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l .. (define READ-NORMALIZE-PRINT
w (lambda simple [level env stream]

3 .. {(normalize (prompt&read level stream) env

4 .. ..{lambda simple [result] : Continuation C-REPLY
L TS {(block (prompt&reply resuit level stream)

6 (read-normalize-print level env stream})))))

7 ... {def ine NORMALIZE

8 e (lambda simple [exp env cont]

«. {cond [(normal exp) (cont exp)]

10 e [(atom exp) (cont {binding exp env))]

11 .. w. [{rail exp) (normatize-rail exp env cont)]

12 e [(pair exp) (reduce (car uxp) (cdr exp) env cont)])))

13 ... (daf Ina REDUCE

14 ... (lambda simpile [proc args env cont]

15 . .. {(normalize proc env

16 .. ... (Tambda simple [proc!] : Continuation C-PROC!
17 s (if (reflective proc!)

18 et (¥(de-reflect proc!) args env cont)

19 vt (normatize args env

20 .. {lambda simple [args!] : Continuation C-ARGS!
21 (if (primitive proc!)

22 et tane (cont t(dproct . Yargs!))

23 et ers {normalize (body proc!)

24 ... {bind (pattern proc!) args! (environment proc!))
25 cont})))))))

26 ... (define NORMALIZE-RAIL

27 (tambda simple [rail env cont]

28 e (if (empty rail)

29 e (cont (rcons))

30 . .. (normalize (1st rail) env . L S -

3L .. ve {Tambdd simple [First!] ; : Continuation C-IFIRS'T!
32 Pessiresiesrorsansensinn (normalize-rail (rest rail) env

33 (lambda simple [rest!] : Continuation C-REST!
34 (cont (prep rirst! rest!))))))))) ;
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1. Introduction

The 3-LISP programming language is dcsigned to illustrate both the integration of dceclarative and
procedural semantics in a unificd calculus, and -the provision of reflective capabilitics. It is a direct
descendant of McCarthy’s LISP 1.5 [McCarthy 65] and of Sussman and Stecle’s SCHEME
[Sussmané&/Stecle 75, 76a, 76b, 77, 78a, 78b]; many featurcs of those formalisms are embodicd in 3-
LISP without comment. There are, however, some major differences between 3-LISP and prior LISP
dialects. More specifically:

1. Statically Scoped and Higher Order: like SCHEME and the untyped A-calculus, but
unlike LISP 1.5, functions of any degree may be used in 3-LISP as arbitrary arguments.
Frec variables arc statically (lexically) scoped. Conscquently, flat (non meta-structural)
3-LISP is on its own a higher-order functional calculus.

2. Untyped and Unsorted: Though the scmantic domain and primitive functions are typed
(in the computer scientist’s sense — what logicians call sorted), user-defined proccdures
nced not be typed, and no typing information is explicitly stated. In addition, there are
no type restrictions (in the logician's sense).

3. Meta-Structural: As in all LISPs, quotation is provided primitively, cnabling the
cxplicit mention of program structurcs. Because naming and normalization are
orthogonal, quotation is a structural primitive, not a functional primitive (i.c., there is
no primitive QuoTe procedure).  Handles (normal-form dcsignators of internal
structurcs) are unique and canonical normal-form structure designators.

4, Semantically Rationalized: Traditional cvaluation is rejected in favor of indcpendent
notions of simplification and designation. The 3-LISP processor is based on a form of
simplification called normalization that takes cach structurc into a co-designating
structure in normal form. As a conscquence, processing is semantically flat: programs
may cross the mcta-structural hicrarchy only with the cxplicit use of the two Icvel-
crossing primitives (+ and ¢, g.v.); note that reflective procedures are nof level-crossing.
In addition, the processor is idempotent (all normal-form structures normalize to
themselves).  With the cxception of the one side-cffect primitive (RepLace), the
declarative () and procedural (¥) semantics can be specified independently.

5. Category Aligned: ‘'There is a onc-to-onc correspondence across primitive structural
categorics, declarative semantic categories, and categorics of procedural treatment. In
addition, there arc corresnonding notational categorics, although the standard notation
(scc §3) has somc slight additional complexity for user convenicnce.

6. Procedures and Functions: The standard (but uscr-defined) procedure LAMBDA is used
purely as a naming operator; rccursion is treated with the explicit use of circular-
structure generating Y-operators. Closures arc a distinguished structural category, and
are normal-form function dcsignators.

