
	 1c · Lambda Abstraction

	 1c · 1

Draft Version 0.82 — 2019 · Jan · 4

Atoms, as I said in [dissertation] section 4a, are used in 2Lisp
as context dependent names. I also made clear, both in that
section and in [dissertation] chapter 3, that they are taken
to designate the referent of the expression to which they are
bound. Finally, I have said that they will be statically scoped.
It is appropriate to look at all of these issues with a little more
care.

The semantical equation governing atoms was given in
[dissertation] section 4.a.iii, repeated here:

	 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms	 [1]
		 [Σ(a, e, f, c) = c(e(a), φef(e(a)), e, f)]

If we discharge the use of the abbreviatory φ, this becomes:

	 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms	 [2]
		 [Σ(a, e, f, c) = c(e(a),
								 Σ(e(a), e, f, [λ<s, d, e1, f1> . d]),
							 e, f)]

Because all bindings are in normal-form, the above equation
can be proved equivalent to the following:

	 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms	 [3]
		 [Σ(a, e, f, c) = Σ(e(a), e, f, c)]

This is true because, if e(a) is normal, then it will not affect the
e and f that are passed to it. Nonetheless, [2] must stand as the
definition; [3] as a consequence.

What I did not explain, however, is how environments are

		 Procedural Relection in Programming Languages

	 3c	 Lambda Abstraction and
		 Procedural Intension†

a2

a3

a4

†Dissertation section 4·c·i, pp. 377–392, of Procedural Reflection in
Programming Languages. A link to an internet version of the disserta-
tion is on p. ·.

a1

1c · 2	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

constructed. The answer, of course, has first and foremost to
do with λ-binding. A full account of the significance of atoms
and variables, therefore, must rest on the account of the sig-
nificance of λ-terms. In brief, a λ-term is a complex expression
that designates a function. Structurally, in 2Lisp it is any re-
duction (pair) formed in terms of a designator of the primitive
lambda closure and three arguments: a procedure type, a param-
eter list, and a body expression. The primitive lambda closure is
the binding, in the initial environment, of the atom lambda,
although there is nothing inviolate about this association. The
procedure type argument is typically either expr or impr (for
extensional procedure and intensional procedure, respectively; I
will discuss these terms more below). The parameter list is a
pattern against which arguments are matched, and the body
expression is an expression that, typically, contains occurrenc-
es of the variables named in the parameter pattern. Thus I am
assuming lambda-terms of the following form:

(lambda procedure-type parameters body)			
	 [4]

I have of course used λ-terms throughout the dissertation,
both in Lisp and in the meta-language. It is important, how-
ever, not to be misled by this familiarity into thinking we ei-
ther understand or have yet encountered the full set of issues
having to do with λ-abstraction. For this reason the following
discussion is framed as if lambda were being introduced for
the first time. In this spirit, it is helpful to start by reviewing
some simple examples of the use of lambda-terms embedded
in larger composite expressions—without any of the com-
plexities of global variables, top-level definitions, recursion or
the like. These examples are similar in structure to the kind
of term that can be expressed in the λ-calculus (using ‘⟹’, as
always, to mean ‘normalises to’):

a5

	 1c · Lambda Abstraction

	 1c · 3

Draft Version 0.82 — 2019 · Jan · 4

((lambda expr [x] (+ x 1)) 3)		 ⟹	4					
[5]
((lambda expr [f]											 [6]
		 (f (f 3 4) (f 5 6))
	 +)										 ⟹	 18
((lambda expr [g1 g2]										 [7]
		 (g1	 (=	 (nth 1 '[$t])
				 (nth 1 ['$t]))
			 (g2 [10 20 30])
			 (g2 '[10 20 30])))
	 if
	 (lambda expr [r] (tail 2 r)))		 ⟹	 [30]

[5] is a standard example, of the sort 1Lisp would support: the
expression (lambda expr [x] (+ x 1)) designates the increment
function. [6] illustrates the use of a function designator as an
argument, making evident the fact that 2Lisp is higher order.
Finally, [7] shows that procedurally intensional designators or
imprs (if) can be passed as arguments as readily as exprs.

