to illustrate the
general properties of the φ and ψ employed in those formal-
isms, for comparison. Next I will shift towards computational
systems, beginning with Prolog, since it has evident connec-
tions to both declarative and procedural traditions. Finally
I will take up Lisp. I will argue that it is not only coherent,
but in fact natural, to define a declarative φ for Lisp, as well
as a procedural ψ. I will also sketch some of the mathematical
characterization of these two interpretation functions. It will
be clear that though similar in certain ways, they are nonethe-
less crucially distinct. In particular, I will be able to show that
1Lisp’s ψ (eval) obeys the following equation. I will say that
any system that satisfies this equation has the evaluation

property, and the statement that, for example, the equation
holds of 1Lisp the evaluation theorem. (The formulation
used here is simplified for perspicuity, ignoring contextual
relativisation; 𝒮 is the set of structural field elements.)

	 ∀s∊𝒮 [if φ(s)∊𝒮	then ψ(s)=φ(s)	 [5]
		 else φ(ψ(s))=φ(s)]

1Lisp’s evaluator, in other words, de-references just those

a66

a67

a68

a69

	 1b · Chapter 1

	 1b · 51

Draft Version 0.82 — 2019 · Jan · 4

structures whose referents lie within the structural field, and is des-
ignation-preserving otherwise. Where it can, in other words,
1Lisp’s ψ (i.e, its processor) implements φ; when it cannot, ψ
is φ-preserving, although what it does do with its argument in
this case has yet to be explained (saying that it preserves φ is

too easy: the identity function
preserves designation as well, but
eval is not the identity function).

The behavior described in [5]
is unfortunate, in part because
the question of whether φ(s)∊𝒮
is not in general decidable, and
therefore even if one knows of
two expressions s1 and s2 that s2
is ψ(s1), one still does not neces-

sarily know the relationships between φ(s1) and φ(s2). More
seriously, it makes the explicit use of meta-structural facilities
extraordinarily awkward, thus defeating attempts to engender
reflection. I will argue instead for a dialect described by the
following alternative (again in skeletal form):

	 ∀s∊𝒮 [[φ(ψ(s))=φ(s)] ∧ [normal-form(ψ(s))]]	 [6]

When I prove it for 2Lisp, I will call this equation the normal-

isation theorem; I will say that any system satisfying it has
the normalisation property. Diagrammatically. the circum-
stance it describes is pictured in figure 8. Such a ψ, in other
words, is always φ-preserving. In addition, it relies on a notion
of normal-formedness, which we will have to define.

In the λ-calculus, ψ(s) would definitionally be in normal-
form, since in that calculus normal-formedness is defined in
terms of the non-applicability of any further β-reductions. As I
will argue in more detail in [dissertation] chapter 3, this makes
the notion less than ideally useful. In designing 2Lisp and
3Lisp, in contrast, I will define normal-formedness in terms of

Figure 8

1b · 52	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

the following three (provably independent) properties:

1.	 Normal-form designators must be context-indepen-

dent, in the sense of having the same declarative and
procedural import independent of their context of use;

2.	 They must also be side-effect free, implying that any
(further) procedural treatment of them will have no
affect on the structural field or state of the processor;

3.	 They must be stable, meaning that they normalise to
themselves in all contexts.

It will then require a proof that all 2Lisp and 3Lisp results
(all expressions ψ(s)) are in normal-form. In addition, from
the third (stability) property, plus this proof that ψ’s range
includes only normal-form expressions, it will be possible to
show that ψ is idempotent, as was suggested earlier (ψ=ψ°ψ—
i.e., ∀s ψ(s)=ψ(ψ(s)))—a property of 2Lisp and 3Lisp that
will ultimately be shown to have substantial practical benefits.

There is another property of normal-form designators in
2Lisp and 3Lisp, beyond the three requirements just listed,
which follows from the category alignment mandate. In de-
signing those dialects I will insist that the structural category
of each normal form designator be determinable from the
type of object designated, independent of the structural type
of the original designator, and independent as well of any of
the machinery involved in implementing ψ (this is in distinc-
tion to the received notion of normal form employed in the
λ-calculus, as will be examined in a moment). For example,
I will be able to demonstrate that any term that designates
a number will be taken by ψ into a numeral, since numerals
will be defined as the normal-form designators of numbers.
In other words. from just the designation of a structure s the
structural category of ψ(s) will be predictable, independent of
the form of s itself (although the token identity of ψ(s) cannot
be predicted on such information alone, since normal-form

	 1b · Chapter 1

	 1b · 53

Draft Version 0.82 — 2019 · Jan · 4

designators are not necessarily unique or canonical). This cat-
egory result, however, will also need to be proved: I call it the
semantical type theorem.

That normal form designators cannot be canonical arises,
of course, from computability considerations: one cannot de-
cide in general whether two expressions designate the same
function, and therefore if normal-form function designators
were required to be unique, it would follow that expressions
that designated functions could not necessarily be normalised.
Instead of pursuing that approach, however, which I would
view as unhelpful, I will instead adopt a non-unique notion
of normal-form function designator, which still satisfies the
three requirements specified above; such a designator will by
definition be called a closure. All well-formed function-desig-
nating expressions, on this scheme, will succumb to a standard
normalisation.

Some 2Lisp (and 3Lisp) examples will illustrate all of these
points. I assume that the numbers are included in the semanti-
cal domain, a syntactic [i.e., structural] class of numerals are
taken to be normal-form number designators. The numerals
are canonical (one per number), and as usual are side-effect
free and context-independent; thus they satisfy the require-
ments on normal-formedness. The semantical type theorem
says that any term that designates a number will normalise to
a numeral: thus if x designates five and y designates six, and if
+ designates the addition function, then we know (can prove)
that (+ x y) designates eleven and will normalise to the nu-
meral 11. Similarly, there are two boolean constants $t and $f
that are normal-form designators of Truth and Falsity, respec-
tively, and a canonical set of rigid structure designators called
handles that are normal-form designators of all s-expressions
(including themselves). And so on: closures are normal-form
function designators, as mentioned above; I will also specify

a70

1b · 54	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

normal-form designators for sequences and other types of
mathematical objects included in the semantic domain.

I have diverted the discussion away from general semantics,
onto the particulars of 2Lisp and 3Lisp, in order to illustrate
how the semantical reconstruction I endorse impinges on
language design. However, it is important to recognize that
the behavior mandated by [6] is not new: this is how all stan-
dard semantical treatments of the λ-calculus proceed, and the
designation-preserving aspect of it is approximately true of
the inference procedures in logical systems as well, as we will
see in detail in [dissertation] chapter 3. Neither the λ-calculus
reduction protocols, in other words, nor any of the typical in-
ference rules one encounters in mathematical or philosophical
logics, de-reference the expressions over which they are defined.
In fact it is hard to imagine defending equation [5]. Rather, it
seems reasonable to speculate that because Lisp includes its
syntactic domain within the semantic domain—i.e., because
Lisp has quote as a primitive “operation”—a semantic inel-
egance was inadvertently introduced into the design of the
language that has never been corrected. If this is right, then
the proposed rationalization of Lisp can be understood as an
attempt to regain the semantical clarity of predicate logic and
the λ-calculus, achieved in part by connecting the language of
the computational calculi with the language in which prior lin-
guistic systems have been studied.

It is this regained coherence that I am claiming is a neces-
sary prerequisite to a coherent treatment of reflection.

One final comment The consonance of [6] with standard se-
mantical treatments of the λ-calculus, and the comments just
made about Lisp’s inclusion of quote, suggest that one way to
view the present project is as a semantical analysis of a vari-
ant of the λ-calculus with quotation. In the Lisp dialects I
consider, I will retain sufficient machinery to handle side ef-

a71

	 1b · Chapter 1

	 1b · 55

Draft Version 0.82 — 2019 · Jan · 4

fects, but it is of course always possible to remove such facili-
ties from a calculus. Similarly, we could remove the numerals
and atomic function designators (i.e., the ability to name com-
posite expressions as unities). What would emerge would be
a semantics for a deviant λ-calculus with some operator like
quote included as a primitive syntactic construct—a seman-
tics for a meta-structural extension of the already higher-order
λ-calculus. I will not pursue this line of attack further in this
dissertation, but, once the mathematical analysis of 2Lisp is
in place, such an analysis should emerge as a straightforward
corollary.

	 1d·iii	Recursive and Compositional Formulations
The previous sections have briefly suggested goals for the se-
mantical account to be developed, but they say nothing about
how those goals can be reached. In [dissertation] chapter 3,
where the reconstruction of semantics is laid out, I will of
course pursue this latter question in detail, but I can summa-
rize some of its results here.

Beginning very simply, standard approaches suffice. For ex-
ample, I begin with declarative import (φ), and initially posit
the designation of each primitive object type (saying for in-
stance that the numerals designate the numbers, and that the
primitively recognized closures designate a certain set of func-
tions, and so forth), and then specify recursive rules that show
how the designation of each composite expression emerges
from the designation of its ingredients. Similarly, in parallel
fashion I specify the procedural consequence (ψ) of each primi-
tive type (saying in particular that the numerals and booleans
are self-evaluating, that atoms evaluate to their bindings, and
so forth), and then once again specify recursive rules showing
how the value or result of a composite expression is formed
from the results of processing its constituents.

If we were considering only purely extensional, side-effect

a72

1b · 56	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

free, functional languages, the story might end there. However
a variety of complications will demand resolution, of which
two may be mentioned here. First, none of the Lisps that I
will consider are purely extensional: there are intensional con-
structs of various sorts (quote, for example, and even lambda,
which I will view as a standard intensional procedure, rather
than as a syntactic mark). The hyper-intensional quote opera-
tor is not in itself difficult to deal with, although I will also
consider questions about the less fine-grained intensionality
manifested by a statically-scoped lambda. As in any system,
the ability to deal with intensional constructs requires a re-
formulation of the semantics of all expressions—i.e., requires
recasting the semantics of extensional procedures as well, in
appropriate ways. This is a minor complexity, but no particu-
lar difficulty emerges.

The second complication has to do with side-effects and
contexts. All standard model-theoretic techniques of course
allow for the general fact that the semantical import of a
term may depend in part of on the context in which it is used
(variables are the classic simple example). However, side-ef-
fects—which are part of the total procedural consequence of an
expression, impinge on the appropriate context for declarative
purposes as well as well as for procedural ones. For example, in
a context in which x is bound to the numeral 3 and y is bound
to the numeral 4, it is straightforward to say that the term
(+ 3 y) designates the number seven, and returns the numer-
al 7. However consider the semantics of the following more
complex expression (this is standard Lisp) when evaluated in
the same context:

	 (+ 3 (prog (setq y 14) y))		 [7]

It would be hopeless—to say nothing of false—to have the
formulation of declarative import ignore procedural conse-
quence, and claim that [7] designates seven, even though it pa-

a73

a74

a75

	 1b · Chapter 1

	 1b · 57

Draft Version 0.82 — 2019 · Jan · 4

tently returns the numeral 17 (although I am under no obliga-
tion to make the declarative and procedural stories cohere—in
fact I will reject 1Lisp exactly because they do not cohere in any
way that I can accept). On the other hand, to include the pro-
cedural effect of the setq within the specification of φ would
seem to violate the ground intuition arguing that the designa-
tion of this term, and the structure to which it evaluates, are
different.

