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Atoms, as I said in [dissertation] section 4a, are used in 2Lisp 
as context dependent names. I also made clear, both in that 
section and in [dissertation] chapter 3, that they are taken 
to designate the referent of the expression to which they are 
bound. Finally, I have said that they will be statically scoped. 
It is appropriate to look at all of these issues with a little more 
care.

The semantical equation governing atoms was given in 
[dissertation] section 4.a.iii, repeated here:

	 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms	 [1] 
		  [Σ(a, e, f, c) = c(e(a), φef(e(a)), e, f)]

If we discharge the use of the abbreviatory φ, this becomes:

	 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms	 [2] 
		  [Σ(a, e, f, c) = c(e(a), 
								       Σ(e(a), e, f, [λ<s, d, e1, f1> . d]), 
							       e, f)]

Because all bindings are in normal-form, the above equation 
can be proved equivalent to the following:

	  ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms	 [3] 
		  [Σ(a, e, f, c) = Σ(e(a), e, f, c)]

This is true because, if e(a) is normal, then it will not affect the 
e and f that are passed to it. Nonetheless, [2] must stand as the 
definition; [3] as a consequence.

What I did not explain, however, is how environments are 
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constructed. The answer, of course, has first and foremost to 
do with λ-binding. A full account of the significance of atoms 
and variables, therefore, must rest on the account of the sig-
nificance of λ-terms. In brief, a λ-term is a complex expression 
that designates a function. Structurally, in 2Lisp it is any re-
duction (pair) formed in terms of a designator of the primitive 
lambda closure and three arguments: a procedure type, a param-
eter list, and a body expression. The primitive lambda closure is 
the binding, in the initial environment, of the atom lambda, 
although there is nothing inviolate about this association. The 
procedure type argument is typically either expr or impr (for 
extensional procedure and intensional procedure, respectively; I 
will discuss these terms more below). The parameter list is a 
pattern against which arguments are matched, and the body 
expression is an expression that, typically, contains occurrenc-
es of the variables named in the parameter pattern. Thus I am 
assuming lambda-terms of the following form:

(lambda procedure-type parameters body)			 
	 [4]

I have of course used λ-terms throughout the dissertation, 
both in Lisp and in the meta-language. It is important, how-
ever, not to be misled by this familiarity into thinking we ei-
ther understand or have yet encountered the full set of issues 
having to do with λ-abstraction. For this reason the following 
discussion is framed as if lambda were being introduced for 
the first time. In this spirit, it is helpful to start by reviewing 
some simple examples of the use of lambda-terms embedded 
in larger composite expressions—without any of the com-
plexities of global variables, top-level definitions, recursion or 
the like. These examples are similar in structure to the kind 
of term that can be expressed in the λ-calculus (using ‘⟹’, as 
always, to mean ‘normalises to’):
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((lambda expr [x] (+ x 1)) 3)		  ⟹	4					   
[5]
((lambda expr [f]											           [6] 
		  (f (f 3 4) (f 5 6)) 
	 +)										          ⟹	 18
((lambda expr [g1 g2]										         [7] 
		  (g1	 (=	 (nth 1 '[$t]) 
				    (nth 1 ['$t])) 
			   (g2 [10 20 30]) 
			   (g2 '[10 20 30]))) 
	 if 
	 (lambda expr [r] (tail 2 r)))		  ⟹	 [30]

[5] is a standard example, of the sort 1Lisp would support: the 
expression (lambda expr [x] (+ x 1)) designates the increment 
function. [6] illustrates the use of a function designator as an 
argument, making evident the fact that 2Lisp is higher order. 
Finally, [7] shows that procedurally intensional designators or 
imprs (if) can be passed as arguments as readily as exprs.

There is nothing distinguished or special about these lamb-
da terms, other than the fact that lambda designates a primi-
tive closure. Unlike standard Lisps and the original λ-calculus, 
in other words, in 2Lisp the label lambda is not treated as a 
syntactic mark to distinguish one kind of expression from 
general function applications. Like all pairs, lambda terms are 
reductions, in which the procedure to which lambda is bound 
is reduced with a standard set of arguments. I will show below 
that lambda is initially bound to an intensional procedure, but, 
as the following example demonstrates, this fact docs not pre-
vent that closure from itself being passed as an argument, or 
bound to a different atom:

(((lambda expr [f]											          [8] 
		  (f expr [y] (+ y y))) 
	 lambda) 
	 5) 										          ⟹	 10
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It happens that expr also names a function; thus it is even pos-
sible to have such expressions as:

(((lambda expr [funs]										         [9] 
			   ((nth 2 funs) (nth 1 funs) [y] (+ y y))) 
		  [expr lambda]) 
	 5) 										          ⟹	 10

Finally, as usual it is the normal-form closures, rather than 
their names in the standard environment, that are primitively 
recognized:

> (define beta lambda)										       
[10] 
> beta 
> (define standard expr) 
> standard 
> ((beta standard (f) (f f)) type) 
> 'function

lambda, in other words, is a functional: a function whose range 
is the set of functions:

(type lambda)							       ⟹	 'function	 [11] 
(type (lambda expr [x] (+ x 1)))		  ⟹	'function

Similarly, expr is a function, although I will show how it can be 
used in function position only later:

(type expr)								        ⟹	 'function	 [12]

Though the examples just given illustrate only a fraction of the 
behavior of lambda that I will ultimately need to characterize, 
some of the most important features are clear.

First, lambda is first and foremost a naming operator: more-
over, the procedural import of lambda terms in this or any oth-
er Lisp arises not from lambda alone, but from general prin-
ciples that permeate structures of all sort, and from the type 
argument I have here made explicit as lambda’s first argument. 
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In what follows I will explore the procedural significance of 
lambda terms at length, but it is important to enter into that 
discussion fully recognizing that it is the body expression that 
establishes that procedural import, not lambda itself.

Second, lambda is itself an intensional procedure; neither 
the parameter pattern nor the body expression is processed 
when the lambda reduction is itself processed. This is clear in 
all of the foregoing examples: the parameters—the atoms that 
will be bound when the pattern is matched against the argu-
ments, as discussed below—are unbound when the lambda 
term itself is normalised; but the lambda term does not gen-
erate an error when processed. This is because neither the 
pattern nor the body is treated extensionally—i.e., as being 
in what is called an “extensional context.” (Less clear, although 
hinted by [9], is the fact that the procedure-type argument 
to lambda is processed at reduction time.)

Further evidence of lambda’s procedural intensionality with 
respect to its second and third argument position is provided 
in this example:

> ((lambda expr [fun]										        
[13] 
			  (block (print 'last) (fun 1 2))) 
		 (block (print 'shoe) +)) shoe last 
> 3

In other words processing of the argument to the lambda term 
occurred before processing of the body internal to that term. 
The body of a lambda term is then processed each time the 
function it designates is applied. This fundamental fact about 
these expressions will motivate the semantical account.

In spite of lambda’s intensionality, however, there is never-
theless an important sense in which the context in which the 
lambda term is itself reduced affects, or at least is relevant to, 
the behavior of the resultant procedure when it is used. In par-
ticular, we have the following:
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((lambda expr [fun]										          [14] 
				 ((lambda expr [y] 
							    (fun y)) 
					  2))														             (cont’d) 
	((lambda expr [y] 
					  (lambda expr [x] (+ x y))) 
			1))												           ⟹	 3

In this example, the atom fun is bound to a closure designat-
ing a function that adds 1 to its argument. This is because the 
y in the body of the lexically last λ-term in the example (the 
second last line) receives its meaning from the context in which 
it was reduced (a context in which y is bound to 1), not from the 
context in which the function it designates is applied (a context 
in which y is bound to 2). In a dynamically scoped system, [14] 
would of course reduce to 4.

The expression in [14] is undeniably difficult to read. I will 
adopt a 2Lisp let macro, similar to the 1Lisp macro of the 
same name, to abbreviate the use of embedded lambda terms 
of this form (this let will be defined in [dissertation] section 
4.d.vii). In particular, expressions of the form

(let [[param1 arg1]											         
[15] 
		  [param2 arg2] 
		  … 
		  [paramk argk]] 
	 body)

will expand into the corresponding expressions

((lambda expr [param1 param2 … paramk]			 
	 [16] 
		  body) 
	 arg1 arg2 … arg2)

Similarly, I will define a “sequential let”, called let*, so that ex-
pressions of the form
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(let* [[param1 arg1]											         
[17] 
		  [param2 arg2] 
			   … 
		  [paramk argk]] 
	 body)

will expand into the corresponding expression

((lambda expr param1	 									       
[18] 
		  ((lambda expr param2 
				    … 
					     ((lambda expr paramk body) 
						      argk) 
				    …) 
			   arg2)) 
 arg1)

Thus in a use of let* each argi may depend on the bindings of 
the parameters before it. The difference between these two is 
illustrated in:

(let [[x 1]]													             [19] 
	 (let [[x (+ x 1)] 
			   [y (- x 1)]] 
		  y))						      ⟹	 0

(let [(x 1]]													             [20] 
	 (let* [[x (+ x 1)] 
			   [y (- x 1)]] 
		  y))							      ⟹	 1

Although some of the generality of lambda is lost by using this 
abbreviation (all lets and let*s, for example, are assumed to 
be exprs—i.e., extensional lambdas), I will employ let and let* 
forms widely in subsequent examples. The expression in [14], 
for example, can be recast using let, generating an expression 
much easier to understand, as follows:

(let [[fun	  												            [21] 
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		  (let [[y 1]] 
			   (lambda expr [x] (+ x y)))]] 
	 (let [[y 2]] (fun y)))						      ⟹	 3

The behavior demonstrated in [14] and again in [21] is of 
course evidence of what is called static or lexical scoping; if [14] 
or [21] reduced to the numeral 4 we would say that dynamic or 
fluid scoping was in effect.

The concepts of dynamic and static scoping, however, are 
by and large described in the literature in terms of mechanisms 
and/or behavior: one protocol is treated this way; the other 
that. It is not my policy, in this entire exercise, to accept be-
havioral accounts as explanations. Throughout, I am commit-
ted to being able to answer such questions as “Why do these 
scoping regimens behave the way that they do?” and “Why was 
static scoping used in 2Lisp and 3Lisp?”

Fortunately, the way we have come at these issues leads to 
a much deeper characterization of what is going on. In par-
ticular, I said that lambda was intensional, but example [21] 
makes it clear that it is not hyper-intensional, in the sense of 
treating its main argument—the body expression—purely as 
a structural or textual object. It is not the case, in other words, 
that the reductions involving the function bound to fun in the 
third line of [21] consist in the replacing, as a substitute for the 
word term ‘fun’, the textual object ‘(+ x y)’. To treat it so would 
yield an answer of 4—i.e., would imply that 2Lisp has adopted 
dynamic scoping. Rather, the behavior demonstrated in [21] 
shows that what is bound to fun is neither the body itself, as a 
textual entity, nor the result of processing the body, but rather 
something intermediate. In ways that we need to understand, 
what is bound to fun is an object that in some sense is closer 
to, or anyway can be associated with, the intension of the body 
at the point of the original reduction.

If we had an adequate theory of intensionality, it might be 
tempting to say something like the following: that lambda is 
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an [intensional] function from textual objects (the body expres-
sion and so forth) onto the intension of those textual objects 
in the context in force at the time of reduction. The subse-
quent use of such a procedure would then “reduce” (or “apply”, 
or whatever intermediate term was chosen as proper to use for 
combining functions-in-intension with arguments) this inten-
sion with the appropriate arguments. There is something right 
about this, though for two reasons we cannot let it stand as is. 
Sadly, first, we have no such theory of functions-in-intension 
to express it in terms of. Second, it is not quite right, anyway. 
lambda is of course a function from textual objects onto func-
tions, as was made clear earlier; what I need to show, rather, is 
that (and how) the functions onto which lambda maps its tex-
tual arguments somehow preserve, in a context-independent 
way, the potentially context-dependent intension of the textual 
argument in the original context.

Moreover, we can also see that a statically scoped lambda, 
of the sort constitutive of 2Lisp and 3Lisp, is a coarser-grained 
intensional procedure than is a dynamically scoped lambda. 
That is:

t1	 Static scoping corresponds to an intensional abstraction 
operator; dynamic scoping, to a hyper-intensional abstrac-
tion operator.

In order to understand t1 in depth, we need to retreat a little 
from the rather behavioral view of lambda that I have been 
presenting, and look more closely at what λ-abstraction con-
sists in from the original perspective of its being a naming op-
erator. It is all very well to show how lambda terms behave, 
in other words; but we have not yet adequately answered the 
question “What do lambda terms mean?”

Speaking extensionally, lambda terms designate functions; 
that much is clear. We also know that functions are sets of 
ordered pairs, such that no two pairs coincide in their first ele-
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ment. We know, too, what application is: a function applied 
to an argument is the second clement of that ordered pair in 
the set whose first element is the argument. However none of 
this elementary knowledge suggests any relationship between 
a function and a function designator. And until we understand 
that relation, we will not be in a position to understand, inten-
sionally, that designator’s meaning.