There is nothing distinguished or special about these lamb-
da terms, other than the fact that lambda designates a primi-
tive closure. Unlike standard Lisps and the original λ-calculus,
in other words, in 2Lisp the label lambda is not treated as a
syntactic mark to distinguish one kind of expression from
general function applications. Like all pairs, lambda terms are
reductions, in which the procedure to which lambda is bound
is reduced with a standard set of arguments. I will show below
that lambda is initially bound to an intensional procedure, but,
as the following example demonstrates, this fact docs not pre-
vent that closure from itself being passed as an argument, or
bound to a different atom:

(((lambda expr [f]											 [8]
		 (f expr [y] (+ y y)))
	 lambda)
	 5) 										 ⟹	 10

1c · 4	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

It happens that expr also names a function; thus it is even pos-
sible to have such expressions as:

(((lambda expr [funs]										 [9]
			 ((nth 2 funs) (nth 1 funs) [y] (+ y y)))
		 [expr lambda])
	 5) 										 ⟹	 10

Finally, as usual it is the normal-form closures, rather than
their names in the standard environment, that are primitively
recognized:

> (define beta lambda)										
[10]
> beta
> (define standard expr)
> standard
> ((beta standard (f) (f f)) type)
> 'function

lambda, in other words, is a functional: a function whose range
is the set of functions:

(type lambda)							 ⟹	 'function	 [11]
(type (lambda expr [x] (+ x 1)))		 ⟹	'function

Similarly, expr is a function, although I will show how it can be
used in function position only later:

(type expr)								 ⟹	 'function	 [12]

Though the examples just given illustrate only a fraction of the
behavior of lambda that I will ultimately need to characterize,
some of the most important features are clear.

First, lambda is first and foremost a naming operator: more-
over, the procedural import of lambda terms in this or any oth-
er Lisp arises not from lambda alone, but from general prin-
ciples that permeate structures of all sort, and from the type
argument I have here made explicit as lambda’s first argument.

a6

a8

a7

	 1c · Lambda Abstraction

	 1c · 5

Draft Version 0.82 — 2019 · Jan · 4

In what follows I will explore the procedural significance of
lambda terms at length, but it is important to enter into that
discussion fully recognizing that it is the body expression that
establishes that procedural import, not lambda itself.

Second, lambda is itself an intensional procedure; neither
the parameter pattern nor the body expression is processed
when the lambda reduction is itself processed. This is clear in
all of the foregoing examples: the parameters—the atoms that
will be bound when the pattern is matched against the argu-
ments, as discussed below—are unbound when the lambda
term itself is normalised; but the lambda term does not gen-
erate an error when processed. This is because neither the
pattern nor the body is treated extensionally—i.e., as being
in what is called an “extensional context.” (Less clear, although
hinted by [9], is the fact that the procedure-type argument
to lambda is processed at reduction time.)

Further evidence of lambda’s procedural intensionality with
respect to its second and third argument position is provided
in this example:

> ((lambda expr [fun]										
[13]
			 (block (print 'last) (fun 1 2)))
		 (block (print 'shoe) +)) shoe last
> 3

In other words processing of the argument to the lambda term
occurred before processing of the body internal to that term.
The body of a lambda term is then processed each time the
function it designates is applied. This fundamental fact about
these expressions will motivate the semantical account.

In spite of lambda’s intensionality, however, there is never-
theless an important sense in which the context in which the
lambda term is itself reduced affects, or at least is relevant to,
the behavior of the resultant procedure when it is used. In par-
ticular, we have the following:

a9

1c · 6	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

((lambda expr [fun]										 [14]
				 ((lambda expr [y]
							 (fun y))
					 2))														 (cont’d)
	((lambda expr [y]
					 (lambda expr [x] (+ x y)))
			1))												 ⟹	 3

In this example, the atom fun is bound to a closure designat-
ing a function that adds 1 to its argument. This is because the
y in the body of the lexically last λ-term in the example (the
second last line) receives its meaning from the context in which
it was reduced (a context in which y is bound to 1), not from the
context in which the function it designates is applied (a context
in which y is bound to 2). In a dynamically scoped system, [14]
would of course reduce to 4.

The expression in [14] is undeniably difficult to read. I will
adopt a 2Lisp let macro, similar to the 1Lisp macro of the
same name, to abbreviate the use of embedded lambda terms
of this form (this let will be defined in [dissertation] section
4.d.vii). In particular, expressions of the form

(let [[param1 arg1]											
[15]
		 [param2 arg2]
		 …
		 [paramk argk]]
	 body)

will expand into the corresponding expressions

((lambda expr [param1 param2 … paramk]			
	 [16]
		 body)
	 arg1 arg2 … arg2)

Similarly, I will define a “sequential let”, called let*, so that ex-
pressions of the form

	 1c · Lambda Abstraction

	 1c · 7

Draft Version 0.82 — 2019 · Jan · 4

(let* [[param1 arg1]											
[17]
		 [param2 arg2]
			 …
		 [paramk argk]]
	 body)

will expand into the corresponding expression

((lambda expr param1	 									
[18]
		 ((lambda expr param2
				 …
					 ((lambda expr paramk body)
						 argk)
				 …)
			 arg2))
 arg1)

