
	 1a · Preliminaries

	 1a · 1

Draft Version 0.82 — 2019 · Jan · 4

	 1	Abstract†

We show how a computational system can be constructed
to “reason,” effectively and consequentially, about its own in-
ferential processes. The analysis proceeds in two parts. First,
we consider the general question of computational semantics,
rejecting traditional approaches, and arguing that the declara-
tive and procedural aspects of computational symbols (what
they stand for, and what behavior they engender) should be
analyzed independently, in order that they may be coherent-
ly related. Second, we investigate self-referential behavior in
computational processes, and show how to embed an effec-
tive procedural model of a computational calculus within that
calculus (a model not unlike a meta-circular interpreter, but
connected to the fundamental operations of the machine in
such a way as to provide, at any point in a computation, fully
articulated descriptions of the state of that computation, for
inspection and possible modification). In terms of the theories
that result from these investigations, we present a general ar-
chitecture for procedurally reflective processes, able to shift
smoothly between dealing with a given subject domain, and
dealing with their own reasoning processes over that domain.

An instance of the general solution is worked out in the
context of an applicative language. Specifically, we present
three successive dialects of Lisp: 1Lisp,‡ a distillation of cur-
rent practice, for comparison purposes; 2Lisp, a dialect con-
structed in terms of our rationalized semantics, in which the

†The section numbers used here (‘1’ for the Abstract; ‘2’, Extended Ab-
stract; ‘3’, Preface; and ‘4’, Prologue) were introduced for this version.
‡As indicated in the Cover, I have removed the hyphens from the terms
‘1-Lisp’, ‘2-Lisp’, and ‘3-Lisp’ used in the dissertation, here (and through-
out) naming them ‘1Lisp’, ‘2Lisp’, and ‘3Lisp,’ respectively.

		 Procedural Relection in Programming Languages

	 1a	 Preliminaries

a1

8

1a · 2	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

concept of evaluation is rejected in favour of independent no-
tions of simplification and reference, and in which the respec-
tive categories of notation, structure, semantics, and behavior
arc strictly aligned; and 3Lisp, an extension of 2Lisp endowed
with reflective powers.

	 2	Extended Abstract
We show how a computational system can be constructed to
“reason” effectively and consequentially about its own inference
processes. Our approach is to analyze self-referential behavior
in computational systems, and to propose a theory of proce-
dural reflection that enables any programming language to be
extended in such a way as to support programs able to access
and manipulate structural descriptions of their own opera-
tions and structures. In particular, one must encode an explicit
theory of such a system within the structures of the system,
and then connect that theory to the fundamental operations
of the system in such a way as to support three primitive be-
haviors. First, at any point in the course of a computation, fully
articulated descriptions of the state of the reasoning process
must be available for inspection and modification. Second, it
must be possible at any point to resume an arbitrary computa-
tion in accord with such (possibly modified) theory-relative
descriptions. Third, procedures that reason with descriptions
of the processor state must themselves be subject to descrip-
tion and review, to arbitrary depth. Such reflective abilities al-
low a process to shift smoothly between dealing with a given
subject domain, and dealing with its own reasoning processes
over that domain.

Crucial in the development of this theory is a comparison
of the respective semantics of programming languages (such
as Lisp and Algol) and declarative languages (such as logic
and the λ-calculus); we argue that unifying these tradition-
ally separate disciplines clarifies both, and suggests a simple

a2

	 1a · Preliminaries

	 1a · 3

Draft Version 0.82 — 2019 · Jan · 4

and natural approach to the question of procedural reflection.
More specifically, the semantical analysis of computational
systems should comprise independent formulations of de-

clarative import (what symbols stand for) and procedural

consequence (what effects and results are engendered by
processing them), although the two semantical treatments
may, because of side-effect interactions, have to be formulated
in conjunction. When this approach is applied to a functional
language it is shown that the traditional notion of evaluation is
confusing and confused, and must be rejected in favour of in-
dependent notions of reference and simplification. In addition,
we defend a standard of category alignment: there should
be a systematic correspondence between the respective cat-
egories of notation, abstract structure, declarative semantics,
and procedural consequence (a mandate satisfied by no extant
procedural formalism). It is shown how a clarification of these
prior semantical and aesthetic issues enables a procedurally re-
flective dialect to be clearly defined and readily constructed.

An instance of the general solution is worked out in the
context of an applicative language, where the question reduces
to one of defining an interpreted calculus able to inspect and
affect its own interpretation. In particular, we consider three
successive dialects of Lisp: 1Lisp, a distillation of current prac-
tice for comparison purposes; 2Lisp, a dialect categorically and
semantically rationalized with respect to an explicit theory of
declarative semantics for s-expressions; and 3Lisp, a derivative
of 2Lisp endowed with full reflective powers. 1Lisp, like all Lisp
dialects in current use, is at heart a first-order language, em-
ploying meta-syntactic facilities and dynamic variable scoping
protocols to partially mimic higher-order functionality. 2Lisp
like Scheme and the λ-calculus, is higher-order: it supports
arbitrary function designators in argument position, is lexical-
ly scoped, and treats the function position of an application in
a standard extensional manner. Unlike Scheme, however, the