Informally, we have a consensual intuition about λ—that 
it is an operator over a list of variables and expressions, des-
ignating the function that is signified by the λ-abstraction of 
the given variables in the expression that is its “body” argu-
ment. However this intuition—including its telling use of the 
phrase ‘λ-abstraction’—must arise independently of any of 
the extensional points made in the preceding paragraph. To 
understand the meaning of a λ-term, therefore, requires an 
analysis of it as a term.

The fundamental intuition underlying λ-terms and 
λ-abstraction in general can be traced at least as far back as 
Frege’s study of predicates and sentences in natural language. 
In particular, I believe that it is best to understand a λ-term is 
as a designator with a hole in it, just as Frege understood a pred-
icate term as a sentence with a hole in it. If, for example, we take 
(and assume to be true) the sentence “Mordecai was Esther’s 
cousin,” and delete the first designating term, then we obtain 
the expression “_____ was Esther’s cousin.” It is easy to imag-
ine constructing an infinite set of other derivative sentences 
from this fragment, by filling in the blank with a variety of 
other designating terms. Thus for example we might construct 
“Aaron was Esther’s cousin” and “the person who lives across the 
fjord was Esther’s cousin” and so forth. In general, some of these 
constructed sentences will be true, and some will be false. In 
the simplest case, also, the truth or falsity hinges not on the ac-
tual form of the designator we insert into the blank (whether 
we say ‘the person who lives across the fjord’ or ‘the person who 
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was here for tea yesterday’), but on the referent of that desig-
nator. Thus our example sentence will be true if the supplied 
designator refers to Mordecai; any term codesignative with 
the proper name “Mordecai” would serve equally well.

Predicates arise naturally from consideration of sentences 
containing blanks; that was Frege’s insight. The situation re-
garding designators containing blanks—and the resultant 
functions—is entirely parallel. Thus if we take a complex noun 
phrase such as “the country immediately to the south of Ethio-
pia,” and remove the final constituent noun phrase, we get the 
open phrase “the country immediately to the south of _____.” 
Once again, by filling in the blank with any of an infinite set of 
possible terms (designating noun phrases), the resultant com-
posite noun phrase will (perhaps) designate another object. In 
those cases where the resultant phrase succeeds in picking out 
a unique referent, we say: (i) that the object so selected is in 
the range of what is designated by the phrase that contained 
the blank; and (ii) that the object designated by the phrase 
we insert into the blank is in that entity’s domain. In this way 
we erect the entire notion of function with which we are so 
familiar.

Once this basic approach is adopted, a raft of more specific 
questions arise. What happens, for example, if we construct 
a phrase with two blanks? The answer, of course, is that we 
are led to a function of more than one argument. What if the 
noun phrase we wish to delete occurs more than once (as for 
example the term ‘Ichabod’ in “The first person to like Icha-
bod and Ichabod’s horse”)? The power of the λ-calculus can 
be seen as a formal device to answer all of these various ques-
tions. In particular, we can understand the formal parameters 
as a method of labeling the holes: if one parameter occurs in 
more than one position within the body of the lambda expres-
sion, then tokens of the formal parameters stand in place of a 
single designator that had more than one occurrence. If there 
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is more than one formal parameter, then more than a single 
noun phrase position has been made “blank.” And so on and 
so forth—all of this is familiar.

It is instructive to review this history, for it leads to a partic-
ular stance on some otherwise difficult questions. Note for one 
thing how it clarifies a point we started with: that the function 
of lambda as a first and foremost a naming operator. In addi-
tion, it is important to recognize how syntactic a characteriza-
tion this has been: I have talked almost completely about signs 
and expressions (terms, phrases, etc.), even though we realized 
that the semantical import of the resultant sentences or com-
pleted noun phrases depended (in the simple extensional case) 
only on the referents of the noun phrases that were inserted 
into the blank(s). It was Frege’s technique to motivate the ab-
stract ontological notions of predicates, relations, functions, etc. 
as derivative on such syntactic manoeuvring. The technique is 
important in the present case because it gives us a stance from 
which to ask essentially syntactic or structural questions in or-
der to get at the ontological intuitions behind λ-abstraction 
(indeed, it is because I want the structural answers to these 
questions that I am pursuing this whole line of thought).