Thus in a use of let* each argi may depend on the bindings of
the parameters before it. The difference between these two is
illustrated in:

(let [[x 1]]													 [19]
	 (let [[x (+ x 1)]
			 [y (- x 1)]]
		 y))						 ⟹	 0

(let [(x 1]]													 [20]
	 (let* [[x (+ x 1)]
			 [y (- x 1)]]
		 y))							 ⟹	 1

Although some of the generality of lambda is lost by using this
abbreviation (all lets and let*s, for example, are assumed to
be exprs—i.e., extensional lambdas), I will employ let and let*
forms widely in subsequent examples. The expression in [14],
for example, can be recast using let, generating an expression
much easier to understand, as follows:

(let [[fun	 												 [21]

1c · 8	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

		 (let [[y 1]]
			 (lambda expr [x] (+ x y)))]]
	 (let [[y 2]] (fun y)))						 ⟹	 3

The behavior demonstrated in [14] and again in [21] is of
course evidence of what is called static or lexical scoping; if [14]
or [21] reduced to the numeral 4 we would say that dynamic or
fluid scoping was in effect.

The concepts of dynamic and static scoping, however, are
by and large described in the literature in terms of mechanisms
and/or behavior: one protocol is treated this way; the other
that. It is not my policy, in this entire exercise, to accept be-
havioral accounts as explanations. Throughout, I am commit-
ted to being able to answer such questions as “Why do these
scoping regimens behave the way that they do?” and “Why was
static scoping used in 2Lisp and 3Lisp?”

Fortunately, the way we have come at these issues leads to
a much deeper characterization of what is going on. In par-
ticular, I said that lambda was intensional, but example [21]
makes it clear that it is not hyper-intensional, in the sense of
treating its main argument—the body expression—purely as
a structural or textual object. It is not the case, in other words,
that the reductions involving the function bound to fun in the
third line of [21] consist in the replacing, as a substitute for the
word term ‘fun’, the textual object ‘(+ x y)’. To treat it so would
yield an answer of 4—i.e., would imply that 2Lisp has adopted
dynamic scoping. Rather, the behavior demonstrated in [21]
shows that what is bound to fun is neither the body itself, as a
textual entity, nor the result of processing the body, but rather
something intermediate. In ways that we need to understand,
what is bound to fun is an object that in some sense is closer
to, or anyway can be associated with, the intension of the body
at the point of the original reduction.

If we had an adequate theory of intensionality, it might be
tempting to say something like the following: that lambda is

	 1c · Lambda Abstraction

	 1c · 9

Draft Version 0.82 — 2019 · Jan · 4

an [intensional] function from textual objects (the body expres-
sion and so forth) onto the intension of those textual objects
in the context in force at the time of reduction. The subse-
quent use of such a procedure would then “reduce” (or “apply”,
or whatever intermediate term was chosen as proper to use for
combining functions-in-intension with arguments) this inten-
sion with the appropriate arguments. There is something right
about this, though for two reasons we cannot let it stand as is.
Sadly, first, we have no such theory of functions-in-intension
to express it in terms of. Second, it is not quite right, anyway.
lambda is of course a function from textual objects onto func-
tions, as was made clear earlier; what I need to show, rather, is
that (and how) the functions onto which lambda maps its tex-
tual arguments somehow preserve, in a context-independent
way, the potentially context-dependent intension of the textual
argument in the original context.

Moreover, we can also see that a statically scoped lambda,
of the sort constitutive of 2Lisp and 3Lisp, is a coarser-grained
intensional procedure than is a dynamically scoped lambda.
That is:

t1	 Static scoping corresponds to an intensional abstraction
operator; dynamic scoping, to a hyper-intensional abstrac-
tion operator.

In order to understand t1 in depth, we need to retreat a little
from the rather behavioral view of lambda that I have been
presenting, and look more closely at what λ-abstraction con-
sists in from the original perspective of its being a naming op-
erator. It is all very well to show how lambda terms behave,
in other words; but we have not yet adequately answered the
question “What do lambda terms mean?”

Speaking extensionally, lambda terms designate functions;
that much is clear. We also know that functions are sets of
ordered pairs, such that no two pairs coincide in their first ele-

a11

a12

a10

1c · 10	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

ment. We know, too, what application is: a function applied
to an argument is the second clement of that ordered pair in
the set whose first element is the argument. However none of
this elementary knowledge suggests any relationship between
a function and a function designator. And until we understand
that relation, we will not be in a position to understand, inten-
sionally, that designator’s meaning.