a3

1a · 4	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

2Lisp processor is based on a regimen of normalisation, taking
each expression into a normal-form co-designator of its refer-
ent, where the notion of normal-form is in part defined with
respect to that referent’s semantic type, not (as in the case of
the λ-calculus) solely in terms of the further non-applicability
of a set of syntactic reduction rules. 2Lisp normal-form desig-
nators are environment-independent and side-effect free; thus
the concept of a closure can be reconstructed as a normal-form
function designator. In addition, since normalisation is a form
of simplification, and is therefore designation-preserving, meta-
structural expressions are not de-referenced upon normalisa-
tion, as they are when evaluated. Thus we say that the 2Lisp
processor is semantically flat, since it stays at a semantically
fixed level (although explicit referencing and de-referencing
primitives are also provided, to facilitate explicit level shifts).
Finally, because of its category alignment, argument objectifica-
tion (the ability to apply functions to a sequence of arguments
designated collectively by a single term) can be treated in the
2Lisp base-level language, without requiring resort to meta-
structural machinery.

3Lisp is straightforwardly defined as an extension of 2Lisp,
with respect to an explicitly articulated procedural theory of
3Lisp embedded in 3Lisp structures. This embedded theory,
called the reflective model, though superficially resembling
a meta-circular interpreter, is causally connected to the work-
ings of the underlying calculus in crucial and primitive ways.
Specifically, reflective procedures are supported that bind as ar-
guments (designators of) the continuation and environment
structure of the processor that would have been in effect at
the moment the reflective procedure was called, had the ma-
chine been running all along in virtue of the explicit process-
ing of that reflective model. Because reflection may recurse
arbitrarily, 3Lisp is most simply defined as an infinite tower of
3Lisp processes, each engendering the process immediately be-

a4

a5

	 1a · Preliminaries

	 1a · 5

Draft Version 0.82 — 2019 · Jan · 4

low it. Under such an account, the use of reflective procedures
amounts to running programs at arbitrary levels in this reflec-
tive hierarchy. Both a straightforward implementation and a
conceptual analysis are provided to demonstrate that such a
machine is nevertheless finite.

The 3Lisp reflective model unifies three programming lan-
guage concepts that have formerly been viewed as indepen-
dent: meta-circular interpreters, explicit names for the primi-
tive interpretive procedures (eval and apply in standard Lisp
dialects), and procedures that access the state of the imple-
mentation (typically provided, as part of a programming en-
vironment, for debugging purposes). We show how all such
behaviors can be defined within a pure version of 3Lisp (i.e.,
independent of implementation), since all aspects of the state
of any 3Lisp process are available, with sufficient reflection, as
objectified entities within the 3Lisp structural field.

	 3	Preface
The possibility of constructing a reflective calculus first struck
me in June 1976, at the Xerox Palo Alto Research Center
(parc), where I was spending a summer working with the
krl representation language of Bobrow and Winograd.1 As
an exercise to learn the new language, I had embarked on the
project of representing krl in krl; it seemed to me that this

“double-barreled” approach, in which I would have both to use
and to mention the language, would be a particularly efficient
way to unravel its intricacies. Though that exercise was ulti-
mately abandoned, I stayed with it long enough to become
intrigued by the thought that one might build a system that
was self-descriptive in an important way (certainly in a way in
which my krl project was not). More specifically, I could dim-
ly envisage a computational system in which what happened
took effect in virtue of declarative descriptions of what was to

1. krl’ for ‘Knowledge Representation Language; see Bobrow and Win-
ograd (1977) and Bobrow et al. (1977).

1a · 6	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

happen, and in which the internal structural conditions were
represented in declarative descriptions of those internal struc-
tural conditions. In such a system a program could with equal
ease access all the basic operations and structures either di-
rectly or in terms of completely (and automatically) articulat-
ed descriptions of them. The idea seemed to me rather simple
(as it still does); furthermore, for a variety of reasons I thought
that such a reflective calculus could itself be rather simple—in
some important ways simpler than a non-reflective formalism
(this too I still believe). Designing such a formalism, however,
no longer seems as straightforward as I thought at the time;
this dissertation should be viewed as the first report emerging
from the research project that ensued.

Most of the five years since 1976 have been devoted to
initial versions of my specification of such a language, called
Mantiq, based on these original hunches. As mentioned in
the first paragraph of [dissertation†] chapter 1,‡ there are
various non-trivial goals that must be met by the designer of
any such formalism, including at least a tentative solution to
the knowledge representation problem. Furthermore, in the
course of its development, Mantiq has come to rest on some
additional hypotheses above and beyond those mentioned
above (including, for example, a sense that it will be possible
within a computational setting to construct a formalism in
which syntactic identity and intensional identity can be iden-
tified, given some appropriate, but independently specified,
theory of intensionality). Probably the major portion of my
attention to date has focused on these intensional aspects of
the Mantiq architecture.

It was clear from the outset that no dialect of Lisp (or of
any other purely procedural calculus) could serve as a full re-

†To minimise confusion I explicitly flag chapter references that refer to
chapters in the dissertation, of which only chapter 1 is included in this
Volume, so as to distinguish them from references to chapters in the
present volume.
‡Included here as ch. 3b, p.·….

a7

a6

	 1a · Preliminaries

	 1a · 7

Draft Version 0.82 — 2019 · Jan · 4

flective formalism; purely declarative languages like logic or
the λ-calculus were dismissed for similar reasons. In Febru-
ary of 1981, however, I decided that it would be worth focus-
ing on Lisp, by way of an example, in order to work out the
details of a specific subset of the issues with which Mantiq
would have to contend. In particular, I recognized that many
of the questions of reflection could be profitably studied in
a (limited) procedural dialect, in ways that would ultimately
illuminate the larger programme. Furthermore, to the extent
that Lisp could serve as a theoretical vehicle, it seemed a good
project; it would be much easier to develop, and even more
so to communicate, solutions in a formalism at least partially
understood.