Suppose, then, to stay with the case of defining predicates, 
that we wish to define (i.e., name) a predicate by inserting a 
blank into some otherwise complete sentence—i.e., by de-
leting a noun phrase from it. What context, we may ask, de-
termines the meaning of the resulting open expression? The 
only plausible answer that honours the referential character of 
naming is the context in which the definition was originally intro-
duced. Suppose, for example, that while writing this paragraph 
I utter the sentence “Bob is going to vote for the President’s eldest 
daughter.” Again staying with the simplest case, it is natural to 
assume that I refer to the (current) President’s eldest daughter, 
known by the name “Maureen Reagan.” If I excise the noun 
“Bob” and construct the open sentence “____ is going to vote 
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for the President’s eldest daughter,” then I have constructed a 
predicate true of people who will vote for Maureen Reagan. 
That is, the interpretation of “the President’s eldest daughter” 
is determined by the context where the predicate was intro-
duced. This, at least, is the simplest and most straightforward 
reading. It would undeniably be more complex, even if one 
could nonetheless argue that it would be logically coherent, 
to suggest that what is designated hyper-intensionally involves 
the whole open sentence qua sentence—so that when we asked 
whether the resultant predicate is true of some person we 
would determine the referent of the phrase “the President” only 
at that point. The ground intuition is unarguably extensional.

What does this suggest regarding Lisp? Simply this—that 
the natural way to view λ-terms is as:

1.	 Expressions that designate functions, derived from
2.	 Composite referring terms, in which one or more in-

gredient terms have been replaced by blanks, where
3.	 The parameters are a formal mechanism to label the 

blanks, so as to facilitate a subsequent process of filling 
the blanks in with other terms, and

4.	 Where the function designated is determined with re-
spect to the context of use where the lambda term is stat-
ed or introduced (as opposed to where the designated 
function is subsequently applied).

Notably, the foregoing four points lead us to an adoption of 
statically scoped free variables, because we can show how that 
procedural mechanism correctly captures the original (declar-
ative) naming intuition. In other words, I am claiming that:

t2	 Static scoping is the truest formal reconstruction of the (ul-
timately referential) linguistic intuitions and practice upon 
which the notion of λ-abstraction is based.

In general, in order to remain true to Church’s λ-calculus, we 
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must be true to the understanding that his calculus embodies, 
rather than slavishly mimic its operations. This mandate has 
further-reaching consequences than those articulated in t2. In 
particular, to propose a full substitutional procedural regimen 
for 2Lisp would be crazy—it would be to mimic his mecha-
nism, rather than accomplish what his mechanism was for. Since 
2Lisp is a formalism with procedural side-effects, such a re-
gime would imply that every occurrence of a formal parameter 
within a procedure body would engender another instance of 
any side-effects implied by an argument expression. This was 
not a problem for Church because the λ-calculus of course has 
no side-effects.

In sum, I will insist that the term

(let [[y 1]]													             [22] 
	 (lambda expr [x] (+ x y))) 

designate the increment function, rather than designating that 
function that adds to its argument the referent of the sign “y” 
in the context of use of the designating procedure.

As far as it goes, this is straightfoward. I showed in [disser-
tation] chapter 2 how the static reading leads naturally to a 
higher-order dialect, to uniform processing of the expression 
in “function position” in a redex, and so forth, though in that 
chapter I did not do what we have done here: examine the 
underlying semantical motivation for this particular choice. 
Nor, in that context, did I explicitly examine another subject 
to which we must now turn: the intensional significance of a 
lambda term. That this further question remains open is seen 
when one realizes that the preceding discussion argues only 
that the extension of the lambda term be determined by the 
context of use in force at the point where the lambda term it 
introduced. However I have not yet examined the full com-
putational significance of the term in “body” position—i.e., to 
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use the reconstruction I am recommending, the full computa-
tional significance of the open designator containing demar-
cated blanks.

For pointers, it is again instructive to look at the reduction 
regimen that Church adopted for the λ-calculus. As I have 
said, the λ-calculus is a statically-scoped higher order formal-
ism. By the discussion just advanced, the λ-calculus should 
depend on an intensional lambda, but of course no theory of 
“functions in-intension” accompanies theoretical treatments of 
the λ-calculus. This is related to the fact that, in the λ-calculus, 
the item “λ” is not itself considered to be in a function-des-
ignating position. This is because the λ-calculus is strictly an 
extensional system; there is no way in which an appropriately 
intensional function could be defined within its boundaries. It 
is thus effectively a necessary rather than contingent fact that 
λ-terms in the λ-calculus are demarcated notationally, as they 
were in the first version of 1Lisp that I presented in [disserta-
tion] chapter 2. (In the λ-calculus, that is, the “λ” is a syncateg-
orematic uninterpreted mark, on a par with parentheses and 
dots).