7. Procedurally Reflective: 3-LISP supports. two kinds of procedures: simple and reflective.
" Reflective procedures are run not in the object level of a program, but integrated into
an explicit version of the processor that was running that program. Thus, the 3-LISP
virtual machine consists of an infinite tower of type-cquivalent processors. This
architecture unifics the traditional notions of an cxplicitly available evaL and appLry,
meta-circular interpreters, and idiosyncratic cxtensions to facilitate debugging.
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1.a. The 3-LISP Experiment

Smith’s dissertation [Smith 82a] contains a dctailed justification of the design principles underlying
3-LISP. The language described in this manual is fundameatally the same as the original version,
though it has undecrgone some cvolution (c.g.. closures now have their own structural category).
Similarly, the techniques used to implement 3-LISP arc basically thosc discussed in chapter 5 of the
dissertation, but with numcrous refinements in order to achicve reasonable performance. A
summary papcer that appcared in the 1984 ACM Principles of Programming Languages Confcrcnce
Proccedings [Smith 84a} is included as an appendix.

3-LISP is an experimental language — an cxperiment still in its carly stages. There arc active
investigations on three fronts: the formal semantics of reflection; the development of a reflective
language supporting data abstraction; and 3A-LISP, a dialect of 3-LISP frce of side cffects.

Be that as it may, it was felt that sufficicnt progress had been made to warrant making available this
interim reference manual, which describes an implementation, again interim, built on_ top of
INTERLISP-D and running on Xcrox 1100 serics machincs. The authors welcome any and all
comments on the manual, on the language, or, more generally, on the concepts of reflection and
scmantic rationalization.

Lb. Organization of this Manual

The goal of this manual is to provide somcone with cnough information to be able to understand
and usc the INTERLISP-D based implementation of 3-LISP. §2 is with a primer on the 3-LISP
language and reflective programming. ‘This is followed in §3 by a dctailed summary of the
structural ficld and standard notation. The standard procedures of 3-LISP are documented in §4
(the 3-LISP code for all non-primitive standard procedurcs can be found in Appendix A). &5
contains instructions on how to usc the INTERLISP-D bascd implementation of the system.

Of special intcrest to implementers, a sketch of how one might go about implementing 3-LISP is
presented in Appendix B.

This manual assumes familiarity with [Smith 84a], which explains the philosophy underlying the
design of 3-LISP and introduces the concepts and terminology used to cxplain the system; this paper
is reprinted in Appendix C. While in one sense it is true that 3-LISP is merely a distillation of
existing computational practice as adhered to by the LISP community, it is also true that 3-LISP
departs rather radically from some of the fundamental notions and terms (such as evaluation) upon
which LISP is based. For this rcason, Appendix C will be worthwhile preparation for cven the
cxperienced LISP hacker.
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2. A 3-LISP Primer

3-LISP can claim to be a dialect of LISP only on a gencrous interpretation. It is unarguably more
different from the original LISP 1.5 than is any other dialect that has been proposed, including, for
cxample, SCHEME [Sussman&/Stecle 75, 76a, 76b, 77, 78a, 78b], MDL [Galley&Pfister 75], NIL
[White 791, MACLISP [Moon 74], INTERLISP [I'citclman 78], COMMON LISP [Stcele ct al. 82], and
T [Reces 82}

In spite of this difference, however, it is important to our enterprise to call this language LISP. We
do not simply propose it as a new variant in a grand tradition, perhaps better suited to a certain
class of problems than those that have gone before.  Rather, we claim that the architecture of this
new dialect, in spite of its difference from that of standard LISPs, is a more accurate reconstruction
of the underlying coherence thai organizes our communal understanding of what LISP is. We arc
making a claim, in other words — a claim that should ultimately be judged as right or wrong.
Whether 3-LISP is. better than previous LISPs is, of course, a matter of some interest on its own, but
it is not the principle motivation bechind its development.

This scction is tutorial in nature; §2.a. introduces the basic 3-LISP language, leaving details of the
reflective processor and reflective procedures to §2.b.  Details of the structural field, standard
notation, and the standard procedurcs are covered in subsequent scctions.

2.a. The Basic Language

Perhaps the best way to begin to understand a new programming language is to watch it in action.
Better still is sccing it put through its paces and getting a running commentary to boot. So, without
further ado, let's dive right in and play.