The time from the original decision to look at procedural
reflection (and its concomitant emphasis on semantics—I
realized from investigations of Mantiq that semantics would
come to the fore in all aspects of the overall enterprise), to
a working implementation of 3Lisp, was only a few weeks.
Articulating why 3Lisp was the way it was, however—i.e.,
formulating in plain English the concepts and categories on
which the design was founded—required quite intensive work
for the remainder of the year. A first draft of the dissertation
was completed at the end of December 1981; the implementa-
tion remained essentially unchanged during the course of this
writing (the only substantive alteration was the idea of treat-
ing recursion in terms of explicit y-operators). Thus—and I
suspect there is nothing unusual in this experience—formu-
lating an idea required approximately ten times more work
than embodying it in a machine; perhaps more surprisingly,
all of that effort in formulation occurred after the implementa-
tion was complete. We sometimes hear that writing computer
programs is intellectually hygienic because it requires that we
make our ideas completely explicit. I have come to disagree
rather fundamentally with this view. Certainly writing a pro-

a9

a8

a11

a10

1a · 8	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

gram does not force one to one make one’s ideas articulate, al-
though it is a useful first step. More seriously, however, it is
often the case that the organising principles and fundamental
insights contributing to the coherence of a program are not
explicitly encoded within the structures comprising that pro-
gram. The theory of declarative semantics embodied in 3Lisp,
for example, was initially tacit—a fact perhaps to be expected,
since only procedural consequence is explicitly encoded in
an implementation. Curiously, this is one of the reasons that
building a fully reflective formalism (as opposed to the limited
procedurally reflective languages considered here) is difficult:
in order to build a general reflective calculus, one must embed
within it a fully articulated theory of one’s understanding of it.
This will take some time.

	 4	Prologue
It is a striking fact about human cognition that we can think
not only about the world around us, but also about our ideas,
our actions, our feelings, our past experience. This ability to
reflect lies behind much of the subtlety and flexibility with
which we deal with the world; it is an essential part of mas-
tering new skills, of reacting to unexpected circumstances, of
short-range and long-range planning, of recovering from mis-
takes, of extrapolating from past experience, and so on and
so forth. Reflective thinking characterizes mundane practi-
cal matters and delicate theoretical distinctions. We have all
paused to review past circumstances, such as conversations
with guests or strangers, to consider the appropriateness of
our behavior. We can remember times when we stopped and
consciously decided to consider a set of options, say when
confronted with a fire or other emergency. We understand
when someone tells us to believe everything a friend tells us,
unless we know otherwise. In the course of philosophical dis-
cussion we can agree to distinguish views we believe to be true

	 1a · Preliminaries

	 1a · 9

Draft Version 0.82 — 2019 · Jan · 4

from those we have no reason to believe are false. In all these
cases the subject matter of our contemplation at the moment
of reflection includes our remembered experience, our private
thoughts, and our reasoning patterns.

The power and universality of reflective thinking has
caught the attention of the cognitive science community—in-
deed, once alerted to this aspect of human behavior, theorists
find evidence of it almost everywhere. Though no one can yet
say just what it comes to, crucial ingredients would seem to
be the ability to recall memories of a world experienced in the
past and of one’s own participation in that world, the ability
to think about a phenomenal world, hypothetical or actual,
that is not currently being experienced (an ability presumably
mediated by our knowledge and belief), and a certain kind of
true self-reference: the ability to consider both one’s actions
and the workings of one’s own mind. This last aspect—the
self-referential aspect of reflective thought—has sparked
particular interest for cognitive theorists, both in psychology
(under the label meta-cognition) and in artificial intelligence
(in the design of computational systems possessing inchoate
reflective powers, particularly as evidenced in a collection of
ideas loosely allied in their use of the term “meta”: meta-level
rules, meta-descriptions, and so forth).

In artificial intelligence, the focus on computational forms
of self-referential reflective reasoning has become particu-
larly central. Although the task of endowing computational
systems with subtlety and flexibility has proved difficult, we
have had some success in developing systems with a moderate
grasp of certain domains: electronics, bacteremia, simple me-
chanical systems, etc. One of the most recalcitrant problems,
however, has been that of developing flexibility and modular-
ity (in some cases even simple effectiveness) in the reasoning
processes that use this world knowledge. Though it has been
possible to construct programs that perform a specific kind of

1a · 10	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

reasoning task (say, checking a circuit or parsing a subset of
natural language syntax), there has been less success in simu-
lating “common sense,” or in developing programs able to fig-
ure out what to do, and how to do it, in either general or novel
situations. If the course of reasoning—if the problem solving
strategies and the hypothesis formation behavior—could itself
be treated as a valid subject domain in its own right, then (at
least so the idea goes) it might be possible to construct sys-
tems that manifested the same modularity about their own
thought processes that they manifest about their primary
subject domains. A simple example might be an electronics

“expert” able to choose an appropriate method of tackling a
particular circuit, depending on a variety of questions about
the relationship between its own capacities and the problem at
hand: whether the task was primarily one of design or analysis
or repair, what strategies and skills it knew it had in such areas,
how confident it was in the relevance of specific approaches
based on, say, the complexity of the circuit, or on how similar
it looked compared with circuits it already knew. Expert hu-
man problem-solvers clearly demonstrate such reflective abili-
ties, and it appears more and more certain that powerful com-
putational problem solvers will have to possess them as well.