In order to understand the λ-calculus and λ-abstraction 
more generally, it is essential to recognize that its substitution-
al reduction regime is defined within this set of constraints. 
Superficially, after all, substitution is a hyper-intensional kind 
of practice. During β-reductions, actual textual expressions are 
substituted, one within another, during the reduction of a 
composite λ-calculus term. This would appear to conflict with 
the claim made above in t1: that hyper-intensional abstraction 
corresponds to dynamic scoping, and intensional abstraction 
to static or lexical. How then can I defend my claim of inten-
sional abstraction in a statically scoped formalism, and yet use 
the λ-calculus as a motivating example?

The answer is that the λ-calculus has been crafted in such 
a way as to enable its hyper-intensional substitution protocols 
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to mimic or implement the more abstract intensional behavior 
that ideally, if we had a adequate theory of functions-in-inten-
sion, we would be able to define more directly. In particular, 
three properties of the λ-calculus contribute to this ability. 
First, as already mentioned: the λ-calculus is extensional, the 
mark ‘λ’ is not used as a term (i.e., not in function position), 
and no facility is provided for the user to construct intensional 
functions. Second, there is no primitive quotation operator in 
the λ-calculus (and of course no corresponding mechanism of 
disquotation), so that it is not possible in general and unpre-
dictable ways to capture an expression from one context and 
to slip it into the course of the reduction in some other place 
(“behind the back of the reduction rules,” so to speak)—a prac-
tice that genuinely would engender something like dynamic 
scoping. Third, as well as superficially involving hyper-inten-
sional β-reduction, the λ-calculus also depends on a seemingly 
pesky but in fact critically important additional rule, having to 
do with variable capture, called α-reduction. It is a constraint 
on β-reduction—the main reductive rule in the λ-calculus—
that terms may not be substituted into positions in such a way 
that any open (unbound) variables would be “captured” by an en-
compassing λ-abstraction. If such a capture would arise, one is 
obligated first, using α-reduction, to rename the parameters 
involved in such a fashion that the capture is avoided. The fol-
lowing, for example, is an incorrect series of β-reductions:

	 	 (λf . ((λg . (λf . fg)) f ))	 ; an illegal derivation	 [23] 
		  (λf . (λf . ff ))

Rather, one must use an instance of α-reduction to rename 
the inner f so that the substitution, for g, of the binding of 
g will not inadvertently lead that substitution to “become” an 
instance of the inner binding. Thus the following is correct:

	 	 (λf . ((λg . (λf . fg)) f ))		 ; a legal derivation	 [24] 
		  (λf . ((λg . (λh . hg)) f ))	 ; first an α-reduction 
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		  (λf . (λh . hf ))		 ; then a valid β-reduction.

In other words α-reduction is expressly designed, from a pro-
cedural point of view, to ensure that, in those cases where the 
context of use of a λ-term might conflict with the context of 
introduction, the λ-term is adjusted so that the function it des-
ignates remains uninfluenced. That is: the role of α-reduction 
in the λ-calculus is precisely to rearrange textual objects so as 
to avoid the dynamic scoping that would be implied if α-reduction 
did not exist.

Together, in sum, these three conditions ensure that, 
in spite of β-reduction’s hyper-intensional character, the 
λ-calculus’ overall procedural regimen honours the conditions 
of static or lexical scoping.

We are still not done. We need to ask why the reduction in 
[23] is ruled out—why dynamic scoping is so carefully avoid-
ed. The answer cannot be that the resulting system is incoher-
ent, since, modulo issues of side effects, β-reductions with no 
α-reductions is one way to view Lisp 1.5 and all its descen-
dants. Sure enough the Church-Rosser theorem would not 
hold, but, as our experience with these Lisps has shown, one 
can simply discard that theorem and decide rather arbitrarily 
on one reduction order. But we now have an answer: dynam-
ic scoping violates the condition we adopted above: that the 
“meaning” or intension of a λ-term be determined by the con-
text in force in the place where that term is introduced. Vari-
able capture is bad because it alters that intension—thereby 
violating intention.