The approach I will ultimately adopt is one in which I de-
fine what I call a general significance function Σ which
embodies both declarative import (designation), local proce-
dural consequence (what an expression “evaluates to,” to use
1Lisp jargon), and full procedural consequence (the complete
contextual effects of an expression, including side-effects to
the environment, modifications to the structural field, and so
forth). Only the total significance of the dialects I define will
be strictly compositional; the components of that total signifi-
cance, such as the designation, will be recursively specified in
terms of the designation of the constituents, relativised to the
total context of use specified by the encompassing general sig-
nificance function. In this way I will be able to formulate pre-
cisely the intuition that the expression given in [7] designates
seventeen, as well as returning the corresponding numeral 17.

Lest it seem that by handling these complexities we have
lost any incisive power in the approach, I should note that it
is not always the case that the processing of a term results in
the obvious (i.e., normal-form) designator of its referent. For
example, I will prove that, in traditional Lisps, the expression

	 (car '(a b c))	 [8]

both designates and returns the atom a. Just from the contrast
between these two examples ([7]and [8]) it is clear that tradi-
tional Lisp processing and Lisp designation do not track each
other in any trivially systematic way.

1b · 58	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

Although this approach will be shown successful, I will ul-
timately abandon the strategy of characterizing the full seman-
tics of standard Lisp (as exemplified in my 1Lisp dialect), since
the confusion about the semantic import of evaluation will in
the end make it virtually impossible to say anything coherent
about designation. This, after all, is my goal: to judge 1Lisp, not
merely to characterize it. By the time I wrap up its semantical
analysis, I will have shown not only that Lisp is confusing, but
also (in detail) why it is confusing—giving us adequate prepa-
ration to design a dialect that corrects its errors.

	 1d·iv	The Role of a Declarative Semantics
One brief final point about this double semantics.

It should be clear that it is impossible to specify a normal-
ising processor without a pre-computational, non-procedural
theory of semantics. If you do not have an account of what
structures mean, independent of and how they are treated
by the processor, there is no way to say anything substantial
about the semantical import of the function that the proces-
sor computes. On the standard approach, for example, it is
impossible to say that the processor is correct, or semantically
coherent, or semantically incoherent, or any such thing; it would
merely be what it is. Given some account of what it does, one
can compare this to other accounts: thus it would for example
be possible to prove that a specification of it was correct, or that
an implementation of it was correct, or that it had certain other
independently definable properties (such as that it always ter-
minated, that it used certain resources in certain fashion, etc.).
In addition, given such an account, one could prove properties
of programs written in the resulting language—thus, from a
mathematical specification of the processor of algol, plus the
listing of an algol program, it might be possible to prove that
that program met some specification (such as that it sorted
its input, or whatever). But all of these things are compatible

a76

a77

	 1b · Chapter 1

	 1b · 59

Draft Version 0.82 — 2019 · Jan · 4

with the system being a purely mechanical system—such as a
device that sorted apples into different bins, or for that matter
was a car. However none of these questions are the question
I am trying to answer here—namely: what is the semantical
character of the processor itself?

In the particular case I am considering, I will be able to
specify the semantical import of the function computed by
Lisp’s evaluation regimen (i.e., by eval—this is content of the
evaluation theorem), but only by first laying out both declara-
tive and procedural theories of Lisp. Again, I will be able to
design 2Lisp only with reference to this pre-computational
theory of declarative semantics. It is a simple point, which I
am perhaps repeating too often, but it is important to make
clear how the semantical reconstruction I am endorsing is a
prerequisite to the design of 2Lisp and 3Lisp, not a post-facto
method of analyzing them.

	 1e	Procedural Reflection
Now that we have assembled a minimal vocabulary with
which to talk about computational processes and matters of
semantics, it is possible to sketch the architecture of reflection
that I will present in the final chapter of the dissertation.

I will start rather abstractly, with the general sense of re-
flection sketched in §1·b, and then make use of both the
Knowledge Representation Hypothesis and the Reflection
Hypothesis to define a more restricted goal. Next, I will em-
ploy the characterizations of [serially] reduced computational
processes and of computational semantics to narrow this goal
even further. At each step in this progressive focusing process,
it will become increasingly clear what would be be involved in
actually constructing an authentically reflective computational
language. By the end of this section I will be able to suggest
the particular structure that, in [dissertation] chapter 5, will
be embodied in the 3Lisp design.

1b · 60	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

	 1e·i	A First Sketch
Begin very simply. At the outset, I characterized reflection
in terms of a process shifting between a pattern of reasoning
about some subject matter, world, or task domain, to reason-
ing reflectively about its thoughts and actions in that world.
I said in the Knowledge Representation Hypothesis that the
only current candidate architecture for a process that reasons
at all (even derivatively) is one constituted in terms of an in-

terior process manipulating rep-
resentations of the appropriate
knowledge of that domain. We
can see in terms of the process
reduction model of computation
a little more clearly what this
means. For the process I called
Chequers to reason about the
world of finance, I suggested that
it be [serially] composed of an

ingredient process p manipulating a structural field s consist-
ing of representations of cheque books, credit and debit en-
tices, currency exchange rates, and so forth. Thus we were led
to the image depicted in figure 4 (reproduced here as figure 9).

Next, I said in the Reflection Hypothesis that the only
suggestion we have as to how to make Chequers reflective is
this: as well as constructing process pc to “deal with” (that is:
manipulate symbols denoting) these various financial records,
we could also construct process q to deal with p and the struc-
tural field that pc manipulates. Thus q might specify what to do
when pc failed or encountered an unexpected situation, based
on what parts of pc had worked correctly and what state pc was
in when the failure occurred, and so on. Alternatively, q might
describe or generate parts of pc that had not been fully or ad-
equately specified. Finally, q might bring into existence a more
complex interpretation process for pc, or one particularised to

Figure 9

	 1b · Chapter 1

	 1b · 61

Draft Version 0.82 — 2019 · Jan · 4

suit specific circumstances—thereby engendering something
we might want to call pc′. In general, whereas the world of
pc—the domain that pc models, simulates, reasons about, onto
which the declarative interpretation function φ maps its in-
gredient symbols—is the world of finance, the corresponding
world of q is the world of the process pc and the structural
field it computes over.

I have spoken as if q were a different process from pc, but
whether it is really different from pc, or whether it is pc in a
different guise, or pc at a different time, is a question I will
defer for a while (in part because I have said nothing about
individuation criteria on processes). All that matters for the
moment is that there be some process that does what I have
said that q must do.

What is required, in order for q to reason about pc? Be-
cause q, like all the processes we are considering, is assumed
to be [serially] composed, what is needed is what is always
needed: structural representations of the relevant facts about pc.
What would such representations be like? First, they must
be expressions (statements or symbols), formulated with re-

spect to some theory, describ-
ing or representing the state
of process pc (we can begin
to see how the theory-relative
mandate on reflection from
§1·b is making itself evident).
Second, in order to actually
describe pc, they must be caus-
ally connected to pc in some ap-

propriate way (another of the general requirements). Thus we
are considering a situation such as that depicted in figure 10,
where the field (or field fragment) sP contains these causally
connected structural descriptions.

Figure 10 is of course incomplete, in that it does not sug-

Figure 10

1b · 62	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

gest how sP should relate to pc (answering this question is our
current quest). Note however that reflection must be able to
recurse, implying the additional possibility of something like
the image depicted in figure 11.

Where might an encodable procedural theory come from?
There are two possible sources: in the semantical reconstruc-
tion to be undertaken presently (before 3Lisp is designed) I
will have presented a full theory of the (non-reflective ver-
sions of the) dialects under development; this is one candidate
source for an appropriate theory. But given that for the mo-
ment we are considering only procedural reflection, the sim-

pler procedural com-
ponent will suffice (in
contrast to the general
case, where we would
need to encode the full
theory of computa-
tional significance).

The second source
of a theoretical ac-
count, quite simi-
lar in structure but

even closer to the one we will adopt, is what we will call the
metacircular processor, which is worth a brief examination.

	 1e·ii	Metacircular Processors
In any computational formalism in which programs are acces-
sible as first class structural fragments, it is possible to con-
struct what are commonly known as metacircular interpreters:
“meta” because they operate on (and therefore terms within
them designate) other formal structures, and “circular” be-
cause they do not constitute a definition of the processor, for
two reasons: (i) they have to be run by that processor in or-
der to yield any sort of behavior (since they are programs, not

Figure 11

	 1b · Chapter 1

	 1b · 63

Draft Version 0.82 — 2019 · Jan · 4

processors, strictly speaking); and (ii) the behavior they would
thereby engender can be known only if one knows beforehand
what the processor does. Nonetheless, such processors are of-
ten pedagogically illuminating, and they will play a critical role
in our development of the 3Lisp reflective model. In line with
my general strategy of reserving the word “interpret” for the
semantical interpretation function, I will henceforth call such
processors metacircular processors.

In the presentation of 1Lisp and 2Lisp I will construct
metacircular processors (mcps); the 2Lisp version is presented
in figure 12, on the next page (details will be explained in [dis-
sertation] chapter 4; at the moment I mean only to illustrate
the general structure of this code). The basic idea is that if
this code were processed by the primitive 2Lisp processor. the
process that would thereby be engendered would be behav-
iorally equivalent to that of the primitive processor itself. In
other words, if we were mathematically to take processes as
functions from structure onto behavior, and if we name the
processor presented in figure 12 mcp2L, and the primitive 2Lisp
processor p2L, then if we taken ‘≃’ to mean behaviorally equiva-
lent, then we should be able to prove the following, in some
appropriate sense (this is the sort of proof of correctness one
finds in for example Gordon14):

	 p2L(mcp2L) ≃ p2L	 	 [9]

It should be recognized that the equivalence spoken of here is
a global equivalence; by and large the primitive processor, and
the processor resulting from the explicit running of the mcp,
cannot be arbitrarily mixed (as already mentioned, and as a
more detailed discussion in [dissertation] chapter 5 will for-
malise). For example, if a variable is bound by the underlying
processor p2L it will not be able to be looked up by the metacir-
cular code. Similarly, if the metacircular processor encounters
a control structure primitive, such as a throw or a quit, it will

14. Gordon (1973 and 1975).

a78

1b · 64	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

not cause the metacircular processor itself to exit prematurely,
or to terminate. The point, rather, is that if an entire computa-
tion is mediated by the explicit processing of the mcp, then the
results will be the same as if that entire computation had been
carried out directly.