No one would expect potent skills to arise automatically
in a reflective system; the mere ability to reason about the
reasoning process will not magically yield systems able to re-
flect in powerful and flexible ways. On the other hand, the
demonstration of such an ability is clearly a prerequisite to its
effective utlization. Furthermore, many reasons are advanced
in support of reflection, as well as the primary one (the hope
of building a system able to decide how to structure the pat-
tern of its own reasoning). It has been argued, for example,
that it would be easier to construct powerful systems in the
first place (it would seem you could almost tell them how to
think), to interact with them when they fail, to trust them if

	 1a · Preliminaries

	 1a · 11

Draft Version 0.82 — 2019 · Jan · 4

they could report on how they arrive at their decisions, to give
them “advice” about how to improve or discriminate, as well as
to provide them with their own strategies for reacting to their
history and experience.

There is even, as part of the general excitement, a tentative
suggestion on how such a self-referential reflective process
might be constructed. This suggestion—nowhere argued but
clearly in evidence in several recent proposals—is a particular
instance of a general hypothesis, adopted by most A.I. research-
ers, that we will call the Knowledge Representation Hypothesis.
It is widely held in computational circles that any process
capable of reasoning intelligently about the world must con-
sist in part of a field of structures, of a roughly linguistic sort,
which in some fashion represent whatever knowledge and be-
liefs the process may be said to possess. For example, according
to this view, since I know that the sun sets each evening, my

“mind” must contain (among other things) a language-like or
symbolic structure that represents this fact, inscribed in some
kind of internal code. There are various assumptions that go
along with this view: there is for one thing presumed to be
an internal process that “runs over” or “computes with” these
representational structures, in such a way that the intelligent
behavior of the whole results from the interaction of parts. In
addition, this ingredient process is required to react only to
the “form” or “shape” of these mental representations, without
regard to what they mean or represent—this is the substance
of the claim that computation involves formal symbol manipu-
lation. Thus my thought that, for example, the sun will soon
set, would be taken to emerge from an interaction in my mind
between an ingredient process and the shape or “spelling” of
various internal structures representing my knowledge that
the sun does regularly set each evening, that it is currently tea
time, and so forth.

The knowledge representation hypothesis may be summa-

a12

1a · 12	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

rized as follows:

Knowledge Representation Hypothesis: Any me-
chanically embodied intelligent process will be com-
prised of structural ingredients that (a) we as external
observers naturally take to represent a propositional
account of the knowledge that the overall process ex-
hibits, and (b) independent of such external semantical
attribution, play a formal but causal and essential role in
engendering the behavior that manifests that knowledge.

Thus for example if we felt disposed to say that some process
knew that dinosaurs were warm-blooded, then we would
find (according, presumably, to the best explanation of how
that process worked) that a certain computational ingredient
in that process was understood as representing the (proposi-
tional) fact that dinosaurs were warm-blooded, and further-
more, that this very ingredient played a role, independent of
our understanding of it as representational, in leading the pro-
cess to behave in whatever way inspired us to say that it knew
that fact. Presumably we would be convinced by the manner
in which the process answered certain questions about their
likely habitat, by assumptions it made about other aspects of
their existence, by postures it adopted on suggestions as to
why they may have become extinct, etc.

A careful analysis will show that. to the extent that we can
make sense of it, this view that knowing is representational is far
less evident—and perhaps, therefore, far more interesting—
than is commonly believed. To do it justice requires consider-
able care: accounts in cognitive psychology and the philosophy
of mind tend to founder on simplistic models of computation,
and artificial intelligence treatments often lack the theoreti-
cal rigour necessary to bring the essence of the idea into plain
view. Nonetheless, conclusion or hypothesis, it permeates cur-

a12.5

	 1a · Preliminaries

	 1a · 13

Draft Version 0.82 — 2019 · Jan · 4

rent theories of mind, and has in particular led researchers in
artificial intelligence to propose a spate of computational lan-
guages and calculi designed to underwrite such representation.
The common goal is of course not so much to speculate on
what is actually represented in any particular situation as to
uncover the general and categorical form of such representa-
tion. Thus no one would suggest how anyone actually repre-
sents facts about tea and sunsets: rather, they might posit the
general form in which such beliefs would be “written” (along
with other beliefs, such as that Lhasa is in Tibet, and that π is
an irrational number). Constraining all plausible suggestions,
however, is the requirement that they must be able to dem-
onstrate how a particular thought could emerge from such
representations—this is a crucial meta-theoretic characteris-
tic of artificial intelligence research. It is traditionally consid-
ered insufficient merely to propose true theories that do not
enable some causally effective mechanical embodiment. The
standard against which such theories must ultimately judged,
in other words, is whether they will serve to underwrite the
construction of demonstrable, behaving artefacts. Under this
general rubric knowledge representation efforts differ mark-
edly in scope, in approach, and in detail; they differ on such
crucial questions as whether or not the mental structure are
modality specific (one for visual memory, another for verbal,
for example). In spite of such differences, however, they mani-
fest the shared hope that an attainable first step towards a full
theory of mind will be the discovery of something like the
structure of the “mechanical mentalese” in which our beliefs
are inscribed.