Informally, we have a consensual intuition about λ—that
it is an operator over a list of variables and expressions, des-
ignating the function that is signified by the λ-abstraction of
the given variables in the expression that is its “body” argu-
ment. However this intuition—including its telling use of the
phrase ‘λ-abstraction’—must arise independently of any of
the extensional points made in the preceding paragraph. To
understand the meaning of a λ-term, therefore, requires an
analysis of it as a term.

The fundamental intuition underlying λ-terms and
λ-abstraction in general can be traced at least as far back as
Frege’s study of predicates and sentences in natural language.
In particular, I believe that it is best to understand a λ-term is
as a designator with a hole in it, just as Frege understood a pred-
icate term as a sentence with a hole in it. If, for example, we take
(and assume to be true) the sentence “Mordecai was Esther’s
cousin,” and delete the first designating term, then we obtain
the expression “_____ was Esther’s cousin.” It is easy to imag-
ine constructing an infinite set of other derivative sentences
from this fragment, by filling in the blank with a variety of
other designating terms. Thus for example we might construct
“Aaron was Esther’s cousin” and “the person who lives across the
fjord was Esther’s cousin” and so forth. In general, some of these
constructed sentences will be true, and some will be false. In
the simplest case, also, the truth or falsity hinges not on the ac-
tual form of the designator we insert into the blank (whether
we say ‘the person who lives across the fjord’ or ‘the person who

a13

	 1c · Lambda Abstraction

	 1c · 11

Draft Version 0.82 — 2019 · Jan · 4

was here for tea yesterday’), but on the referent of that desig-
nator. Thus our example sentence will be true if the supplied
designator refers to Mordecai; any term codesignative with
the proper name “Mordecai” would serve equally well.

Predicates arise naturally from consideration of sentences
containing blanks; that was Frege’s insight. The situation re-
garding designators containing blanks—and the resultant
functions—is entirely parallel. Thus if we take a complex noun
phrase such as “the country immediately to the south of Ethio-
pia,” and remove the final constituent noun phrase, we get the
open phrase “the country immediately to the south of _____.”
Once again, by filling in the blank with any of an infinite set of
possible terms (designating noun phrases), the resultant com-
posite noun phrase will (perhaps) designate another object. In
those cases where the resultant phrase succeeds in picking out
a unique referent, we say: (i) that the object so selected is in
the range of what is designated by the phrase that contained
the blank; and (ii) that the object designated by the phrase
we insert into the blank is in that entity’s domain. In this way
we erect the entire notion of function with which we are so
familiar.

Once this basic approach is adopted, a raft of more specific
questions arise. What happens, for example, if we construct
a phrase with two blanks? The answer, of course, is that we
are led to a function of more than one argument. What if the
noun phrase we wish to delete occurs more than once (as for
example the term ‘Ichabod’ in “The first person to like Icha-
bod and Ichabod’s horse”)? The power of the λ-calculus can
be seen as a formal device to answer all of these various ques-
tions. In particular, we can understand the formal parameters
as a method of labeling the holes: if one parameter occurs in
more than one position within the body of the lambda expres-
sion, then tokens of the formal parameters stand in place of a
single designator that had more than one occurrence. If there

a14

1c · 12	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

is more than one formal parameter, then more than a single
noun phrase position has been made “blank.” And so on and
so forth—all of this is familiar.

It is instructive to review this history, for it leads to a partic-
ular stance on some otherwise difficult questions. Note for one
thing how it clarifies a point we started with: that the function
of lambda as a first and foremost a naming operator. In addi-
tion, it is important to recognize how syntactic a characteriza-
tion this has been: I have talked almost completely about signs
and expressions (terms, phrases, etc.), even though we realized
that the semantical import of the resultant sentences or com-
pleted noun phrases depended (in the simple extensional case)
only on the referents of the noun phrases that were inserted
into the blank(s). It was Frege’s technique to motivate the ab-
stract ontological notions of predicates, relations, functions, etc.
as derivative on such syntactic manoeuvring. The technique is
important in the present case because it gives us a stance from
which to ask essentially syntactic or structural questions in or-
der to get at the ontological intuitions behind λ-abstraction
(indeed, it is because I want the structural answers to these
questions that I am pursuing this whole line of thought).