We can merge these results about mcps in general with the
diagram in figure 9 as follows: if we replaced p in the figure

(define NORMALISE
	 (lambda expr [exp env cont]
		 (cond	[(normal exp) (cont exp)]
				 [(atom exp) (cont (binding exp env))]
				 [(rail exp) (normalise-rail exp env cont)]
				 [(pair exp) (reduce (car exp) (cdr exp) env cont)])))

(define REDUCE
	 (lambda expr [proc args env cont]
		 (normalise proc env
			 (lambda expr [proc!]
				 (selectq (procedure-type proc!)
					 [impr (if	(primitive proc!)
								 (reduce-impr proc! args env cont)
								 (expand-closure proc! args cont))]
					 [expr (normalise args env
								 (lambda expr [args!]
									 (if	(primitive proc!)
										 (reduce-expr proc! args! env cont)
										 (expand-closure proc! args! cont))))]
					 [macro (expand-closure proc! args
									 (lambda expr [result]
										 (normalise result env cont)))])))))

(define EXPAND-CLOSURE
	 (lambda expr [closure args cont]
		 (normalise	(body closure)
						 (bind (pattern closure) args (env closure))
						 cont)))

 Figure 12

	 1b · Chapter 1

	 1b · 65

Draft Version 0.82 — 2019 · Jan · 4

with a process that resulted from p processing the metacircu-
lar processor mcp (for the appropriate language—in this case
assumed to be Fortran), we would still correctly engender the
behavior of Chequers, as depicted in figure 13. Furthermore,
this replacement could also recurse, as shown in figure 14, on
the next page. Admittedly, under the standard interpretation,
each such replacement would involve a dramatic decrease in
efficiency, but the important point is that, modulo those tem-
poral issues, the resulting behavior would in some sense still
be correct.

	 1e·iii	Procedural Reflective Models
We are now in a position to unify the suggestion made at
the end of §1·e·ii, on having q reflect upwards, with the in-
sights embodied in the mcps described in the previous section,
to define what I will call the procedural reflective model.
The fundamental insight arises from the eminent similarity
between figures 10 and 11, on the one hand, compared with

figures 13 and 14, on the other.
These diagrams do not rep-
resent exactly the same situa-
tion, but the approach will be
to converge on a unification of
the two.

I said earlier that in order
to satisfy the requirements
on the q of §1·e·ii we would
need to provide a causally
connected structural encod-

ing of a procedural theory of our dialect (Lisp in this case)
within the accessible structural field. In the immediately pre-
ceding section we have seen something that is approximately
such an encoding: the metacircular processor. However—and
here I refer back to the six properties of reflection set out in

Figure 13

1b · 66	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

§1·b·iii—in the normal course of events the mcp lacks the
appropriate causal access to the state of p: whereas any pos-
sible state of q could be procedurally encoded in terms of the
metacircular process (i.e., given any account of the state of p
we could retroactively construct appropriate arguments for
the various procedures in the metacircular processor so that
if that metacircular processor were run with those arguments
it would mimic p in the given state), in the normal course of
events the state of p will not be so encoded.

This similarity, however, does suggest the form of the
solution.

Suppose that p were never run directly, but were always run
in virtue of the explicit mediation of the metacircular proces-
sor—as, for example, in figure 13 and 14. Then at any point
in the course of the computation, if that running of one level

of the mcp were inter-
rupted, and the argu-
ments being passed
around were used by
some other procedures,
they would be given
just the needed infor-
mation: correct caus-
ally connected repre-
sentations of the state
of the process p prior
to the point of reflec-

tion. The mcp would of course have to be modified in order
to support such an interruption; the point however is that the
mcp is already trafficking in the requisite causally connected
representations.

There are however evident problems with this approach.
First, if p were always run through the mediation of the

Figure 14

	 1b · Chapter 1

	 1b · 67

Draft Version 0.82 — 2019 · Jan · 4

metacircular processor mcp, p would as a result almost surely
be unnecessarily inefficient. Second, as so far stated the pro-
posal seems to deal with only one level of reflection. What if
the code that was given these structural encodings of p’s state
was itself to reflect? This query suggests that providing a gen-
eral mechanism for reflection would generate an infinite re-
gress: not only should the mcp be used to run the base (“level
0”) programs, but the mcp should be used to run the level 1
mcp. And so on. That is: all of an infinite number of mcps
should be run by yet further mcps, ad infinitum.

Setting aside the obvious vicious regress for a moment, note
that this seems otherwise to be a reasonable suggestion. The
potentially infinite (i.e., indefinite) set of reflecting processes q
are almost indistinguishable in basic structure from the infi-
nite tower of mcps that would result. Furthermore the mcps
would contain just the correct structurally encoded descrip-
tions of processor state. We would still need to modify the
whole set of mcps, so that an appropriate interruption or re-
flective act could make use of the tower of processes, but it is
nevertheless evident that, to a first degree of approximation,
this proposal has the proper character.

The fundamental “trick” of 3Lisp (i.e., of the model of pro-
cedural reflection being proposed) hinges on the fact that, it
turns out, we can effectively posit, as a stipulative but extremely
useful fiction, that the primitive reflective processor is engendered
by an infinite number of recursive instances of the mcp, each run-
ning a version one level below. That is: 3Lisp will be defined to
be isomorphic to that infinite limit. This turns out to be legit-
imate—i.e., the implied infinite regress is not after all prob-
lematic—since only a finite amount of information is encoded
in it; at all but a finite number of the bottom levels, each mcp
will merely be running a copy of the mcp. Because we, as the
language designers, know exactly how the language runs, and

1b · 68	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

because we also know what the mcp is like, we can provide this
infinite numbers of levels, to use current jargon, purely virtu-
ally. As I will explain in detail in [dissertation] chapter 5, such
a virtual simulation turns out to be perfectly well-defined.

Once the changes are made to support appropriate inter-
ruption and resumption at any arbitrary level, it is no longer
appropriate to call the processor a metacircular processor, since
it becomes inextricably woven into the fundamental architec-
ture of the language (as will be explained in detail in [disser-
tation] chapter 5). This is why, as suggested above, I call it a
reflective processor. Nonetheless its genealogical roots in the
abstract idea of an infinite tower of metacircular processors
should be clear.

To provide a little bit of concrete grounding for this sugges-
tion, I will explain just briefly the “interruption adjustment”
we will make in order to allow this architecture to be used.

3Lisp supports what I will call reflective procedures—
procedures that, when invoked, are run not at the level at
which the invocation occurred, but one level higher in the
reflective hierarchy. They are given, as arguments, those
structures that would have been passed around in the reflective
processor, had it always been running explicitly. The code for the
resulting 3Lisp reflective processor program is given in figure
15 (next page) in part so that it may be compared with the
(very similar) 2Lisp meta-circular processor code given earlier
in figure 12. The most important difference lies on a single line,
underlined here for emphasis.

What is important about the underlined line (line 18) is
this: when a redex (application) is encountered whose car
normalises to a reflective as opposed to standard procedure
(the standard ones are called “simple” within this dialect), the
corresponding function, designated by the term ↓(de-reflect
proc!), is run at the level of the reflective processor, rather than

	 1b · Chapter 1

	 1b · 69

Draft Version 0.82 — 2019 · Jan · 4

by the processor. In other words the inclusion of this single
underlined line unleashes the full infinite reflective hierarchy.

	 1	 (define READ-NORMALISE-PRINT
	 2	 (lambda simple [level env stream]
	 3	(normalise (prompt&read level stream) env
	 4	 (lambda simple [result]	 ; c-reply
	 5	 (block.(prompt&reply result level stream)
	 6	 (read-normalise-print level env stream))))))

	 7	 (define NORMALISE
	 8	 (lambda simple [struc env cont]
	 9	(cond [(normal struc) (cont struc)]
	 10	[(atom struc) (cont (binding struc env))]
	 11	[(rail struc) (normalise-rail struc env cont)]
	 12	[(pair struc) (reduce (car struc) (cdr struc) env cont)]))

	 13	 (define REDUCE
	 14	 (lambda simple [proc args env cont]
	 15	(normalise proc env
	 16	 (lambda simple [proc!]	 ; c-proc!
	 17	 (if (reflective proc!)
	 18	 (↓(de-reflect proc!) args env cont)
	 19	 (normalise args env
	 20	 (lambda simple [args!]	 ; c-args!
	 21	 (if (primitive proc!)
	 22	 (cont ↑(↓proc! . ↓args!))
	 23	 (normalise (body proc!)
	 24	 (bind (pattern proc!) args! (environment proc!))
	 25	cont))))))))

	 26	 (define NORMALISE-RAIL
	 27	 (lambda simple [rail env cont]
	 28	(if (empty rail)
	 29	 (cont (rcons))
	 30	 (normalise (1st rail) env
	 31	 (lambda simple [first!]	 ; c-first!
	 32	(normalise-rail (rest rail) env
	 33	(lambda simple [rest!]	 ; c-rest!
	 34	 (cont (prep first! rest!)))))))))

Figure 15 — The 3Lisp Reflective Processor

a79

1b · 70	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

Coping with that hierarchy will occupy part of [disserta-
tion] chapter 5, where I explain this all in much more depth
(including why the resulting virtual machine is in fact finite,
and how it can be implemented). Just this much of an intro-
duction, however, should convey, if only a glimpse of how re-
flection is possible.

	 1e·iv	Two Views of Reflection
The reader will have noted a tension between two ways in
which I have characterized the form of reflection we are aim-
ing at. On the one hand I have sometimes written as if there
were a primitive and noticeable reflective act, which causes
the processor to shift levels rather markedly (this is the ex-
planation that best coheres with some of our pre-theoretic
intuitions about reflective human thinking). On the other
hand, I have also just written of an infinite number of levels
of reflective processors, each essentially implementing the one
below—a story according to which it is not coherent either
to ask at which level q is running, or to ask how many reflec-
tive levels are running. On this “infinite tower” account, there
is a strong some sense in which all levels are running at once,
in exactly the same sense that both the Lisp processor inside
your Lisp-based editor, and your editor itself, and the machine
language code that underpins the implementation of Lisp, are
all running at once, when you use the editor. It is of course not
as if Lisp, the editor, and the machine language are running si-
multaneously in the sense of side-by-side or independently. This
is not a parallel computing scheme being described. Rather, in
each case one, being “interior” to the other, supplies the anima
or agency of the outer one (machine language processor ani-
mating the Lisp processor, which in turn animates the editor).
It is just this sense in which the higher levels in the 3Lisp re-
flective hierarchy are always running: each of them is in some
sense within (interior to) the processor at the level below it, in
such a way that it thereby engenders it.

	 1b · Chapter 1

	 1b · 71

Draft Version 0.82 — 2019 · Jan · 4

Call the account that views reflection as a case of a single lo-
cus of agency stepping between levels the level-shifting view.
And call the other view that of an infinite tower. I will not
take a principled view on which is correct; for certain purposes
one is simpler, for others the other. What matters most is to
recognize their behavioral equivalence—or to put it in a little
more detail: the fundamental architectural thesis underlying
not only 3Lisp in particular but the general model of proce-
dural reflection being proposed here is that embracing the limit-
ing behavior of the tower view is an appropriate ideal in terms of
which to design, understand, and implement the level-shifting
view.