It is natural to ask whether the knowledge representation
hypothesis deserves our endorsement, but this is not the place
to pursue that difficult question. Before it can fairly be asked,
we would have to distinguish a strong version claiming that
knowing is necessarily representational from a weaker version

1a · 14	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

claiming merely that it is possible to build a representational
knower. We would run straight into all the much-discussed
but virtually intractable questions about what would be re-
quired to convince us that an artificially constructed process
exhibited intelligent behavior. We would certainly need a defi-
nition of the word ‘represent,’ about which we will subsequent-
ly have a good deal to say. Given the current (minimal) state of
our understanding, I myself see no reason to subscribe to the
strong view, and remain skeptical of the weak version as well.
But one of the most difficult questions is merely to ascertain
what the hypothesis is actually saying—thus my interest in
representation is more a concern to make it clear than it is to
defend or deny it The entire present investigation, therefore,
will be pursued under this hypothesis, not because we grant
it our allegiance, but merely because it deserves our attention.

Given the representation hypothesis, the suggestion as to
how to build self-reflective systems—a suggestion we will call
the Reflection Hypothesis—can be summarized as follows:

Reflection Hypothesis: In as much as a computational
process can be constructed to reason about an external
world in virtue of comprising an ingredient process (in-
terpreter) formally manipulating representations of that
world, so too a computational process could be made to
reason about itself in virtue of comprising an ingredient
process (interpreter) formally manipulating representa-
tions of its own operations and structures.

Thus the task of building a computationally reflective system
is thought to reduce to, or at any rate to include, the task of
providing a system with formal representations of its own
constitution and behavior. Hence a system able to imagine
a world where unicorns have wings would have to construct
formal representations of that fact; a system considering the

a13

	 1a · Preliminaries

	 1a · 15

Draft Version 0.82 — 2019 · Jan · 4

adoption of a hypothesis-and-test style of investigation would
have to construct formal structures representing such an in-
ference regime.

Whatever its merit, there is ample evidence that research-
ers arc taken with this view. Systems such as Weyhrauch’s
fol, Doyle’s tms, McCarthy’s advice-taker, Hayes’ golum,
and Davis’ teresius arc particularly explicit exemplars of
just such an approach.2 In Weyhrauch’s system, for example,
sentences in first-order logic arc constructed that axiomatize
the behavior of the Lisp procedures used in the course of the
computation (fol is a prime example of the dual-calculus
approach mentioned earlier). In Doyle’s systems, explicit rep-
resentations of the dependencies between beliefs and of the

“reasons” the system accepts a conclusion play a causal role in
the inferential process. Similar remarks hold for the other
projects mentioned, as well as for a variety of other current
research. In addition, it turns out on scrutiny that a great deal
of current computational practice can be seen as dealing, in
one way or another, with reflective abilities, particularly as
exemplified by computational structures representing other
computational structures. We constantly encounter examples:
the wide-spread use of macros in Lisp, the use of meta-level
structures in representation languages, the use of explicit non-
monotonic inference rules, the popularity of meta-level rules
in planning systems.3 Such a list can be extended indefinitely;
in a recent symposium Brachman reported that the love affair
with “meta-level reasoning” was the most important theme of
knowledge representation research in the last decade.4

2. Weyhrauch (1978), Doyle (1979), McCarthy (1968), Hayes (1979), and
Davis (1980a), respectively.
3. For a discussion of macros see the various sources on Lisp men-
tioned in note 16 of chapter 1; meta-level rules in representation were
discussed in Brachman and Smith (1980); for a collection of papers on
non-monotonic reasoning see Bobrow (1980); macros are discussed in
Pitman (1980).
4. Brachman (1980).

a14

1a · 16	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

	 4a	The Relationship Between
		 Reflection & Representation

The manner in which this discussion has been presented so
far would seem to imply that the interest in reflection and
the adoption of a representational stance are theoretically in-
dependent positions. I have argued in this way for a reason:
to make clear that the two subjects are not the same. There
is no a priori reason to believe that even a fully representa-
tional system should in any way be reflective or able to make
anything approximating a reference to itself; similarly, there
is no proof that a powerfully self-referential system need be
constructed of representations. However—and this is the
crux of the matter—the reason to raise both issues together
is that they are surely, in some sense, related. If nothing else,
the word ‘representation’ comes from ‘re’ plus ‘present’, and the
ability to re-present a world to itself is undeniably a crucial, if
not the crucial, ingredient in reflective thought. If I reflect on
my childhood, I re-present to myself my school and the rooms
of my house; if I reflect on what I will do tomorrow, I bring
into the view of my mind’s eye the self I imagine that tomor-
row I will be. If we take “representation” to describe an ability
rather than a structure, reflection surely involves representa-
tion (although—and this should be kept clearly in mind—the

“representation” of the knowledge representation hypothesis
refers to ingredient structures, not to an activity).