Suppose, then, to stay with the case of defining predicates,
that we wish to define (i.e., name) a predicate by inserting a
blank into some otherwise complete sentence—i.e., by de-
leting a noun phrase from it. What context, we may ask, de-
termines the meaning of the resulting open expression? The
only plausible answer that honours the referential character of
naming is the context in which the definition was originally intro-
duced. Suppose, for example, that while writing this paragraph
I utter the sentence “Bob is going to vote for the President’s eldest
daughter.” Again staying with the simplest case, it is natural to
assume that I refer to the (current) President’s eldest daughter,
known by the name “Maureen Reagan.” If I excise the noun
“Bob” and construct the open sentence “____ is going to vote

a16

a15

	 1c · Lambda Abstraction

	 1c · 13

Draft Version 0.82 — 2019 · Jan · 4

for the President’s eldest daughter,” then I have constructed a
predicate true of people who will vote for Maureen Reagan.
That is, the interpretation of “the President’s eldest daughter”
is determined by the context where the predicate was intro-
duced. This, at least, is the simplest and most straightforward
reading. It would undeniably be more complex, even if one
could nonetheless argue that it would be logically coherent,
to suggest that what is designated hyper-intensionally involves
the whole open sentence qua sentence—so that when we asked
whether the resultant predicate is true of some person we
would determine the referent of the phrase “the President” only
at that point. The ground intuition is unarguably extensional.

What does this suggest regarding Lisp? Simply this—that
the natural way to view λ-terms is as:

1.	 Expressions that designate functions, derived from
2.	 Composite referring terms, in which one or more in-

gredient terms have been replaced by blanks, where
3.	 The parameters are a formal mechanism to label the

blanks, so as to facilitate a subsequent process of filling
the blanks in with other terms, and

4.	 Where the function designated is determined with re-
spect to the context of use where the lambda term is stat-
ed or introduced (as opposed to where the designated
function is subsequently applied).

Notably, the foregoing four points lead us to an adoption of
statically scoped free variables, because we can show how that
procedural mechanism correctly captures the original (declar-
ative) naming intuition. In other words, I am claiming that:

t2	 Static scoping is the truest formal reconstruction of the (ul-
timately referential) linguistic intuitions and practice upon
which the notion of λ-abstraction is based.

In general, in order to remain true to Church’s λ-calculus, we

a17

a18

a19

1c · 14	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

must be true to the understanding that his calculus embodies,
rather than slavishly mimic its operations. This mandate has
further-reaching consequences than those articulated in t2. In
particular, to propose a full substitutional procedural regimen
for 2Lisp would be crazy—it would be to mimic his mecha-
nism, rather than accomplish what his mechanism was for. Since
2Lisp is a formalism with procedural side-effects, such a re-
gime would imply that every occurrence of a formal parameter
within a procedure body would engender another instance of
any side-effects implied by an argument expression. This was
not a problem for Church because the λ-calculus of course has
no side-effects.

In sum, I will insist that the term

(let [[y 1]]													 [22]
	 (lambda expr [x] (+ x y)))

designate the increment function, rather than designating that
function that adds to its argument the referent of the sign “y”
in the context of use of the designating procedure.

As far as it goes, this is straightfoward. I showed in [disser-
tation] chapter 2 how the static reading leads naturally to a
higher-order dialect, to uniform processing of the expression
in “function position” in a redex, and so forth, though in that
chapter I did not do what we have done here: examine the
underlying semantical motivation for this particular choice.
Nor, in that context, did I explicitly examine another subject
to which we must now turn: the intensional significance of a
lambda term. That this further question remains open is seen
when one realizes that the preceding discussion argues only
that the extension of the lambda term be determined by the
context of use in force at the point where the lambda term it
introduced. However I have not yet examined the full com-
putational significance of the term in “body” position—i.e., to

a20

	 1c · Lambda Abstraction

	 1c · 15

Draft Version 0.82 — 2019 · Jan · 4

use the reconstruction I am recommending, the full computa-
tional significance of the open designator containing demar-
cated blanks.

For pointers, it is again instructive to look at the reduction
regimen that Church adopted for the λ-calculus. As I have
said, the λ-calculus is a statically-scoped higher order formal-
ism. By the discussion just advanced, the λ-calculus should
depend on an intensional lambda, but of course no theory of
“functions in-intension” accompanies theoretical treatments of
the λ-calculus. This is related to the fact that, in the λ-calculus,
the item “λ” is not itself considered to be in a function-des-
ignating position. This is because the λ-calculus is strictly an
extensional system; there is no way in which an appropriately
intensional function could be defined within its boundaries. It
is thus effectively a necessary rather than contingent fact that
λ-terms in the λ-calculus are demarcated notationally, as they
were in the first version of 1Lisp that I presented in [disserta-
tion] chapter 2. (In the λ-calculus, that is, the “λ” is a syncateg-
orematic uninterpreted mark, on a par with parentheses and
dots).