Though perhaps more initially intuitive, the level-shifting ac-
count turns out to be more complex than the tower view. To
illustrate it, consider the following account of what is involved
in constructing a reflective dialect—in part by way of review,
but also in order to suggest how it is that a practical reflective
dialect could be finitely constructed.

1.	 As I have repeatedly said, in order to design a reflec-
tive language one must provide a complete theory of
the given calculus expressed in its own language. I call
this the reflective processor—it is required on both
accounts.

2.	 You must arrange things so that, when the process re-
flects—i.e., when, on the level-shifting view, the locus
of control shifts “upwards”—all of the structures used
by the reflective processor (the formal structures des-
ignating the theoretical entities posited by the theory)
are available for inspection and manipulation. In any
particular case, these to-be-provided structures must
correctly encode the state that the processor was in prior
to the reflective level-shift, assuming that it had been run-
ning all the while (this is where the tower view provides

a80

1b · 72	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

structure and substance—fills in the technical de-
tails—for the level shifting view).

3.	 You must also ensure, when the (level-shifting) process
comes to the point of “shifting down” again, that base-
level processing is resumed in accordance with the facts
encoded in the structures being passed around at the im-
mediately higher reflective level.

As a minimal case, take a situation where the user process
shifts upwards, but does nothing; and then shifts down again.
At the point of shifting up, the situation should merely be one
where the processor would process the reflective processor
code explicitly, as if it had been doing so all along. At the point
of shifting down, it would take up running the base-level code
directly (i.e., non-reflectively), again as if it had been doing that
all along, but also (of course it must be proved that these are
equivalent) exactly in accord with the state of the structures
being passed around in the reflective processor code at the
point of down-shifting. Such a situation, in fact, is so simple
that it could not be distinguished (except perhaps in terms of
elapsed time) from pure non-reflective interpretation.

The situation would get more complex, however, as soon
as the user is given any power. Two provisions in particular
are crucial.

First, the whole purpose of a reflective dialect is to allow
the user to have his or her own programs run along with, or
in place of, or between the steps of, the reflective processor.
One must in other words provide an abstract machine with
the ability for the programmer to insert code—in convenient
ways and at convenient times—at any level of the reflective
hierarchy. Suppose, for example, we were to wish to have a
particular λ-expression closed only in the dynamic environ-
ment of its use, rather than in the lexical environment of its
definition (i.e., suppose we were to want “dynamic scoping” for

	 1b · Chapter 1

	 1b · 73

Draft Version 0.82 — 2019 · Jan · 4

a given λ-expression, even though lexical scoping is the system
default). Needless to say, the reflective processor contains code
that performs the requisite operations needed to implement
the default behavior for lexical closures. Given that the pro-
grammer can assume that, upon reflection, the reflective pro-
cessor code is being explicitly processed, he or she can supply,
for the λ-expression in question, an appropriate alternate piece
of code for the reflective process, in which different actions are
taken so as to provide the special λ-expression with dynamic
scoping behavior. By simply inserting this code into the cor-
rect level, (s)he can use variables bound by the reflective model
in order to fit gracefully into the overall processing regimen.
Appropriate hooks and protocols for such insertion, of course,
must be provided, but they need be provided only once. Fur-
thermore, the reflective processor code (i.e., reflective model)
will contain code showing how this hook is treated.

All of these requirements are met by the underlined line
18 in the reflective processor program of figure 15. That line
indicates how the user code will be inserted, what context it
will run it, what variables will be bound to what structures
containing what information, etc.

Second, as well as providing for the arbitrary interpretation
of special programs at the reflective level, the language design-
er must also enable the user to modify the explicitly available
structures provided in the reflective model. Though this abil-
ity is easier to design than the former, its correct implementa-
tion is trickier. An example will make this clear. As already
indicated, the 3Lisp reflective processor deals explicitly with
both environment and continuation structures. Upon reflect-
ing, user programs can at will access these structures that, at
the base level, are purely implicit. Suppose that a user writes
reflective code that does two things. First, it modifies the en-
vironment structure being passed around at the first reflective
level (e.g., suppose it changes the binding of a variable bound

1b · 74	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

by some procedure that is running “somewhere up the stack,”
in the way that might be provided by a typically debugging
package). Second, it changes the continuation structure (des-
ignating the continuation function) so as to cause some pro-
cedure that is currently running to, upon its return, bypass its
immediate caller, and instead return its result to the procedure
that called that procedure. Then, once this user code has ef-
fected these two changes, it “returns”—which is to say, it “drops
back down” to other base-level code, and no longer runs at the
reflective level.

I said above that, upon this kind of semantic or reflective
descent, the base-level program will again be processed “di-
rectly.” But of course it must be processed in such a way as to
honour the changes indicated by these modified structures—
not in the way that it would have proceded, prior to the reflec-
tion. The user’s reflective modifications, in other words, must
matter—must be noticed. This is the (downwards direction of)
the causal connection aspect that is so crucial to true reflection.

	 1e·v	General Comments
The details of the proposed architecture have emerged from
detailed considerations of process reduction, computational
semantics, and meta-circular processing. It is interesting to
draw back and to see the extent to which the global proper-
ties of the resulting architecture match our pre-theoretic intu-
itions about reflection.

First, it is simple to see that the proposed architecture hon-
ours all six requirements laid out in §1.b.iii:

1.	 It is causally connected;
2.	 It is theory-relative;
3.	 It involves an incremental “stepping back,” rather than a

full (and potentially vicious) instantaneous “reflexion”;
4.	 Finer-grained control is provided over the processing

of lower level structures;

	 1b · Chapter 1

	 1b · 75

Draft Version 0.82 — 2019 · Jan · 4

5.	 It is only partially detached (3Lisp reflective procedures
are still in and part of 3Lisp; they are still animated by
the same fundamental agency, since if one level stops
processing the reflective model, or some analogue of it,
all the processors “below” it cease to exist): and

6.	 The reflective powers of 3Lisp are primitively provided.

Thus in this sense at least it is fair to count the architecture a
success.

Other questions—such as about the locus of self, the con-
cern as to whether the potential to reflect requires that one
always participate in the world indirectly rather than directly,
and so forth—turn out to be about as difficult to answer for
3Lisp as they are to answer in the case of human reflection.
In particular, the solution I have proposed does not answer
the question I posed earlier, about the identity of the reflected
processor: is it p that reflects, or is it another process q that
reflects on p? The “reflected process” is neither quite the same
process, nor quite a different process; it is in some ways as
different as an interior process, except that since it shares the
same structural field it is not as different as an implementing
process. No more informative answer will be forthcoming un-
til we define individuation criteria on processes much more
precisely—and, perhaps more strikingly, there seems no par-
ticular reason to answer the question one way or another. It is
tempting (if dangerous) to speculate that the reason for these
difficulties in the human case is exactly why they do not have
answers in the case of 3Lisp: they are not, in some sense, “real”
questions. But it is premature to draw this kind of parallel;
our present task is merely to clarify the structure of proposed
solution.

	 1f	Lisp as an Explanatory Vehicle
There are any number of reasons why it is important to work
with a specific programming language, rather than abstractly

a81

1b · 76	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

and in general (for pedagogical accessibility, as a repository
for emergent results, as an example to test proposed technical
solutions, and so forth). Furthermore, commonsense consid-
erations suggest that a familiar dialect, rather than a totally
new formalism, would better suit our purposes. On the other
hand there are no current languages that are categorically and
semantically rationalized in the way that the proposed theory
of reflection demands; according to the mandate that “reflec-
tion is intelligibly implementable only on a semantically clari-
fied basis,” it is not an option to endow any extant system with
reflective capabilities without first subjecting it to substantial
modification. It would be possible to present a new system
embodying all the necessary modifications and features, but
it would be difficult for the reader to sort out which architec-
tural features were due to what concern. In this dissertation,
therefore, I have adopted the strategy of presenting a reflective
calculus in two steps: first, by modifying an existing language
to conform to the outlined semantical mandates (2Lisp); and
second, by extending the resulting rationalized language with
reflective capabilities (3Lisp).

Once this overall plan has been agreed, the question arises
as to what language should be used as a basis for this two-
stage development Since my present concern is with procedural
rather than with general reflection, the relevant class of poten-
tial languages includes essentially all programming languages,
but excludes exemplars of the declarative tradition: logic, the
λ-calculus, specification and representation languages, and
so forth. Furthermore, we need a programming language—a
procedural calculus—with at least the following properties:

1.	 Though not a formal requirement, it helps for the cho-
sen language to be simple. By itself reflection is compli-
cated enough that, especially as an initial illustration of
the coherence and power of the architecture, it seems

a82

	 1b · Chapter 1

	 1b · 77

Draft Version 0.82 — 2019 · Jan · 4

recommended to introduce it into a formalism of min-
imal internal complexity;

2.	 It must be possible to access program structures as
first-class elements of the language’s structural field;

3.	 Meta-structural primitives must be provided (the abil-
ity to mention structural field elements, such as data
structures and variables, as well as to use them); and

4.	 The underlying architecture should facilitate the em-
bedding, within the calculus, of the procedural compo-
nents of its own meta-theory.

The second property could be added to a language: we could
devise a variant on algol, for example, in which algol pro-
grams were made an extended data type, but Lisp already pos-
sesses this feature. In addition, since (in the formal semantical
analysis presented in following [dissertation] chapters) I will
use an extended λ-calculus as the meta-language, it is natural
to use a procedural calculus that is functionally oriented. Fi-
nally, although full-scale modern Lisps are as complex as any
other languages, both Lisp 1.5 and Scheme have the requisite
simplicity.

Lisp has other recommendations as well. Because of its
support of accessible program structures, it provides consider-
able evidence of exactly the sort of inchoate reflective behavior
that it has been my aim to reconstruct The explicit use of eval
and apply, for example, provides considerable fodder for subse-
quent discussion, both in terms of what they do well and how
they are confused. In [dissertation] chapter 2, for example, I
describe half a dozen types of situation in which a standard
Lisp programmer would be tempted to use these meta-struc-
tural primitives, only two of which in the deepest sense have
anything to do with the explicit manipulation of expressions;
the other four, I will argue, ought to be treated directly in the
object language—and their use of metastructural machinery

1b · 78	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

understood to be no more than a “work-around” for funda-
mental failures in Lisp’s original design. And finally, and non-
trivially, Lisp is the lingua franca of the ai community; this fact
alone makes it an eminent candidate.

	 1f·i	1Lisp as a Distillation of Current Practice
The decision to use Lisp as a base does not solve all of cur
problems, since the name “Lisp” still refers to a wide range of
languages and dialects. For purposes of this dissertation it has
seemed simplest to define a simple kernel, not unlike Lisp 1.5,
as a basis for further development, in part to have a fixed and
well-defined target to set up and criticise, and in part so that
I can collect into one dialect the features that prove most im-
portant for subsequent analysis. I take Lisp 1.5 as the primary
source for the result, which I have called 1Lisp, although some
facilities I will ultimately want to examine as (often inchoate)
examples of reflective behavior—such as catch and throw
and quit—have been added to the repertoire of behaviors
manifested in McCarthy’s original design. Similarly, I have
included macros as a primitive procedure type, as well as in-
tensional and extensional procedures of the standard variety
(“call-by-value” and “call-by-name,” in standard computer sci-
ence parlance, although I avoid these terms, since I reject the
notion of “value” entirely).