It is helpful to look at the historical association between
these ideas, as well to search for commonalities in content. In
the early days of artificial intelligence, a search for the gen-
eral patterns of intelligent reasoning led to the development
of such general systems as Newell and Simon’s gps, predi-
cate logic theorem provers, and so forth.5 The descriptions
of the subject domains were minimal but were nonetheless
primarily declarative, particularly in the case of the systems
based on logic. However it proved difficult to make such gen-

5. Newell and Simon (1963); Newell and Simon (1956).

a15

	 1a · Preliminaries

	 1a · 17

Draft Version 0.82 — 2019 · Jan · 4

eral systems effective in particular cases: so much of the “ex-
pertise” involved in problem solving seems domain and task
specific. In reaction against such generality, therefore, a pro-
cedural approach emerged in which the primary focus was
on the manipulation and reasoning about specific problems
in simple worlds.6 Though the procedural approach in many
ways solved the problem of undirected inferential meander-
ing, it too had problems: it proved difficult to endow systems
with much generality or modularity when they were simply
constituted of procedures designed to manifest certain par-
ticular skills. In reaction to such brittle and parochial behavior,
researchers turned instead to the development of processes
designed to work over general representations of the objects
and categories of the world in which the process was designed
to be embedded. Thus the representation hypothesis emerged
in the attempt to endow systems with generality, modularity,
flexibility, and so forth with respect to the embedding world,
but to retain a procedural effectiveness in the control compo-
nent.7 In other words, in terms of our main discussion, repre-
sentation as a method emerged as a solution to the problem
of providing general and flexible ways of reflecting (not self-
referentially) about the world.

Systems based on the representational approach—and it
is fair to say that most of the current “expert systems” are in
this tradition—have been relatively successful in certain re-
spects, but a major lingering problem has been a narrowness
and inflexibility regarding the style of reasoning these systems
employ in using these representational structures. This inflex-
ibility in reasoning is strikingly parallel to the inflexibility in
knowledge that led to the first round of representational sys-
tems; researchers have therefore suggested that we need re-

6. The proceduralist view was represented particularly by a spate of dis-
sertations emerging from MIT at the beginning of the 1970s; see for ex-
ample Winograd (1972), Hewitt (1972), Sussman et al. (1971), etc.
7. See Minsky (1975), Winograd (1975), and all of the systems reported
in Brachman and Smith (1980).

a16

1a · 18	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

flective systems able to deal with their own constitutions as
well as with the worlds they inhabit. In other words, since the
style of the problem is so parallel to that just sketched, it has
seemed that another application of the same medicine might
be appropriate. If we could inscribe general knowledge about
how to reason in a variety of circumstances in the “mental-
ese” of these systems, it might be possible to design a relatively
simpler inferential regime over this “meta-knowledge about
reasoning,” thereby engendering a flexibility and modularity
regarding reasoning, just as the first representational work
engendered a flexibility and modularity about the process’s
embedding world.

There are problems, however, in too quick an association
between the two ideas, not the least of which is the question
of to whom these various forms of re-presentation are being
directed. In the normal case—that is to say, in the typical
computational process built under the aegis of the knowledge
representation hypothesis—a process is constituted from
symbols that we as external theorists take to be representa-
tional structures; they are visible only to the ingredient interpre-
tive process [that is just part] of the whole, and they are visible to
that constituent process only formally (this is the basic claim
of computation). Thus the interpreter can see them, though it
is blind to the fact of their being representations. (In fact it is
almost a great joke that the blindly formal ingredient process
should be called an interpreter: when the Lisp interpreter eval-
uates the expression ‘(+ 2 3)’ and returns the result ‘6’, the last
thing it knows is that the numeral ‘2’ denotes the number two.)

Whatever is the case with the ingredient process, there is
no reason to suppose that the representational structures are
visible to the whole constituted process at all, formally or in-
formally. That process is made out of them; there is no more
a priori reason to suppose that they are accessible to its in-

a17

a18

	 1a · Preliminaries

	 1a · 19

Draft Version 0.82 — 2019 · Jan · 4

spection than to suppose that a camera could take a picture
of its own shutter—no more reason to suppose it is even a
coherent possibility than to say that France is near Marseilles.
Current practice should overwhelmingly convince us of this
point: what is as tacit—what is as thoroughly lacking in self-
knowledge—as the typical modern computer system?

The point of the argument here is not to prove that one
cannot make such structures accessible—that one cannot
make a representational reflective system—but to make clear
that two ideas are involved. Furthermore, they are different in
kind: one (representation) is a possibly powerful method for
the construction of systems; the other (reflection) is a kind
of behavior we are asking our systems to exhibit. It remains a
question whether the representational method will prove use-
ful in the pursuit of the goal of reflective behavior.

That, in a nutshell, is our overall project.

	 4b	The Theoretical Backdrop
It takes only a moment’s consideration of such questions as
the relationship between representation and reflection to rec-
ognize that the current state of our understanding of such
subjects is terribly inadequate. In spite of the general excite-
ment about reflection, self-reference, and computational rep-
resentation, no one has presented an underlying theory of
any of these issues. The reason is simple: we are so lacking
in adequate theories of the surrounding territory that, with-
out considerable preliminary work, cogent definitions cannot
even be attempted. Consider for example the case regarding
self-referential reflection, where just a few examples will make
this clear.

1.	 From the fact that a reflective system a is implemented
in system B, it docs not follow that system B is thereby
rendered reflective (for example, in this dissertation I
will present a partially-reflective dialect of Lisp that I

a19

1a · 20	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

have implemented on a Digital Systems Corporation
pdp-10, but the pdp-10 is not itself reflective). Hence
even a definition of reflection will have to be backed
by theoretical apparatus capable of distinguishing be-
tween one abstract machine and another in which the
first is implemented—something we are not yet able
to do.