In order to understand the λ-calculus and λ-abstraction
more generally, it is essential to recognize that its substitution-
al reduction regime is defined within this set of constraints.
Superficially, after all, substitution is a hyper-intensional kind
of practice. During β-reductions, actual textual expressions are
substituted, one within another, during the reduction of a
composite λ-calculus term. This would appear to conflict with
the claim made above in t1: that hyper-intensional abstraction
corresponds to dynamic scoping, and intensional abstraction
to static or lexical. How then can I defend my claim of inten-
sional abstraction in a statically scoped formalism, and yet use
the λ-calculus as a motivating example?

The answer is that the λ-calculus has been crafted in such
a way as to enable its hyper-intensional substitution protocols

a21

a22

1c · 16	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

to mimic or implement the more abstract intensional behavior
that ideally, if we had a adequate theory of functions-in-inten-
sion, we would be able to define more directly. In particular,
three properties of the λ-calculus contribute to this ability.
First, as already mentioned: the λ-calculus is extensional, the
mark ‘λ’ is not used as a term (i.e., not in function position),
and no facility is provided for the user to construct intensional
functions. Second, there is no primitive quotation operator in
the λ-calculus (and of course no corresponding mechanism of
disquotation), so that it is not possible in general and unpre-
dictable ways to capture an expression from one context and
to slip it into the course of the reduction in some other place
(“behind the back of the reduction rules,” so to speak)—a prac-
tice that genuinely would engender something like dynamic
scoping. Third, as well as superficially involving hyper-inten-
sional β-reduction, the λ-calculus also depends on a seemingly
pesky but in fact critically important additional rule, having to
do with variable capture, called α-reduction. It is a constraint
on β-reduction—the main reductive rule in the λ-calculus—
that terms may not be substituted into positions in such a way
that any open (unbound) variables would be “captured” by an en-
compassing λ-abstraction. If such a capture would arise, one is
obligated first, using α-reduction, to rename the parameters
involved in such a fashion that the capture is avoided. The fol-
lowing, for example, is an incorrect series of β-reductions:

	 	 (λf . ((λg . (λf . fg)) f))	 ; an illegal derivation	 [23]
		 (λf . (λf . ff))

Rather, one must use an instance of α-reduction to rename
the inner f so that the substitution, for g, of the binding of
g will not inadvertently lead that substitution to “become” an
instance of the inner binding. Thus the following is correct:

	 	 (λf . ((λg . (λf . fg)) f))		 ; a legal derivation	 [24]
		 (λf . ((λg . (λh . hg)) f))	 ; first an α-reduction

	 1c · Lambda Abstraction

	 1c · 17

Draft Version 0.82 — 2019 · Jan · 4

		 (λf . (λh . hf))		 ; then a valid β-reduction.

In other words α-reduction is expressly designed, from a pro-
cedural point of view, to ensure that, in those cases where the
context of use of a λ-term might conflict with the context of
introduction, the λ-term is adjusted so that the function it des-
ignates remains uninfluenced. That is: the role of α-reduction
in the λ-calculus is precisely to rearrange textual objects so as
to avoid the dynamic scoping that would be implied if α-reduction
did not exist.

Together, in sum, these three conditions ensure that,
in spite of β-reduction’s hyper-intensional character, the
λ-calculus’ overall procedural regimen honours the conditions
of static or lexical scoping.

We are still not done. We need to ask why the reduction in
[23] is ruled out—why dynamic scoping is so carefully avoid-
ed. The answer cannot be that the resulting system is incoher-
ent, since, modulo issues of side effects, β-reductions with no
α-reductions is one way to view Lisp 1.5 and all its descen-
dants. Sure enough the Church-Rosser theorem would not
hold, but, as our experience with these Lisps has shown, one
can simply discard that theorem and decide rather arbitrarily
on one reduction order. But we now have an answer: dynam-
ic scoping violates the condition we adopted above: that the
“meaning” or intension of a λ-term be determined by the con-
text in force in the place where that term is introduced. Vari-
able capture is bad because it alters that intension—thereby
violating intention.

Thus we have reached the following important conclusion:

t3	 The reduction of lambda terms must preserve, in a con-
text-independent way, the (potentially) context-depen-
dent intension of the body expression.