1> 100
= 100

The ground rules for these interactions with the 3-LISP system arc straight-forward. The system
usually prompts with ‘1>°. Shown in italics following the system prompt is our input just as we
typed it — in this case ‘100°. T'he system’s reply to our input is shown on the following line, right
after the *1=" marker. In this casc, the answer was 100", "The correct way to view the system is that
it accepts an cxpression, simplifics it, and then displays the result. Since the cxpression 100 cannot
be further simplificd, the system just spits it back at us. Both the original input and the result
designate the abstract number onc hundred.

1 (+23)
1= 6

‘The expression ‘(+ 2 3)" is the 3-LISP way of saying "the valuc of applying the addition function to
the numbers two and three.” The system answers five bécausc‘that is exactly what this fancy name-
for-a-number amounts to.  Again, we are sccing that a) both the input and the output cxpression
designate the same object, and b) the answer is in its simplest possible form. Expressions enclosed
in ‘(" and ‘)" arc called pairs (occasionally, redexes) and are taken to designate the value of applying
the function designated by the first sub-cxpression to the arguments designated by the remaining
sub-cxpressions.  Names like ‘+' are called atoms; what they designate depends on where they are
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used. In all of these examples, their meaning is the standard one supplied by the off-the-shelf 3-
LISP system; not surprisingly, ‘+" decsignates the function that adds numbers together.

1> (+2 (* 3 (+45)))
1= 29

There is no limit on how complicated the input expressions can be. ‘The last one can be read "two
plus threc times the sum of four and five,” namecly twenty nine.

1> [12 3]
1= [1 2 3]

Structures notated by cxpressions enclosed in '’ and ‘7" arc called rails, and designate the abstract
scquence composed of the objects designated by the various sub-cxpressions in the order given.
Thus {1 2 3] designates the abstract secquence of containing, in order, the numbers one, two, and
three.

»[]
1= []

The cmpty scquence that contains no clements is designated [].

1> [(*33)(*44)(*535)]
1= [4 9 16]

All complex sub-cxpressions arc simplified in the process of deriving the answer.

1> [1[2 (+12)] 4]
1= [1 [2 3] 4]

Morcover, rails may appear as sub-cxpressions inside. other rails, making it possible to refer to
scquences compriscd of numbers and other sequences.

1> (1ST [1 2 3])

1= 1
1> (REST [1 2 3])
1= [2 3]

1> (PREP (+ 99 1) [1 2 3])
1= [100 1 2 3]
1> (LENGTH [1 2 3])

1= 3
The standard operations on scquences are: 1ST — for the first component of a (non-cmpty)
scquence; REST — for the scquence consisting of cvery clement but the first; prep — for the

scquence consisting of the first argument prepended to the sccond argument; LENGTH — for the
number of clements in the scequence; and plenty more (all cxplained in §4).

1> (=2 2)

1= §T

1 (=2 (+12))
1= $F

1> (= $T $F)

1= $F
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The booleans $T and $F are the standard designators of Truth and Falsity, respcctively.

1> (IF 8T (+ 2 2) (- 2 2))

1= 4
1> (IF $F (+ 2 2) (- 2 2))
1= 0

1> (IF (< -100 0) -1 1)

1= -1

1> (IF (ZERO 0) (= 1 2) 13)
1= $F

Redexes that designate truth values play an important role in IfF expressions, which are usced to
choose between their last two arguments based on the truth of the first argument.  Also important,
and unlike the other standard procedures we have discussed so far, 1r docs not process all of its
arguments — the argument that is not sclected is ignored completely. In contrast, most standard
procedures always begin by processing «ff of their arguments (i.e., for the most part, 3-LISP is an
applicative-order language); we call such procedures simple.  Thus 1F is simply not simple.
(Although we will sce later that 1F is not really a magic keyword, no rcal harm will come from
thinking of it that way).

1+

1= {simple + closure}

1> 1ST

1= {simple 1ST closure}

1> IF

1= {reflective IF closure}

To summarize what we have scen so far: numerals, like *10°, are used-to designate numbers; the two
boolcans $7 and $f arc used to designate truth valucs; atoms, like ‘PREP’, arc used as variables that
take their meaning from the context in which they are used (so far, this has been the standard
global context); rails arc used to designate abstract sequences; and pairs designate the value of
applying a function to some arguments. Also, there are as-yet-unexplained structures called closures
that appear to scrve as function designators.  As it turns out, these arc the basic building blocks on
which the 3-LISP tower is crected. '

The standard 3-LISP system comes with over 140 standard procedures (scc §4) and an abstraction
facility that allows cxisting procedurcs to be combined to form new oncs.