It turns out not to be entirely simple to present 1Lisp, given
my theoretical biases, since so much of what I will ultimately
reject about it comes so quickly to the surface in explaining it.
However I have felt that it is important to present this formal-
ism without modification, because of the role I ask it to play
in the structure of the overall argument. In particular, my de-
sideratum for the dialect is not that it be clean or coherent, but
rather that it serve as a vehicle in which to examine a body of
practice suitable for subsequent reconstruction. To the extent
that I make empirical claims about semantic reconstruction, I

a83

	 1b · Chapter 1

	 1b · 79

Draft Version 0.82 — 2019 · Jan · 4

use 1Lisp as evidence in its role as being a model of all extant
Lisp practice. It is therefore theoretically critical, given this
role, that I leave this practice as intact as possible, free of my
own theoretical biases. Even though it is a dialect of my own
design, therefore, I have intentionally but uncritically forged it
in terms of received notions of evaluation, lists, free and global
variables, and so forth.

As an example of the style of analysis to be engage in, figure
16 gives a diagram of the 1Lisp category structure—to be con-
trasted with the category structure of 2Lisp and 3Lisp, which

has been designed to satisfy the category alignment mandate.
The intent of the diagram is to show that in 1Lisp (as in any
computational calculus) there are a variety of ways in which
structures or s-expressions may be categorised—represented
in turn by each of the vertical columns. The point I am at-
tempting to demonstrate is the (unnecessary) complexity of
interaction between these various categorical decompositions.

Consider each of these various 1Lisp categories in brief. The
first column (notational) is categorised by the lexical categories
accepted by the reader (including strings that are parsed into
notations for numerals, lexical atoms, and “list” and “dotted-
pair” notations for pairs). Another categorisation (structural)
is in terms of the primitive types of s-expression (numerals,

Figure 16 — The Category Structure of Lisp 1.5

1b · 80	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

atoms, and pairs); this is the categorisation typically revealed
by the primitive structure typing predicates (in 1Lisp I call this
procedure type, but it is traditionally encoded in an amalgam of
atom and numberp). A third traditional categorisation (derived
structure) includes not only the primitive s-expression types
but also the derived notion of a list—a category built up from
some pairs (those whose cars are, recursively, lists) and the
atom nil. A fourth taxonomy (labeled procedural consequence)
is embodied by the primitive processor: thus 1Lisp’s evaluation
processor (eval) sorts structures into various categories, each
handled differently. This is the “dispatch” categorisation that
one typically finds at the top of metacircular definitions of eval
and apply. In most Lisp metacircular processors six categories
are discriminated:

1.	 The self-evaluating atoms t and nil;
2.	 The numerals;
3.	 The other atoms, used as variables or global function

designators, depending on context;
4.	 Lists whose first clement is the atom lambda, used to

encode applicable functions;
5.	 Lists whose first clement is the atom quote; and
6.	 Other lists, which in evaluable positions represent

function application.

Finally, the fifth taxonomy (declarative import) has to do with
declarative semantics—i.e., discriminates categories of struc-
ture based on their signifying different sorts of semantic enti-
ties. Once again a different category structure emerges: appli-
cations and variables can signify semantic entities of arbitrary
type except that they cannot designate procedures (since 1Lisp is
first-order); the atoms t and nil signify Truth and Falsity; gen-
eral lists, plus again (in different contexts) the atom nil, signify
enumerations (sequences): the numerals signify numbers; and
so on and so forth.

	 1b · Chapter 1

	 1b · 81

Draft Version 0.82 — 2019 · Jan · 4

The reason why the demerits of this non-alignment of cate-
gories multiply in a reflective dialect is that reflective programs
need to know about all of them, in different situations and for
different purposes—and also about the relationships between
and among them (as, impressively, all human Lisp program-
mers do). And remember, too, that as one climbs from reflec-
tive level 1 to yet higher reflective levels, the combinatorics of
non-alignment would multiply correspondingly. I need not
dwell on the evident disarray that would likely result.

One other example of 1Lisp behavior will be illustrative. I have
mentioned above that 1Lisp requires the explicit use of apply in
a variety of circumstances. These include the following:

1.	 When an argument expression designates a function
name, rather than a function—as for example in

(apply (car '(+ – *)) '(2 3))

2.	 When the arguments to a multiple-argument proce-
dure are designated by a single term, rather than desig-
nated individually. Thus if x evaluates to the list (3 4),
one must use (apply '+ x) rather than (+ x) or (+ . x).

3.	 When a function is designated by a variable rather
than by a global constant. Thus one must use:

(let ((fun '+)) (apply fun '(1 2)))
rather than the simpler:

(let ((fun '+)) (fun 1 2))

4.	 When the arguments to a function are “already evalu-
ated,” since apply, although itself extensional (it is an
“expr”), does not re-evaluate the arguments even if the
procedure being applied is an expr. Thus one uses:

(apply '+ (list x y))
rather than:

1b · 82	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

(eval (cons '+ (list x y)))

As I will show, in 2Lisp and 3Lisp only the first of these will
require explicitly mentioning the processor function by name,
because it inherently deals with the designation of expressions,
rather than with the designation of their referents. Because of
their category alignment, 2Lisp and 3Lisp treat the other three
cases adequately in the object language.

	 1f·ii	The Design of 2Lisp
Though it meets the criterion of simplicity, 1Lisp provides
more than ample material for further development, as the pre-
vious examples suggest. Once I have introduced it, as men-
tioned earlier, I subject it to a semantical analysis that leads us
into an examination of computational, semantics in general,
as described in the previous section. The search for semantical
rationalization, and the exposition of the 2Lisp that results,
occupies a substantial part of the dissertation, even though the
resulting calculus still fail to meet the requirements of proce-
dural reflection (as befitting the underlying thesis that reflec-
tion is relatively straightforward, once these semantical issues
are taken care of). I discussed what semantic rationalization
comes to in general in a previous section (§1.f.1); here I sketch
how its mandates are embodied in the design of 2Lisp.

The most striking difference between 1Lisp and 2Lisp is that
the latter rejects evaluation in favour of independent notions
of simplification and reference. Thus, 2Lisp’s processor is not
called eval, but normalise, where by normalisation I refer to
a particular form of expression simplification that takes each
structure into what I call a normal-form designator of that
expression’s referent (making normalisation designation-pre-
serving). Details are provided in [dissertation] chapter 4, but
a sense of the resulting architecture can be given here.

Simple object level computations in 2Lisp (those that do

	 1b · Chapter 1

	 1b · 83

Draft Version 0.82 — 2019 · Jan · 4

not involve meta-structural structures designating other el-
ements of the Lisp field) are treated in a manner that looks
very similar to 1Lisp. The expression (+ 2 3), for example,
normalises to 6, and the expression (= 2 3) to $f (the primi-
tive 2Lisp boolean constant designating falsity). On the other
hand an obvious superficial difference is that in 2Lisp meta-
structural terms are not automatically dereferenced. Thus the
quoted term 'x, which in 1Lisp would evaluate to x, normalises
in 2Lisp to itself (that is: to 'x). Similarly, whereas (car '(a .
b)) would evaluate in 1Lisp to a, in 2Lisp it normalises to 'a.
Similarly, in 1Lisp (cons 'a 'b) evaluates to the pair (a . b); in
2Lisp the corresponding expression would normalise to the
handle '(a . b).

From these almost trivial examples, one might be tempted
to embrace the following idea: that the 2Lisp processor is just
like the 1Lisp processor, except that it puts a quote back on
before returning the result. But that reading is ill-advised; the
difference, more theoretically motivated, is more substantial in
terms of structure, procedural protocols, and semantics. For
starters 2Lisp, like Scheme, is statically-scoped and higher-or-
der; function-designating expressions may be passed as regu-
lar arguments. 2Lisp is also structurally different from 1Lisp;
there is no derived notion of list, but rather a primitive data
structure called a rail that serves the function of designating a
sequence of entities (pairs are still used to encode function ap-
plications). What in 1Lisp are called “quoted expressions” cor-
respond to the primitive structural type handle, not to appli-
cations framed in terms of a (pseudo) quote procedure; they
are also canonical (one per structure designated). The 2Lisp
notation 'x, in particular, is not an abbreviation for (quote x,),
but rather the primitive notation for the handle that is the
unique normal-form designator of the atom x. There are other
notational differences as well: rails are expressed with square
brackets (thus the expression ‘[1 2 3]’ notates a rail of three nu-

a84

1b · 84	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

merals that in turn designates a sequence of three numbers),
and expressions of the form

(f a1 a2 … ak)

expand not into

(f . (a1 . (a2 . (… . (ak . nil)…))))

but instead into

(f . [a1 a2 … ak])

The category structure of 2Lisp is summarized in figure 17.

Closures, which have historically been treated as rather
curious entities somewhere in between functions and expres-
sions, emerge in 2Lisp as standard expressions; in fact I define
the term ‘closure’ to refer to a normal-form function designa-
tor. Not only are closures pairs, but all normal-form pairs are
closures, illustrating once again the category alignment that
permeates the design.

As stated above, all 2Lisp normal-form designators are
not only stable (self-normalising), but also side-effect free and
context-independent. A variety of facts emerge from this re-
sult. First, the primitive processor procedure normalise can
be proved to be idempotent in terms of both result and total
effect:

	 ∀s [(normalise s) = (normalise (normalise s))]	 [10]

Consequently, as in the λ-calculus, the result of normalising
a constituent (in an extensional context) in a composite ex-
pression may be substituted back into the original expression,
in place of the non-normalised expression, yielding a partially
simplified expression having the same designation and same
normal-form as the original. So support for “partial evalua-
tion” is in some sense an automatic feature of the two dialects.
In addition, in code-generating code such as macros and de-

a85

	 1b · Chapter 1

	 1b · 85

Draft Version 0.82 — 2019 · Jan · 4

buggers and so forth, there is no need to worry about whether
an expression has already been processed, since second and
subsequent processings will never cause any harm (nor, as it
happens, will they take any time).

All of the foregoing facts can in some sense be considered to
be simplifications embedded in the design of 2Lisp. Most of
2Lisp’s complexities emerge only when one consider forms
that designate other semantically significant forms. The in-
tricacies of such “level-crossing” expressions are the stock-in-

trade of a reflective system designer, and only by setting such
issues straight before we consider reflection proper will we face
the latter task adequately prepared.