1c · 18	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

This of course is a much stronger result than the overarching
mandate that in every case ψ preserve designation. In general,
reduction (ψ) of composite terms does not preserve intension,
according to a commonsense notion of intension. This is dif-
ficult to say formally, for two reasons. The most serious is the
standard one: that we do not have a theory of intension with
respect to which to formulate it. If one takes the intension of an
expression to be the function from possible worlds onto exten-
sions of that expression in each possible world—the approach
taken in possible world semantics and by such theorists as
Montague1—then it emerges (if one believes that arithmetic
is not contingent) that all designators of the same number are
intensionally as well as extensionally equivalent. Thus (+ 1 1)
and (sqrt 4) would be considered intensionally equivalent to
2 (providing of course we are in a context in which sqrt desig-
nates the square-root function). I would argue, however, that
this conclusion violates lay intuition—that a more adequate
treatment of (even mathematical) intensionality should be
finer grained (perhaps of a sort suggested by Lewis2). Second,
without specifying the intensions of the primitive nominals
in a Lisp system, it is difficult to know whether intension is
preserved in a reduction. Suppose, for example, that the atom
planets designates the sun’s planets, and is bound to the rail
[mercury venus earth … pluto]. Then (cardinality planets)
might reduce to the numeral 9 if cardinality was procedur-
ally defined in terms of length. It is argued, however, that
the phrases “the number of planets” and “nine” are intensionally
distinct because “the number of planets” might have designated
some other number, if there were a different number of plan-
ets, whereas, in this language, “nine” necessarily designates the
number nine. On such an account the reduction of (cardinal-
ity planets) to 9 is not intension preserving.

1. Cf. Montague (1970, 1973). [Note: this footnote was numbered 4 in
the original version of the disseratation.]
2. Lewis (1972).

a23

a24

	 1c · Lambda Abstraction

	 1c · 19

Draft Version 0.82 — 2019 · Jan · 4

Making precise our intuitions about the nature of inten-
sionality in general is not my present subject matter, however.
Furthermore, and fortunately, if all we ask of the reduction of
lambda terms to normal form is that intension be preserved,
we do not have to reify intensions at all—we do not even have
to take a position on whether intensions are things. All that
we are bound to ensure is the substance of t2: that the inten-
sional character of the expression over which the lambda term
abstracts must be preserved, in a context-independent way, in
the normal-form function designator to which the lambda term
reduces.

At the declarative level this suffices—it will be my guid-
ing mandate in defining the procedural treatment of lambda
terms. A further set of questions needs to be answered, how-
ever, having to do with the relationship between the inten-
sional content of a Lisp expression and its full computational
significance, including its procedural consequence. The issue is
best introduced with an example that I will make use of later.
It is a widely appreciated fact that, if an expression x should
not be processed at a given time, but should be processed at
another time, it is standard computational technique to wrap
it in a procedure definition, and then to reduce it subsequently,
rather than simply using it. A simple example is illustrated in
the following two cases: in the first the (print 'there) happens
before the call to (print 'in); in the second it happens after:

> (let [[x (print 'there)]]									
[25]
		 (block (print 'in) x)) there in
> $t

> (let [[x (lambda expr [] (print 'there))]]				
[26]
		 (block (print 'in) (x))) in there

1c · 20	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

> $t

Because of 2Lisp’s static scoping, which corresponds to this
intensional reading of lambda, this approach can be used even
if variables are involved:

> (let* [[x 'there]											 [27]
			 [y (print x)]]
		 (block (print 'in) y)) there in
> $t

> (let* [[x 'there]											 [28]
			 [y (lambda expr [] (print x))]]
		 (block (print 'in) (y))) in there
> $t

What this example illustrates is that the side-effects engen-
dered by a term (input/output behavior is the form of side-
effect illustrated here, but of course control and field effects
are similar) take place only when the term is processed in an ex-
tensional position. In other words if the reduction of a lambda-
term takes (and preserves) an intensional reading of the body
expression, it does not thereby engender the full computation-
al significance of that expression. Such significance arises only
when some other function or context requires an extensional
reading. Side-effects, that is, can be considered to be parts of
the procedural extension of a 2Lisp expression.

The quote function in 2Lisp that I defined in s4-132, and
handles in general, are hyper-intensional operators; it was clear
in their situation that the significance of the mentioned term
was not engendered by the reduction of the hyper-intensional
operator over the term. I have not, however, previously been
forced to ask the question of what happens with respect to
intensional operators, but the examples just adduced yield an
answer: their processing, too, does not release the potential
significance of the term. Or to put it another way:

t4	 The full computational significance of both hyper-inten-

a25

a26

	 1c · Lambda Abstraction

	 1c · 21

Draft Version 0.82 — 2019 · Jan · 4

sional and intensional computational expressions does not
release the full computational significance latent in their
ingredients.