1> (LAMBDA SIMPLE [X] (* X X))
1= {closure}
1> ((LAMBDA SIMPLE [X] (* X X)) 10)

1= 100
1>, ((LAMBDA SIMPLE [X] (* X X)) (+ 3 3))

1= 36

1> ((LAMBDA SIMPLE [A B C] (= (* C C) (+ (* BB) (* AA)))) 3 4 5)
1= $7

_ LaMBDA cxpressions have three parts: a procedure type (normally -S1MpLE; later we shall sce others); a
list of parameter names (more generally, a parameter pattern); and a body. In the usual case of
siMpLE lambda cxpression, the new function designated by the Lampa redex can be computed by
processing the body of the cxpression in the context in which the paramcters arc bound to the
(alrcady simplificd) arguments. Variables not mentioned in the parameter patlern take their values
from the context surrounding the LaMBDA redex (i.e., 3-LISP's functional abstraction mechanism is
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statically, lexically, scoped like PASCAL, SCHEME, and the A-calculus, but unlike APL and standard
LISPs). :

1> ((LAMBDA SIMPLE [F] (F 10 10)) +)
1= 20
1> ((LAMBDA SIMPLE [F] (F 10 10)) *)
1= 100
1> ((LAMBDA SIMPLE [F] (F 10 10)) =)
1= 8$T
1> (DEFINE CONSTANT
(LAMBDA SIMPLE [M]

(LAMBDA SIMPLE [JUNK] M)))
1= 'CONSTANT
1> (CONSTANT 10)
1= {closure}
1> ((CONSTANT 10) 1)
1= 10
1> ((CONSTANT 10) 100)
1= 10
1> ((LAMBDA SIMPLE [F] (F F)) (LAMBDA SIMPLE [F] (F F)))
[N.B.: We're still waiting for the system’s ruling on this onel]

Morcover, functions are first-class citizens, along with numbers, truth values, and sequences. They
can be passed as arguments to, and returned as the result of, other functions (i.c., 3-LISP is a higher-
“order functional calculus).

1> ((LAMBDA SIMPLE [A B C] (+ A (* B C))) 1 2 3)

1= 7

1> ((LAMBDA SIMPLE [A B C] (+ A (* B C))) . [1 2 3])
1=7 -

Although it is usually not convenient to be so picky, it is true that cvery procedure takes but a
single argument, which is, in turn, usually a sequence. The notation for pairs that we have been
writing all along is just short for the “dot" notation illustrated above.

1> ((LAMBDA SIMPLE X X) . 10)
1= 10

1> ((LAMBDA SIMPLE X X) 1 2 3)
1= [1 2 3]

1> (SET W [4 5 6])

1= '0K

1> ((LAMBDA SIMPLE X X) . ¥)
1= [4 5 6]

1> ((LAMBDA SIMPLE X X) W)

1= [[4 5 6]]

1> ((LAMBDA SIMPLE [X Y Z] [X Y Z]) . W)
1= [4 5 6]

When the parameter pattern is simply a variable .(as opposed to a rail), the single true argument is
bound to the parameter variable without de-structuring. On the other hand (the more typical casc), -
variables in the parameter list arc paired up with corresponding components of the argument
sequence.
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1> ((LAMBDA SIMPLE [[A B] [C D]] [(+ AC) (+BD)]) [1 2] [3 4])
1= [4 6]

And, naturally, parameter patterns can get as fancy as ncccssary.

1> (DEFINE DOUBLE
(LAMBDA SIMPLE [X] (+ X X)))

= 'DOUBLE

1> (DOUBLE 2)

=4

1> (DOUBLE (DOUBLE 4))

= 16

1> (SET X 10)

= '0K

1 X

= 10

1> (SET X (+ X 10))

= 0K

1> (+ X 5)

= 25

DEFINE is uscd to associate a name with a newly-composed function. Morc gencerally, seT is used to
(re-)establish the value of a variable as an arbitrary object, not necessarily a function. Neither SeT
nor DEFINE is simple; both have a noticcable and lasting effect on the designation of the specified
variable (they have what we call an environment side-effect).

1> (INPUT PRIMARY-STREAM) X

1= #X

1> (INPUT PRIMARY-STREAM) (

1= #( ‘

1> (OUTPUT #7 PRIMARY-STREAM)

?