2.	 The notion seems to require of a computational pro-
cess, and (if we subscribe to the representational hy-
pothesis) of its interpreter, that in reflecting it “back
off ” one level of reference, and we lack theories both of
interpreters in general, and of computational reference
in particular.

3.	 Theories of computational interpretation will be re-
quired to clarify the confusion mentioned above re-
garding the relationship between reflection and rep-
resentation: for a system to reflect it must re-present
for itself its mental states; it is not sufficient for it to
comprise a set of formal representations inspected by
its interpreter. This is a distinction we encounter again
and again; a failure to make it is the most common er-
ror in discussions of the plausibility of artificial intel-
ligence from those outside the computational commu-
nity, derailing the arguments of such thinkers as Searle
and Fodor.8

4.	 Theories of reference will be required in order to make
sense of the question of what a computational process
is “thinking” about at all, whether reflective or not (for
example, it may be easy to claim that when a program
is manipulating data structures representing women’s
votes that the process as a whole is “thinking about suf-
frage,” but what is the process thinking about when the
interpreter is expanding a macro definition?).

8. Searle (1980), Fodor (1978 and 1980).

a20

a21

	 1a · Preliminaries

	 1a · 21

Draft Version 0.82 — 2019 · Jan · 4

5.	 Finally, if the search for reflection is taken up too en-
thusiastically, one is in danger of interpreting every-
thing as evidence of reflective thinking, since what
may not be reflective explicitly can usually be treated as
implicitly reflective (especially given a little imagination
on the part of the theorist). However we lack general
guidelines on how to distinguish explicit from implicit
aspects of computational structures.

Nor is our grasp of the representational question any clearer;
a serious difficulty, especially since the representational en-
deavour has received much more attention than has reflection.
Evidence of this lack can be seen in the fact that, in spite of an
approximate consensus regarding the general form of the task,
and substantial effort on its behalf, no representation scheme
yet proposed has won substantial acceptance in the field.
Again this is due at least in part to the simple absence of ad-
equate theoretical foundations in terms of which to formulate
either enterprise or solution. We do not have theories of either
representation or computation in terms of which to define the
terms of art currently employed in their pursuit (representa-
tion, implementation, interpretation, control structure. data struc-
ture, inheritance, and so forth), and are consequently without
any well-specified account of what it would be to succeed, let
alone of what to investigate, or of how to proceed. Numer-
ous related theories have been developed (model theories for
logic, theories of semantics for programming languages, and
so forth), but they do not address the issues of knowledge
representation directly, and it is surprisingly difficult to weave
their various insights into a single coherent whole.

The representational consensus alluded to above, in other
words, is widespread but vague; disagreements emerge on
every conceivable technical point, as was demonstrated in a
recent survey of the field.9 To begin with, the central notion
of “representation” remains notoriously unspecified: in spite

9. Brachman and Smith (1980).

a22

a23

a24

1a · 22	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

of the intuitions mentioned above, there is remarkably little
agreement on whether a representation must “re-present” in
any constrained way (like an image or copy), or whether the
word is synonymous with such general terms as “sign” or “sym-
bol.” A further confusion is shown by an inconsistency in us-
age as to what representation is a relationship between. The
sub-discipline is known as the representation of knowledge, but
in the survey just mentioned by far the majority of the respon-
dents (to the surprise of this author) claimed to use the word,
albeit in a wide variety of ways, as between formal symbols
and the world about which the process is designed to reason. Thus
a klone structure might be said to represent Don Quixote tilt-
ing at a windmill; it would not be taken as representing the fact
or proposition of this activity. In other words the majority opin-
ion is not that we are representing knowledge at all, but rather,
as we put it above, that knowing is representational.10

In addition, we have only a dim understanding of the rela-
tionship that holds between the purported representational
structures and the ingredient process that interprets them.
This relates to the crucial distinction between that interpret-
ing process and the whole process of which it is an ingredient
(whereas it is I who thinks of sunsets, it is at best a constituent
of my mind that inspects a mental representation). Further-
more, there are terminological confusions: the word ‘semantics’
is applied to a variety of concerns, ranging from how natural
language is translated into the representational structures, to
what those structures represent, to how they impinge on the
rational policies of the “mind” of which they are a part, to what
functions are computed by the interpreting process, etc. The
term ‘interpretation’ (to take another example) has two rela-
tively well-specified but quite independent meanings, one of
computational origin, the other more philosophical; how the
two relate remains so far unexplicated, although, as was just
mentioned, they are strikingly distinct.

10. See the introduction to Brachman and Smith (1980).

a25

a27

a26

	 1a · Preliminaries

	 1a · 23

Draft Version 0.82 — 2019 · Jan · 4

Unfortunately, such general terminological problems are
just the tip of an iceberg. When we consider our specific rep-
resentational proposals, we are faced with a plethora of ap-
parently incomparable technical words and phrases. Node,
frame, unit, concept, schema, script, pattern, class, and plan, for
example, are all popular terms with similar connotations and
ill-defined meaning.11 The theoretical situation (this may not
be so harmful in terms of more practical goals) is further
hindered by the tendency for representational research to be
reported in a rather demonstrative fashion: researchers typi-
cally exhibit particular formal systems that (often quite im-
pressively) embody their insights, but that are defined using
formal terms peculiar to the system at hand. We are left on
our own to induce the relevant generalities and to locate them
in our evolving conception of the representation enterprise as
a whole. Furthermore, such practice makes comparison and
discussion of technical details always problematic and often
impossible, defeating attempts to build on previous work.