It is for this reason that the “deferring” technique alluded to
above works in the way that it does. (Note, again, that no sug-
gestion is afforded by the λ-calculus with respect to this con-
cern, since that calculus contains no side-effects at all.) Thus
we might say that ‘intensional’ and ‘hyper-intensional’ are de-
fined not just declaratively, but more generally in terms of full
computational significance.

In sum, we have reach the following constraint: intension-
preserving term transformations do not engender the proce-
dural consequences latent in an expression; those consequenc-
es emerge only during the normalisation of an extensional
redex, in which case intension is not (in general) preserved. Re-
call that although (+ 2 3) reduces to co-extensional 6, it is on my
view not the case that (+ 2 3) and 6 are intensionally equivalent.

One more question needs to be examined, before I am ready
to characterize the full significance of lambda. As noted above,
in spite of my claim that lambda is an intensional operator, it
cannot be the case that lambda is a function from expressions
onto intensions, nor is it the case that lambda terms reduce to
intensions. If x is a term (lambda …), in other words, neither
φ(x) nor ψ(x) is an intension; both possibilities are rejected by
protocols long since accepted. In particular, note that in any
2Lisp form (f . a), the significance of the whole arises from the
application of the function designated by f to the arguments
signified by a. Thus in (+ 2 3), which is in reality (+ . [2 3]), I
said that the whole designated five because the atom “+” desig-
nated the extensionalised addition function, which when ap-
plied to a syntactic designator of a sequence of two numbers,
yielded their sum.

a27

1c · 22	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

Similarly, in any expression

((lambda type params body) . args) 						
[29]

it follows that the term (lambda …) must designate a function.
Similarly, in a construct like

(let [[f (lambda …)]]										 [30]
	 (f . args)]

f must also designate a function. This is all consistent with the
requirement that variable binding be designation-preserving.
In [30], f and (lambda …) must be co-designative.

It follows, then, that f cannot designate the intension of the
(lambda …) term. Hence (lambda …) cannot normalise to a
designator of that function’s intension. For we do not know
what intensions are, but they are presumably not syntactic,
structural entities. They are not, in other words, elements of
the set of structural field elements S, and ψ has S as its range. I
said earlier, however, that f must be intensionally similar to the
lambda term—what this brings out is that f must be co-inten-

sional with the lambda term, as well as co-extensional. The nor-
malisation of lambda redexes, in other words, must preserve
intension as well as extension. That is, to put it all together:

t5	 Structures of the form (lambda pattern body) are context-
dependent function designators. The normalisation of such
forms must yield structures that preserve, in a context-
independent way, the full computational significance of
those designators—both intensional and extensional, both
declarative and procedural.

 • • •

This is as much as I will say regarding lambda in its simple
uses. As usual, in accord with my general approach, I have at-
tempted to characterize lambda terms primarily in terms of

	 1c · Lambda Abstraction

	 1c · 23

Draft Version 0.82 — 2019 · Jan · 4

what they mean (declaratively, as names); from this I have at-
tempted to justify an account of how they are to behave. As al-
ways, that is, ψ is subservient to φ.

Finally, in terms of this analysis of lambda, I need to say
how reduction works. The answer is of course quickly stated,
and familiar. When a lambda term is reduced, a closure is con-
structed and returned as the result. When a pair whose car
normalises to a non-primitive closure is encountered, the clo-
sure is reduced with the arguments. If that closure is an expr,
then this reduction begins with the reduction of the cdr of
the pair, followed by a process of binding the variables in the
parameter pattern to the resultant normal-form argument
designator. If the closure is an impr, no argument normalisa-
tion is performed; instead a handle designating the cdr of the
pair is matched against the parameter pattern. In either case
the body of the closure (the body of the original reduction
with lambda) is processed in a context that, as usual, consists
of a field and an environment The field is the field that results
from the processing of the arguments—as usual there is no
structure to the use of fields: a single field is merely passed
along throughout the computation. The environment, how-
ever—this is the mechanism that allows the intension to be
that of the point of introduction—is the environment that
was in force at the point when the closure was constructed,
but augmented to include the bindings generated by the pat-
tern match of arguments against variables.

If we were equipped with a theory of functions in intension,
and could therefore avail ourselves of an intensional operator
in the meta-language, called intension-of, that mapped terms
and lists of formal parameters into intensions—whatever they
might be—then we could specify this entire desired seman-
tical import of lambda in its terms. Lacking such a theory, I
will instead look at lambda from the point of view of desig-
nation and reduction, armed with the mandate that it is the
intensional properties of the resultant structures that are of