Primitive procedures called name and referent (notation-
ally abbreviated ‘↑’ and ‘↓’, respectively) are provided to mediate
between sign and significant (they must be primitive because
without them the processor provably remains semantically
flat); thus (taking ‘⟹’ to mean “normalises to”):

	 ↑3	 ≡	 (name 3)	 ⟹	 '3
	 ↓''a	 ≡	 (referent ''a)	 ⟹	 'a

The issue of the explicit use of apply, mentioned in the discus-

Figure 17 — The Category Structure of 2Lisp (and 3Lisp)

1b · 86	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

sion of 1Lisp, above, is instructive to examine in the 2Lisp con-
text, since it manifests both the structural and the semantic
differences between 2Lisp and its precursor dialect. In 1Lisp,
the functions eval and apply mesh in a well-known mutually-
recursive fashion. Evaluation is uncritically thought to be de-
fined over expressions, but it is much less clear what application
is defined over. On one view, apply is a functional that maps
functions and (sequences of) arguments onto the value of the
function at that argument position—thus making it a second
(or higher) order function. On another view, apply takes two
expressions as arguments, and has as its value a third expres-
sion that designates the value of the function designated by
the first argument at the argument position designated by the

second. In 2Lisp I
will call the first of
these notions ap-

plication and the
second reduction

(the latter in part
because the word
suggests an opera-
tion over expres-
sions, and in part
by analogy with
the β-reduction of
Church.15 Current
Lisp systems are

less than lucid regarding this distinction (in Mac- lisp, for ex-
ample, the function argument is an expression, whereas the ar-
guments argument is not an expression, nor is the value). The
position I will adopt is depicted in figure 18 (to be explained
more fully in [dissertation] chapter 3).

The procedure reduce, together with normalise will of

Figure 18

15. Church (1941).

a86

	 1b · Chapter 1

	 1b · 87

Draft Version 0.82 — 2019 · Jan · 4

course play a major role in the characterization of 2Lisp, and
in the subsequently constructed reflective 3Lisp. It is worth
noting, however, that although it would be trivial to do so,
there is no reason to define a designator of the apply func-
tion, since any term of the form:

(apply fun args)

would be equivalent in both designation and effect (i.e., would
be equivalent in full computational significance) to:

(fun . args)

In contrast, since it is a meta-structural function, reduce is
neither trivial to define (as is apply) nor recursively empty.

By way of summary, we can list the following as the most sa-
lient distinctions between 2Lisp and 1Lisp:

1.	 Scoping: 2Lisp is lexically scoped, in the sense that
variables free in the body of a lambda form take on the
bindings in force in their statically enclosing context,
rather than from the dynamically enclosing context at
the time of function application.

2.	 Functions: Functions are first-class semantical ob-
jects, and may be designated by standard variables and
arguments. As a consequence, the function position in
an application (the car of a pair) is both procedurally
and declaratively “extensional,” and thus normalised in
exactly the same way as argument positions.

3.	 Processing: Evaluation is rejected in favour of inde-
pendent notions of simplification and reference. The
primitive processor is a particular kind of simplifier.
rather than being an evaluator. In particular, it nor-
malises expressions, returning for each input expres-
sion a normal-form co-designator.

4.	 Declarative Semantics: A complete theory of declar-

1b · 88	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

ative semantics is postulated for all s-expressions. prior
to and independent of the specification of how they are
treated by the processor function—a pre-requisite to
the claim that the processor is designation-preserving).

5.	 Closures: Closures—normal-form function designa-
tors—are valid and inspectable s-expressions.

6.	 Normal Form: Though not all normal-form expres-
sions are canonical (functions, in particular, may have
arbitrarily many distinct normal-form designators),
nevertheless they are all stable (self-normalising), side-
effect free, and both declaratively and procedurally
context independent.

7.	 Semantically Flat: The primitive processor (desig-
nated by normalise) is semantically flat; in order to
shift level of designation one of the explicit semantical
primitives name (↑) or referent (↓) must be applied.

8.	 Category Alignment: 2Lisp is category-aligned (as
indicated in figure 17, above): there are two distinct
structural types, pairs and rails, that respectively en-
code function applications and sequence enumera-
tions. There is in addition a special two-element
structural class of boolean constants. There is no dis-
tinguished atom nil.

9.	 Binding: Variable binding is co-designative, rather
than being either evaluative or designative, in the sense
that a variable normalises to what it is bound to, and
therefore designates the referent of the expression to
which it is bound. Although I will speak of the bind-
ing of a variable, and of the referent of a variable, I will
not speak of a variable’s value, since that term conflates
these two notions.

10.	 Identity: Identity considerations on normal-form des-
ignators are as follows: the normal-form designators

	 1b · Chapter 1

	 1b · 89

Draft Version 0.82 — 2019 · Jan · 4

of truth-values, numbers, and s-expressions (the bool-
eans, numerals, and handles, respectively) are unique.
Normal-form designators of sequences (rails) and
functions (pairs) are not. No atoms are normal-form
designators of anything; therefore the question does
not arise in their case.

11.	 lambda: The use of lambda is purely an issue of ab-
straction and naming, and is completely divorced from
procedural type (extensional, intensional, macro, and
so forth).

 • • •

As soon as I have settled on the definition of 2Lisp, however, I
will begin to criticise it. In particular, I will provide an analysis
of how 2Lisp fails to be appropriately reflective, in spite of its
semantical cleanliness.

A number of problems with 2Lisp in particular emerge
as troublesome. First, it will turn out that the clean semanti-
cal separation between meta-levels is not yet matched with a
clean procedural separation. For example, too strong a separa-
tion between environments, with the result that intensional
procedures become extremely difficult tn use, shows that in
one respect, 2Lisp’s inchoate reflective facilities suffer from
insufficient causal connection. On the other hand, awkward
interactions between the control stacks of inter-level programs
will show how, in other respects, there is too much connection.
In addition, although I will demonstrate a metacircular im-
plementation of 2Lisp in 2Lisp, and will provide 2Lisp with
explicit names for its basic interpreter functions (normalise
and reduce), these two facilities will remain utterly uncon-
nected—an instance of a general problem to be discussed in
[dissertation] chapter 3 on reflection in general.

a87

1b · 90	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

	 1f·iii	The Procedurally Reflective 3Lisp
From this last analysis will emerge the design of 3Lisp, a pro-
cedurally reflective Lisp and the last of the dialects to be con-
sidered here.

As presented in [dissertation] chapter 5, 3Lisp differs from
2Lisp in a variety of ways.

1.	 The fundamental reflective act is identified and accord-
ed tbe centrality it deserves in the underlying language
definition.

2.	 Each reflective level is granted its own environment
and continuation structure, with the environments
and continuations of the levels below it accessible as
first-class objects (inheriting a Quinean stamp of onto-
logical approval, since they can be the values of bound
variables).

3.	 As mentioned in the earlier discussion these envi-
ronments and continuations are theory-relative. The
(procedural) theory is embodied in the 3Lisp reflective
model, a causally-connected variant on the metacircu-
lar interpreter of 2Lisp discussed in §1.e.

4.	 Surprisingly, the integration of reflective power into
the metacircular—now reflective—model is itself ex-
tremely simple (though to implement the resulting ma-
chine is not trivial).

5.	 Reflecting its more complete nature, in a number of
ways 3Lisp is notably simpler than 2Lisp.

Once all these moves have been taken it will be possible to
merge the explicit reflective version of normalise and reduce,
and the similarly named primitive functions. In other words
the 3Lisp reflective model unifies what in 2Lisp were separate:
primitive names for the underlying processor, and explicit
metacircular programs demonstrating the procedural struc-
ture of that processor.

a88

	 1b · Chapter 1

	 1b · 91

Draft Version 0.82 — 2019 · Jan · 4

It was a consequence of defining 2Lisp in terms of nor-
malise, a species of simplification, that the 2Lisp processor is
“semantically flat”: the semantical level of an input expression
is always the same as that of the expression to which it simpli-
fies.. An even stronger claim holds for function application.
Except in the case of the explicit level-shifting functions name
(↑) and referent (↓), the semantical level of the result is also
the same as that of all of the arguments. This is all evidence
of the effort to drive a wedge between simplification and de-
referencing mentioned earlier. 3Lisp inherits this semantical
characterization; note that it remains true even in the case of
reflective functions.

A semantically-flat (fixed-level) processor of this form—
one of the reasons 2Lisp was designed this way—enables an
important move: it becomes possible, though only in an ap-
proximate sense, to identify declarative meta levels with proce-
dural reflective levels. This does not quite have the status of a
claim, because it is virtually mandated by the Knowledge Rep-
resentation Hypothesis (furthermore, the correspondence is
somewhat asymmetric: declarative levels can be crossed within
a given reflective level, but reflective shifts always involve shifts
of designation). But it is instructive to realize that we have
been able to identify the reflective act (that makes available
the structures encoding the processing state and so forth) with
two shifts: (i) the shift from objects to their names, and (ii) the
shift from tacit aspects of the background to objects. Reifica-
tion, that is, emerges as the first form of actively engaged semantic
ascent. Thus: (i) what was used prior to reflection is mentioned
upon reflecting; (ii) what was tacit prior to reflection becomes
used upon reflection. When this behavior is combined with
the ability for reflection to recurse, we are able to lift structures
that are normally tacit into explicit view in one simple reflec-
tive step; we can then obtain access to designators of those
structures in another.

a89

a90

1b · 92	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

Later in the dissertation both the 3Lisp reflective model,
and a Maclisp implementation of it, will be provided by way
of definition. In addition, some hints will be presented of the
style of semantical equation that would be required for a tradi-
tional denotational-semantics style account of 3Lisp—though
it is important to admit that a full semantical treatment of
procedural reflection in general or of 3Lisp in particular has
yet to be worked out.

In a more pragmatic vein, however, and in part to show
how 3Lisp satisfies many of the desiderata that motivated the
original definition of the concept of reflection, I will pres-
ent a number of examples of programs defined in 3Lisp: a
variety of standard functions that make use of calls to the
processor, access to the implementation (debuggers, “single-
steppers,” and so forth), and non-standard “evaluation” (pro-
cessing) protocols. The suggestion will be made that the case
with which these powers can be embedded in “pure” programs
recommends 3Lisp as a plausible dialect in its own right. Nor
is this simply a matter of using 3Lisp as a theoretical vehicle
in which to model or implement these various constructs, or
of showing that such models fit naturally and simply into the
3Lisp dialect (as a simple continuation-passing scheme can
for example be shown to be adopted in Scheme). The claim is
stronger: that such functionality can be naturally embedded in
3Lisp in a manner that allows it to be congenially mixed (with-
out pre-processing or pre-compilation) with simpler, more stan-
dard forms of practice. Without the user normally having to
use (or even understand) explicit continuation-passing style,
nonetheless, at any point in the course of the computation, the
applicable continuation is easily and explicitly available (upon
reflection) for any programs that wish to deal with such things
directly. Similar remarks hold for other aspects of the control
structure and environment

One final comment about the 3Lisp architecture will relate

a91

a92

	 1b · Chapter 1

	 1b · 93

Draft Version 0.82 — 2019 · Jan · 4

it to the two views on reflection—“level-shifting” and “infinite-
tower”—mentioned at the end of §1·e. Modulo the amount
of time it takes, processing mediated by the 3Lisp reflective
model is guaranteed to yield indistinguishable behavior (at
least from a non-reflective point of view—there are subtle-
ties here) from basic, non-reflected processing. It is this fact
that allows us to make the abstract claim that 3Lisp runs in
virtue of an infinite number of levels of reflective models, all
running at once, by an (infinitely fleet) overseeing processor
running at level ∞. The resulting infinite abstract machine
is well-defined, for it is of course behaviorally indistinguish-
able from the perfectly finite 3Lisp that will already have been
laid out (and implemented). For some purposes 3Lisp is most
easily described in terms of this infinite tower—and in some
ways, too, it is the easiest model for the 3Lisp programmer
to have in mind, when writing programs. Such a programmer
can write programs to be interpreted at any reflective level,
and cannot tell that the full infinitude of levels are not being
run (the implementation surreptitiously constructs them and
places them in view each time the user’s program steps back to
view them), such a characterization is usually more illuminat-
ing than talk of the processor “switching back and forth from
one level to another”. In terms of mathematical analysis, treat-
ing 3Lisp as a purely formal object, the infinite tower charac-
terization would also be more likely to be preferred. On the
other hand, when taken as a model of psychologically intuitive
reflection—based on a vague desire to locate the self of the
machine at some level or other—the language of level-shifting
seems to be more highly recommended. Level-shifting is also
a major and constant concern for anyone person who designs
and constructs a 3Lisp implementation.