This lack of grounding and focus has not passed unnoticed:
in various quarters one hears the suggestion that, unless se-
verely constrained, the entire representation enterprise may
be ill-conceived—that we should turn instead to consider-
ations of particular epistemological issues (such as how we
reason about, say, liquids or actions), and should use as our
technical base the traditional formal systems (logic, Lisp, and
so forth) that representation schemes were originally designed
to replace.12 In defense of this view two kinds of argument are
often advanced. The first is that questions about the central
cognitive faculty are at the very least premature, and more se-
riously may for principled reasons never succumb to the kind
of rigorous scientific analysis that characterizes recent stud-
ies of the peripheral aspects of mind: vision, audition, gram-

11. References on node, frame, unit, concept, schema, script, pattern, class,
and plan can be found in the various references provided in Brachman
and Smith (1980).
12. See in particular Hayes (1978).

1a · 24	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

mar, manipulation, and so forth.13 The other argument is that
logic as developed by the logicians is in itself sufficient; that
all we need is a set of ideas about what axioms and inference
protocols are best to adopt.14 But such doubts cannot be said
to have deterred the whole of the community: the survey just
mentioned lists more than thirty new representation systems
under active development.

The strength of this persistence is worth noting, especially
in connection with the theoretical difficulties just sketched.
There can be no doubt that there are scores of difficult prob-
lems: we have just barely touched on some of the most striking.
But it would be a mistake to conclude in discouragement that
the enterprise is doomed, or to retreat to the meta-theoretic
stability of adjacent fields (like proof theory, model theory,
programming language semantics, and so forth). The moral is
at once more difficult and yet more hopeful. What is demand-
ed is that we stay true to these undeniably powerful ideas, and
attempt to develop adequate theoretical structures on this
home ground. It is true that any satisfactory theory of compu-
tational reflection must ultimately rest, more or less explicitly,
on theories of computation, of intensionality, of objectifica-
tion, of semantics and reference, of implicitness, of formality,
of computation, of interpretation, of representation, and so
forth. On the other hand as a community we have a great deal
of practice that often embodies intuitions that we are unable
to formulate coherently. The wealth of programs and systems
we have built often betray—sometimes in surprising ways—
patterns and insights that eluded our conscious thoughts in
the course of their development. What is mandated is a ratio-
nal reconstruction of those intuitions and of that practice.

In the case of designing reflective systems, such a recon-

13. The distinction between central and peripheral aspects of mind is
articulated in Nilsson (1981); on the impossibility of central AI (Nilsson
himself feels that the central faculty will quite definitely succumb to
AI’s techniques) see Dreyfus (1972) and Fodor (1980 and forthcoming).
14. Nilsson (1981).

a28

	 1a · Preliminaries

	 1a · 25

Draft Version 0.82 — 2019 · Jan · 4

struction is curiously urgent. In fact this long introductory
story ends with an odd twist—one that “ups the ante” in the
search for a carefully formulated theory, and suggests that
practical progress will be impeded until we take up the theo-
retical task. In general, it is of course possible (some would
even advocate this approach) to build an instance of a class
of artefact before formulating a theory of it. The era of sail
boats, it has often been pointed out, was already drawing to
a close just as the theory of airfoils and lift was being for-
mulated—the theory that, at least at the present time, best
explains how those sailboats worked. However there are a
number of reasons why such an approach may be ruled out
in the present case. For one thing, in constructing a reflective
calculus one must support arbitrary levels of meta-knowledge
and self-modelling, and it is self-evident that confusion and
complexity will multiply unchecked when one adds such fa-
cilities to an only partially understood formalism. It is simply
likely to be unmanageably complicated to attempt to build a
self-referential system unaided by the clarifying structure of
a prior theory. The complexities surrounding the use of apply
in Lisp (and the caution with which it has consequently come
to be treated) bear witness to this fact. However there is a
more serious problem. If one subscribes to the knowledge rep-
resentation hypothesis, it becomes an integral part of devel-
oping self-descriptive systems to provide, encoded within the
representational medium, an account of (roughly) the syntax,
semantics, and reasoning behavior of that formalism. In other
words, if we are to build a process that “knows” about itself:
and if we subscribe to the view that knowing is representational,
then we are committed to providing that system with a repre-
sentation of the self-knowledge with which we aim to endow it.
That is, we must have an adequate theories of computational
representation and reflection explicitly formulated, since an en-
coding of that theory is mandated to play a causal role as an actual

a29

1a · 26	 Indiscrete Affairs · I

Draft Version 0.82 — 2019 · Jan · 4

ingredient in the reflective device.
Knowledge of any sort—and self-knowledge is no excep-

tion—is always theory relative. The representation hypothesis
implies that our theories of reasoning and reflection must be
explicit. We have argued that this is a substantial, if widely ac-
cepted, hypothesis. One reason to find it plausible comes from
viewing the entire enterprise as an attempt to communicate
our thought patterns and cognitive styles—including our re-
flective abilities—to these emergent machines. It may at some
point be possible for understanding to be tacitly communicat-
ed between humans and system they have constructed. In the
meantime, however, while we humans might make do with a
rich but unarticulated understanding of computation, repre-
sentation, and reflection, we must not forget that computers
do not [yet] share with us our tacit understanding of what
they are.

a30