Thus we have reached the following important conclusion:

t3	 The reduction of lambda terms must preserve, in a con-
text-independent way, the (potentially) context-depen-
dent intension of the body expression.
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This of course is a much stronger result than the overarching 
mandate that in every case ψ preserve designation. In general, 
reduction (ψ) of composite terms does not preserve intension, 
according to a commonsense notion of intension. This is dif-
ficult to say formally, for two reasons. The most serious is the 
standard one: that we do not have a theory of intension with 
respect to which to formulate it. If one takes the intension of an 
expression to be the function from possible worlds onto exten-
sions of that expression in each possible world—the approach 
taken in possible world semantics and by such theorists as 
Montague1—then it emerges (if one believes that arithmetic 
is not contingent) that all designators of the same number are 
intensionally as well as extensionally equivalent. Thus (+ 1 1) 
and (sqrt 4) would be considered intensionally equivalent to 
2 (providing of course we are in a context in which sqrt desig-
nates the square-root function). I would argue, however, that 
this conclusion violates lay intuition—that a more adequate 
treatment of (even mathematical) intensionality should be 
finer grained (perhaps of a sort suggested by Lewis2). Second, 
without specifying the intensions of the primitive nominals 
in a Lisp system, it is difficult to know whether intension is 
preserved in a reduction. Suppose, for example, that the atom 
planets designates the sun’s planets, and is bound to the rail 
[mercury venus earth … pluto]. Then (cardinality planets) 
might reduce to the numeral 9 if cardinality was procedur-
ally defined in terms of length. It is argued, however, that 
the phrases “the number of planets” and “nine” are intensionally 
distinct because “the number of planets” might have designated 
some other number, if there were a different number of plan-
ets, whereas, in this language, “nine” necessarily designates the 
number nine. On such an account the reduction of (cardinal-
ity planets) to 9 is not intension preserving.

1. Cf. Montague (1970, 1973). [Note: this footnote was numbered 4 in 
the original version of the disseratation.]
2. Lewis (1972).
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Making precise our intuitions about the nature of inten-
sionality in general is not my present subject matter, however. 
Furthermore, and fortunately, if all we ask of the reduction of 
lambda terms to normal form is that intension be preserved, 
we do not have to reify intensions at all—we do not even have 
to take a position on whether intensions are things. All that 
we are bound to ensure is the substance of t2: that the inten-
sional character of the expression over which the lambda term 
abstracts must be preserved, in a context-independent way, in 
the normal-form function designator to which the lambda term 
reduces.

At the declarative level this suffices—it will be my guid-
ing mandate in defining the procedural treatment of lambda 
terms. A further set of questions needs to be answered, how-
ever, having to do with the relationship between the inten-
sional content of a Lisp expression and its full computational 
significance, including its procedural consequence. The issue is 
best introduced with an example that I will make use of later. 
It is a widely appreciated fact that, if an expression x should 
not be processed at a given time, but should be processed at 
another time, it is standard computational technique to wrap 
it in a procedure definition, and then to reduce it subsequently, 
rather than simply using it. A simple example is illustrated in 
the following two cases: in the first the (print 'there) happens 
before the call to (print 'in); in the second it happens after:

> (let [[x (print 'there)]]									       
[25] 
		  (block (print 'in) x)) there in 
> $t

> (let [[x (lambda expr [] (print 'there))]]				  
[26] 
		  (block (print 'in) (x))) in there 
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> $t

Because of 2Lisp’s static scoping, which corresponds to this 
intensional reading of lambda, this approach can be used even 
if variables are involved:

> (let* [[x 'there]											          [27] 
			   [y (print x)]] 
		  (block (print 'in) y)) there in 
> $t

> (let* [[x 'there]											          [28] 
			   [y (lambda expr [] (print x))]] 
		  (block (print 'in) (y))) in there 
> $t

What this example illustrates is that the side-effects engen-
dered by a term (input/output behavior is the form of side-
effect illustrated here, but of course control and field effects 
are similar) take place only when the term is processed in an ex-
tensional position. In other words if the reduction of a lambda-
term takes (and preserves) an intensional reading of the body 
expression, it does not thereby engender the full computation-
al significance of that expression. Such significance arises only 
when some other function or context requires an extensional 
reading. Side-effects, that is, can be considered to be parts of 
the procedural extension of a 2Lisp expression.

The quote function in 2Lisp that I defined in s4-132, and 
handles in general, are hyper-intensional operators; it was clear 
in their situation that the significance of the mentioned term 
was not engendered by the reduction of the hyper-intensional 
operator over the term. I have not, however, previously been 
forced to ask the question of what happens with respect to 
intensional operators, but the examples just adduced yield an 
answer: their processing, too, does not release the potential 
significance of the term. Or to put it another way:

t4	 The full computational significance of both hyper-inten-
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sional and intensional computational expressions does not 
release the full computational significance latent in their 
ingredients.