	 1f·iv	Reconstruction Rather Than Design
2Lisp and 3Lisp can claim to be dialects of Lisp only on a gen-

a93

a94

1b · 94	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

erous interpretation. Both dialects are unarguably more dif-
ferent from the original Lisp 1.5 than are all other dialects that
have previously been proposed, including for example Scheme,
mdl, nil, seus, Maclisp, Interlisp, and Common Lisp.16

In spite of this difference, however, I view it as important to
the exercise to call these languages Lisps. The aim in develop-
ing them has not been simply to propose some new variants
in a grand tradition, perhaps better suited for a certain class
of problem than others that have gone before. Rather—and
this is one of the reasons that this dissertation is as long as it
is—it is my claim that, in spite of their differences from that
of standard Lisps:

	 The architecture of these new dialects is a more accurate
reconstruction than has heretofore been provided of the un-
derlying coherence that already organises our communal
understanding of what Lisp is.

I am making an empirical claim, in other words—a claim that
should ultimately be judged as right or wrong. Whether 2Lisp
or 3Lisp are better than previous Lisps is of course a matter of
interest on its own, but it is not the thesis that this dissertation
has set out to argue.

	 1g	Remarks
	 1g·i	Comparison with Other Work

Although I know of no previous attempts to construct eitller
a semantically rationalized or a reflective computational cal-
culus, the research presented here is of course dependent on,
and related to, a large body of prior work. There are in par-

16. Scheme is reported in Sussman and Steele (1975) and in Steele and
Sussman (1978a); mdl in Galley and Pfister (1975), NIL in White (1979),
Maclisp in Moon (1974) and Weinreb & Moon (1981), and InterLISP
in Teitelman (1978). Common Lisp and SEUS are both under develop-
ment, as this is being written, and have not yet been reported in print,
so far as I know (personal communication with Guy Steele and Richard
Weyhrauch).

a95

	 1b · Chapter 1

	 1b · 95

Draft Version 0.82 — 2019 · Jan · 4

ticular four general areas of study with which this project is
best compared:

1.	 Investigations into the meta-cognitive and intensional
aspects of problem solving (this includes much current
research in Artificial Intelligence);

2.	 The design of logical and procedural languages (includ-
ing virtually all of programming language research, as
well as the study of logics and other declarative calculi);

3.	 General studies of semantics (including both natural
language and logical theories of semantics, and seman-
tical studies of programming languages); and

4.	 Studies of self-reference, of the sort that have charac-
terized much of metamathematics and the theory of
computability throughout this century, particularly
since Russell, and including the formal study of the
paradoxes, the Gödel incompleteness results, and so
forth.

I will make detailed comments about connections between
this project and such other work throughout the discussion
(for example in [dissertation] chapter 5 I will compare the re-
flective sense of “self-reference” with the notion traditionally
studied in logic and mathematics), but some general com-
ments can be made here.

Consider first the meta-cognitive aspects of problem-
solving, of which the dependency-directed deduction proto-
cols presented by Stallman and Sussman, Doyle, McAllester,
and others are an illustrative example.17 This work depends
on explicit encodings, in some form of meta-language, of in-
formation about object-level structures, used to guide a de-
duction process. Similarly, the meta-level rules of Davis in his
teiresius system,18 and the use of meta-levels rules as an aid
in planning,19 can be viewed as examples of inchoate reflective

17. Stallman and Sussman (1977), de Kleer et al. (1977).
18. Davis (1980).
19. Stefik (1981a and 1981b).

a96

1b · 96	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

problem solvers. Some of these expressions are primarily pro-
cedural in intent,20 although declarative statements (for ex-
ample about dependencies) are perhaps more common, with
respect to which particular procedural protocols are defined.

The relationship of the current project to this type of work
is more one of support than of direct contribution. I do not
present (or even hint at) problem solving strategies involv-
ing reflective manipulation, although the fact that others are
working in this area has certainly been a motivation for my re-
search. Rather, I attempt to provide a rigorous account of the
particular issues that have to do simply with providing facilities
for reflection, independent of what such facilities are then used
for. An analogy might be drawn to the development of the
λ-calculus, recursive equations, and Lisp, in relationship to the
use of these formalisms in mathematics, symbolic computa-
tion, and so forth: the former projects provide a language and
architecture, to be used reliably, and perhaps without much
conscious thought, as the basis for a wide variety of applica-
tions. The present dissertation will be successful not if it forces
everyone working in meta-cognitive areas to think about the
architecture of reflective formalisms, but almost the opposite:
if it allows them to forget that the technical details of reflection
were ever considered to be problematic. Church’s α-reduction
was a successful manoeuvre precisely because it means that
one can treat the λ-calculus in the natural way; I hope that my
treatment of reflective procedures will enable those who use
3Lisp or any subsequent reflective dialect to treat “backing-
off " in what they take to be “the natural way.”

The “reflective problem-solver” reported by Doyle21 de-
serves a special comment. Again, I provide an underlying ar-
chitecture which might facilitate his project, without actually
contributing solutions to any of his particular problems about
how reflection should be effectively used, or when its deploy-

20. de Kleer et al. (1977).
21. Doyle (1981).

	 1b · Chapter 1

	 1b · 97

Draft Version 0.82 — 2019 · Jan · 4

ment is appropriate. Doyle’s envisaged machine is a full-scale
problem solver; it is also (so at least he argues) presumed to be
large, to embody complex theories of the world, and so forth.
In contrast, 3Lisp is not a problem solver at all (all the user is
“given” is a language—very much in need of programming); it
embodies only a small procedural theory of itself, and it is re-
ally quite small. As well as these differences in goals there are
differences in content (I for example endorse a set of reflective
levels, rather than any kind of true instantaneous self-referen-
tial “reflexive” reasoning); it is difficult, however, to determine
with very much detail what his proposal comes to, since his
report is more suggestive than final.

Given that 3Lisp is not a problem solver of the sort Doyle
proposes, it is natural to ask whether it would be a suitable
language in which Doyle might implement his system. There
are two different kinds of answer to this question, depending
on how he takes his project.

If, on the one hand, Doyle is proposing a design of a com-
plete computational architecture (i.e., a process reduced in
terms of an ingredient processor and a structural field), and
wishes to implement it in some convenient underlying lan-
guage, then 3Lisp’s reflective powers will not in themselves
immediately engender corresponding reflective powers in the
virtual machine that he implements. Reflection, as I have been
at considerable pains to demonstrate, is first and foremost a
semantical phenomenon, and semantical properties—designa-
tion and normalisation protocols and reflection and the rest—
do not cross implementation boundaries (this is one of the great
powers, but also a very serious limitation, of implementation).
3Lisp would be useful in such a project to the extent that it is
generally a useful and powerful language, but it is important
to recognize that its reflective powers cannot be used directly
to provide reflective capabilities in other architectures imple-
mented on top of it.

a97

1b · 98	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

There is an alternative strategy open to Doyle, however,
by which he could use 3Lisp’s reflective powers more directly.
If, rather than defending a generic reflective architecture, he
more simply intended to show how a particular kind of re-
flective reasoning was useful, he could perhaps construct such
behavior in 3Lisp, and thus use its reflective capabilities rather
directly. There are consequences of this approach, however:
he would have to accept 3Lisp structures and semantics, in-
cluding among other things the fact that it is purely a proce-
dural formalism. It would not be possible, in other words, to
encode a full descriptive language on top of 3Lisp, and then
use 3Lisp’s reflective powers to reflect in the general sense with
these descriptive structures. If one aims to construct a general
or purely descriptive formalism, one would have to make that
architecture reflective on its own.

None of these conclusions stand as criticisms of 3Lisp.
They are entailed by fundamental facts about computation
and semantics—not limitations of the particular theory or di-
alect I propose (i.e., they would, and necessarily so, be equally
true of any other proposed architecture).

This is one reason, among many, why I view 3Lisp not as the
contribution made in this dissertation, but rather as an example
to exhibit its contribution: the conceptual structure of how to de-
sign and build a reflective architecture. Thus it is my hope that
what would be useful from this dissertation for Doyle, or for
anyone else in a parallel circumstance, is the detailed structure
of a reflective system that I have attempted to explicate here—
an architecture and a concomitant set of theoretical terms to
help such a person analyze and structure whatever architecture
they design, adopt, or embrace. Thus I would count the present
contribution a success if it proved useful, for Doyle or anyone
else, to make use of:

1.	 The φ/ψ distinction;

	 1b · Chapter 1

	 1b · 99

Draft Version 0.82 — 2019 · Jan · 4

2.	 The relationship between semantical levels and reflec-
tive levels;

3.	 The encoding of the reflective model within the
calculus;

4.	 The strategy of adopting a virtually infinite tower of
processors as an ideal in terms of which to define a fi-
nite model of level-shifting;

5.	 The semantic flatness and uniformity of a normalising
processor;

6.	 The elegance of category-alignment;

And so forth. It is in this sense that I hope that the theory
and understanding that 3Lisp embodies will contribute to
problem-solving research (and to programming language re-
search), rather than the particular formalism I have developed
and demonstrated by way of illustration.

The second type of research with which this project has strong
ties is the general tradition of providing formalisms to be used
as languages and vehicles for a variety of other projects—in-
cluding the formal statement of theories, the construction of
computational processes, the analysis of human language, and
so forth. I take this tradition to be sufficiently broad (in par-
ticular, to include logic and the λ-calculus, plus virtually all
programming language research) that it is difficult to say very
much that is specific, though a few comments can be made.