It is for this reason that the “deferring” technique alluded to 
above works in the way that it does. (Note, again, that no sug-
gestion is afforded by the λ-calculus with respect to this con-
cern, since that calculus contains no side-effects at all.) Thus 
we might say that ‘intensional’ and ‘hyper-intensional’ are de-
fined not just declaratively, but more generally in terms of full 
computational significance.

In sum, we have reach the following constraint: intension-
preserving term transformations do not engender the proce-
dural consequences latent in an expression; those consequenc-
es emerge only during the normalisation of an extensional 
redex, in which case intension is not (in general) preserved. Re-
call that although (+ 2 3) reduces to co-extensional 6, it is on my 
view not the case that (+ 2 3) and 6 are intensionally equivalent.

One more question needs to be examined, before I am ready 
to characterize the full significance of lambda. As noted above, 
in spite of my claim that lambda is an intensional operator, it 
cannot be the case that lambda is a function from expressions 
onto intensions, nor is it the case that lambda terms reduce to 
intensions. If x is a term (lambda … ), in other words, neither 
φ(x) nor ψ(x) is an intension; both possibilities are rejected by 
protocols long since accepted. In particular, note that in any 
2Lisp form (f . a), the significance of the whole arises from the 
application of the function designated by f to the arguments 
signified by a. Thus in (+ 2 3), which is in reality (+ . [2 3]), I 
said that the whole designated five because the atom “+” desig-
nated the extensionalised addition function, which when ap-
plied to a syntactic designator of a sequence of two numbers, 
yielded their sum.

a27
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Similarly, in any expression

((lambda type params body) . args) 						   
[29]

it follows that the term (lambda …) must designate a function. 
Similarly, in a construct like

(let [[f (lambda … )]]										         [30] 
	 (f . args)]

f must also designate a function. This is all consistent with the 
requirement that variable binding be designation-preserving. 
In [30], f and (lambda … ) must be co-designative.

It follows, then, that f cannot designate the intension of the 
(lambda … ) term. Hence (lambda … ) cannot normalise to a 
designator of that function’s intension. For we do not know 
what intensions are, but they are presumably not syntactic, 
structural entities. They are not, in other words, elements of 
the set of structural field elements S, and ψ has S as its range. I 
said earlier, however, that f must be intensionally similar to the 
lambda term—what this brings out is that f must be co-inten-

sional with the lambda term, as well as co-extensional. The nor-
malisation of lambda redexes, in other words, must preserve 
intension as well as extension. That is, to put it all together:

t5	 Structures of the form (lambda pattern body) are context-
dependent function designators. The normalisation of such 
forms must yield structures that preserve, in a context-
independent way, the full computational significance of 
those designators—both intensional and extensional, both 
declarative and procedural.

 • • • 

This is as much as I will say regarding lambda in its simple 
uses. As usual, in accord with my general approach, I have at-
tempted to characterize lambda terms primarily in terms of 
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what they mean (declaratively, as names); from this I have at-
tempted to justify an account of how they are to behave. As al-
ways, that is, ψ is subservient to φ.

Finally, in terms of this analysis of lambda, I need to say 
how reduction works. The answer is of course quickly stated, 
and familiar. When a lambda term is reduced, a closure is con-
structed and returned as the result. When a pair whose car 
normalises to a non-primitive closure is encountered, the clo-
sure is reduced with the arguments. If that closure is an expr, 
then this reduction begins with the reduction of the cdr of 
the pair, followed by a process of binding the variables in the 
parameter pattern to the resultant normal-form argument 
designator. If the closure is an impr, no argument normalisa-
tion is performed; instead a handle designating the cdr of the 
pair is matched against the parameter pattern. In either case 
the body of the closure (the body of the original reduction 
with lambda) is processed in a context that, as usual, consists 
of a field and an environment The field is the field that results 
from the processing of the arguments—as usual there is no 
structure to the use of fields: a single field is merely passed 
along throughout the computation. The environment, how-
ever—this is the mechanism that allows the intension to be 
that of the point of introduction—is the environment that 
was in force at the point when the closure was constructed, 
but augmented to include the bindings generated by the pat-
tern match of arguments against variables.

If we were equipped with a theory of functions in intension, 
and could therefore avail ourselves of an intensional operator 
in the meta-language, called intension-of, that mapped terms 
and lists of formal parameters into intensions—whatever they 
might be—then we could specify this entire desired seman-
tical import of lambda in its terms. Lacking such a theory, I 
will instead look at lambda from the point of view of desig-
nation and reduction, armed with the mandate that it is the 
intensional properties of the resultant structures that are of 