First, I of course owe a tremendous debt to the Lisp tradi-
tion in general,22 and also to the recent work of Steele and
Sussman.23 Particularly important is their Scheme dialect—
in many ways the most direct precursor of 2Lisp (In an early
version of the dissertation I called Scheme “1.7-Lisp,” since it

22. References to specific Lisp dialects are given in note 16, above; more
general accounts may be found in Allen (1978), Weisman (1967), Win-
ston and Horn (1981), Charniak et al. (1980), McCarthy et al. (1965), and
McCarthy and Talbott (forthcoming).
23. Steele (1976), Steele & Sussman (1976, 1978b).

a98

1b · 100	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

takes what I see as approximately half of the step from Lisp 1.5
to the semantically rationalized 2-Lisp). Second, my explicit
attempt to unify the declarative and procedural aspects of this
tradition has already been mentioned—a project that is (as far
as I know) without precedent. Note, as mentioned in the In-
troduction, that I do not consider Prolog24 to count as having
done this, since it provides two calculi together, rather than
presenting a single calculus under a unified theory. Finally, as
documented throughout the text, inchoate reflective behavior
can be found in virtually all comers of computational prac-
tice; the Smalltalk language,25 to mention just one example,
includes a meta-level debugging system which allows for the
inspection and incremental modification of code in the midst
of a computation.

The third and fourth classes of previous work listed above
have to do with general semantics and with self-reference. The
first of these is considered explicitly in [dissertation] chapter
3, where I compare my approach to this subject with model
theories in logic, semantics of the λ-calculus, and the tradi-
tion of programming language semantics; no additional com-
ment is required here. Similarly, the relationship between
the notion of reflection I present and traditional concepts
of self-reference are taken up in more detail in [dissertation]
chapter 5; here I merely comment that my concerns, perhaps
surprisingly, are constrained almost entirely to computational
formalisms. Unless a formal system embodies a locus of active
agency—an internal processor (i.e., process) of some sort—
the entire question of causal relationship between an encoding
of self-referential theory and what I consider a genuine reflec-
tive model cannot even be asked.

We often informally think of a natural deduction “process”
or some other kind of deductive apparatus making inferences

24. Clark and McCabe (1979), Roussel (1975), and Warren et al. (1977).
25. Goldberg (1981); Ingalls (1978).

a99

	 1b · Chapter 1

	 1b · 101

Draft Version 0.82 — 2019 · Jan · 4

over first-order sentences, as a heuristic in terms of which to
make sense of the formal notion of derivability. Strictly speak-
ing, however, in the purely declarative tradition derivability is
no more than a formal relationship that holds between certain
sentence types; no activity is involved. There are no notions of
next or of when a certain deduction is made. If one were to
specify an active deductive process over such first-order sen-
tences, then it is imaginable that one could include sentences
(relative to some axiomatisation of that deductive process) in
such a way that the operations of the deductive process were
appropriately controlled by those sentences (this is the sugges-
tion explored briefly in §1·b·ii). The resulting machine, how-
ever—not merely in its reflective incarnation, but even prior
to that, by including an active agency—cannot fairly be con-
sidered simply logic, but rather a full computational formalism
of some sort.

Needless to say, I believe that a reflective version of such
a descriptive system could be built (in fact it is my intent to
develop just such an architecture in the future). My position
with respect to such an image rests on two observations: (i)
the result would be an inherently computational artefact, in vir-
tue of the addition of independent agency, and (ii) 3Lisp, al-
though reflective, is not yet such a formalism, since it is purely
procedural.

I conclude with one final comparison. The formalism closest in
spirit to 3Lisp is Richard Weyhrauch’s fol system,26 although
my project differs from his in several important technical ways.
First, like Doyle’s system, fol is a problem solver: it embodies
a theorem-prover, although it is possible (through the use of
fol’s meta-levels) to give it guidance about the deduction pro-
cess. In spite of those facilities, however, fol is not a program-
ming language. Furthermore, fol adopts—in fact explicitly
endorses—the distinction between declarative and procedural

26. Weyhrauch (1978).

a100

1b · 102	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

languages (first order logic and Lisp, in particular), using the
procedural calculus as a simulation structure rather than as a
descriptive or designational language. Weyhrauch claims that
the power that emerges from combining—but maintaining as
distinct—these “language-simulation-structure” pairs, as he
calls them (“l-s pairs”), at each level in his meta hierarchy, is
one of his primary contributions. It is my own claim, in con-
trast, that the greatest power will arise from dismantling the
difference between procedural and declarative calculi.

There are other differences as well. I take the interpretation
function that maps terms onto objects in the world outside
the computational systems (φ) to be foundational. It would
appear in Weyhrauch’s systems as if that particular semantical
relationship is abandoned in favour of internal relationships
between one formal system and another. A more crucial dis-
tinction is hard to imagine—though there is some evidence27
that this apparent difference may have to do with our respec-
tive uses of terminology, rather than with deep ontological or
epistemological beliefs.

In sum, fol and 3Lisp are technically quite distinct, and
the theoretical analyses on which they are based almost unre-
lated. At a more abstract level, however, they are clearly based
on similar—and perhaps parallel, if not identical—intuitions.
Furthermore, I would argue that 3Lisp represents merely a
first step in the development of a fully reflective calculus based
on a fully integrated theory of computation and representa-
tion; how such an eventual system, once it were defined, would
differ from fol remains to be seen. It seems likely that the re-
sulting unified calculus, rather than the dual-calculus nature,
would be the most obvious technical distinction, although the
actual structure of the descriptive language, semantical meta-
theories, and so forth, are also likely to differ both in substance
and in detail.

27. I am indebted to Richard Weyhrauch for personal communication
on these points.

	 1b · Chapter 1

	 1b · 103

Draft Version 0.82 — 2019 · Jan · 4

One remaining difference is worth exploring in part be-
cause it reveals a deep but possibly distinctive character of my
treatment of Lisp. It is clear from Weyhrauch’s system that
he considers the procedural formalism to represent a kind
of model of the world—in the sense of an (abstract) artefact
whose structure or behavior mimics that of some other world
of interest. Under this approach the computational behavior
can be taken in lieu of or in place of the real behavior in the
world being studied. Consider for example the numeral ad-
dition that is the best approximation a computer can make
to actually “adding numbers” (whatever that might be). When
we type ‘(+ 1 2)’ into a Lisp processor, and it returns ‘3’, we are
liable to take those numerals not so much as designators of the
respective numbers, but instead as models. There is no doubt
that the input expression ‘(+ 1 2)’ is a linguistic artefact; on the
view I will adopt in this dissertation there is no doubt that
the resultant numeral ‘3’ is also a linguistic artefact. I do want
to admit, however, that there is a not unnatural tendency to
think of the latter as “standing in place of ” the actual number,
in a different sense from standard designation or naming. It is
this sense of simulation rather than description that, as far as I
understand it, underlies Weyhrauch’s use of Lisp.

I fundamentally believe that this is a limited view, howev-
er—and go to considerable trouble to maintain an approach in
which all computational structures are taken to be semantical
in something like a linguistic sense, rather than (being taken
as) serving as models. Many issues are involved—having to do
with such issues as truth, completeness, and so forth—that a
simulation stance cannot deal with. At worst, moreover, adopt-
ing a simulation stance can lead to a view of computational
models that runs in danger of being either radically solipsistic
or even, I believe, nihilist. It is exactly the connection between a
computational system and the world that motivates my entire
approach; a connection that I believe can be ignored only at

a101	

a102

1b · 104	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

considerable peril. I in no way rule out computations that in
different respects mimic the behavior of the world they are
about; it is clear that certain forms of human analysis involve
just this kind of thinking (“stepping through” the transitions
of some mechanism in one’s head, for example, to “be sure that
one understands it”). My point is only that such simulation is
still a kind of thinking about the world; it is not the world being
thought about.

	 1g·ii	The Mathematical Meta-Language
Throughout the dissertation I will employ an informal meta-
language, built up from a rather eclectic combination of devic-
es from quantificational logic, the λ-calculus, and lattice theo-
ry, extended with some straightforward conventions (such as
expressions of the form “if p then a else b” as an abbreviation
for “[p ⊃ a] ⋀ [¬p ⊃ b]”). Notationally I will use set-theoretic
devices (union, membership, etc.), but these should be under-
stood as defined over domains in the Scott-theoretic sense,
rather than over unstructured sets. The notations should by
and large be self-explanatory; a few standard conventions
worth noting are these:

1.	 ‘[a → b]’ refers to the domain of continuous functions
from a to b;

2.	 ‘f : [a → b]’ means that f is a function whose domain is
a and whose range is b;

3.	 ‘<s1, s2, … sk>’ designates the mathematical sequence
consisting of the designata of ‘s1’, ‘s2’, … ‘sk’;

4.	 ‘si’ refers to the i’th element of s, assuming that s is a
sequence (thus <a, b, c>2 is b);

5.	 ‘[s ⨯ r]’ designates the (potentially infinite) set of
all tuples whose first member is an element of s and
whose second member is an element of r;

a103

	 1b · Chapter 1

	 1b · 105

Draft Version 0.82 — 2019 · Jan · 4

6.	 ‘A*’ refers to the power domain of a:	

[A ∪ [A ⨯ A] ∪ [A ⨯ A ⨯ A] ∪ …]

7.	 Parentheses and brackets are used interchangeably to
indicate scope and function application in the standard
way.

8.	 Standard currying is employed to deal with functions
of several arguments. Thus:

	 λa1,a2,…ak . e	 means	 λa1.[λa2.[… . [λak . e]…]]]
	 λ<a1,a2,…ak> . e	 means	 λA1.[λa2.[… . [λak . e]…]]]
	 f(b1,b2,…bk)	 means	 ((…((f(b1))b2)…)bk)

If I wanted to be more precise, I would be stricter about the
use of domains rather than sets, in order that function conti-
nuity be maintained, and so forth. It is not my intent here to
make the mathematics rigorous, but I trust that it would be
straightforward, given the accounts I set down, to take this
extra step towards formal adequacy.

	 1g·iii	Examples and Implementations
A considerable number of examples are presented throughout
the dissertation, which can be approximately divided into two
groups: (i) formal statements about Lisp and about semantics,
expressed in the meta-language; and (ii) illustrative programs
and structures expressed in Lisp itself (most of the latter are in
one of the three Lisp dialects I define, though a few are in stan-
dard dialects as well). As the preceding discussion suggests,
the meta-linguistic characterizations have not been checked
by formal means for consistency or accuracy; the proofs and
derivations were generated by the author using paper and pen-
cil. The program examples, on the other hand, were all test-
ed on computer implementations of 1Lisp, 2Lisp, and 3Lisp
developed in the Maclisp and “Lisp Machine” Lisp dialects

a104

1b · 106	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

of Lisp at mit (a complete program listing of the third of
these—a Maclisp implementation of 3-Lisp—is given in the
Appendix to this dissertation). Thus, although the examples
in the text were typed in by the author as text—i.e., the lines
of characters in this document are not actual photocopies of
computer interaction—each was nevertheless verified by these
implementations. However the implementation presented in
the Appendix is a photocopy of the actual computer program
listing. Any residual errors (it is hard to imagine every one has
been eliminated) must have arisen either from typing errors or
from mistakes in the implementation itself.

		

a105