1= '0K

1> (IF (= (INPUT PRIMARY-STREAM) #7)
(OUTPUT #Y PRIMARY-STREAM)
(OUTPUT #N PRIMARY-STREAM)) ?

Y

1= '0K

Ignoring the single quote mark for the time being, we sce that there are standard procedures that
have a different form of side-cffect, called external world side-effects.  1NPUT causes a single
character to be read from the specified input strcam (PRIMARY-STREAM); OUTPUT causcs a single
character to be printed on the specified output strrcam.  The objects written ‘#x” are called charats
(for lack of a better namc) and arc taken as designating individual characters.

1> (BLOCK
(OUTPUT #Y PRIMARY-STREAM)
(OUTPUT #e PRIMARY-STREAM)
(OUTPUT #s PRIMARY~STREAM))
Yos S '
1= '0K

Another non-simple standard procedure, BLOCK, is used to process several expressions in sequence —
a featurc that is handy when side-cffects of onc kind or another arc being cmploycd (and utterly

uscless if they’re not).
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1

i=
1>
i=
1
i=

(DEFINE LOOP
(LAMBDA SIMPLE [N]
(IF (= N 0)

'DONE

(LOOP (1- N)})))
'LOOP
(LOOP 10)
' DONE
(LOOP 1000000)
' DONE

The point of the above is that the space required to carry out (LooP n) is independent of v, ‘This
important property of how 3-LISP (and SCHEME) is implemented allows for a flexible style of
function decomposition reminiscent of the use of 6oro statements in many procedural languages.

1>

1=
1>
1=

i=

(DEFINE ITERATIVE-FACTORIAL
(LAMBDA SIMPLE [N]
(LABELS [[
LOOP (LAMBDA SIMPLE [I R]
(IF (= 1 0)
R
(Looe (1- I) (* I R)))}]1]
(LOOP N 1))))
"ITERATIVE-FACTORIAL
(ITERATIVE-FACTORIAL 1)
1
(ITERATIVE-FACTORIAL 4)
24

ITERATIVE-FACTORIAL is an cxccllent cxample of how to writc LISP progs and 6os in a purcly
functional style and get exactly the same space and time performance.

1>

1=
1>
1=
1>
i=

(DEFINE FACTORIAL
(LAMBDA SIMPLE [N]
(IF (= N 0)
1

(* N (FACTORIAL (1- N))))))
'FACTORIAL
(FACTORIAL 1)
1
(FACTORIAL 4)
24

The "recursive” definition of FACTORIAL — a required part of cvery language’s reference manual —
completes our cursory look at the basic 3-LISP language.

2.b. Introduction to the 3-LISP Reflective Processor

As discussed in §2.a.-the reflective processor program is a program, written in 3-LISP, that shows
how one- goes about processing 3-LISP programs. ‘The first gap to bridge on the road to writing
such a program is to scttle on an internal representation for 3-LISP programs. We need the ability
not only to use 3-LISP expressions but also to mention them. 1o this cnd, we introdice a new type
of structurc, called handlcs, to designate other internal structurcs.  For example, whereas the
expression (+ 2 2), when written in a 3-LISP program, designates the number four, the expression
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'(+ 2 2) designates that 3-LISP program fragment. Similarly, '+ designates the atom +, which in
turn designates the addition function; '2 designates the numeral 2, which dcsignates the abstract
number two.

1> (+ 2 2)

1= 4

1 '(+ 2 2)

1= '(+ 2 2)

1> (TYPE (+ 2 2))
1= 'NUMBER

1> (TYPE '(+ 2 2))
1= 'PAIR

1> (TYPE +)

1= 'FUNCTION

1> (TYPE '+)

1= 'ATOM

Indeed, for cach of the types of abstract objects that can be designated by a 3-LISP cxpression, there
is a corresponding internal structural type that designates it (sce §3.a. for further details).

1> (TYPE 1) 1> (TYPE '1)

1= 'NUMBER 1= 'NUMERAL

1> (TYPE $T) 1> (TYPE '8T)

1= 'TRUTH-VALUE 1= 'BOOLEAN

1> (TYPE [1 2 3]) 1> (TYPE '[1 2 3])
1= 'SEQUENCE 1= 'RAIL

Pairs can be dissccted with the car and cor primitives. The pcons primitive is used to build pairs.

1> (CAR '(+ 2 2))

1= '+
1> (COR '(+ 2 2))

1= '[2 2]

1> (PCONS '+ '[2 2])
1= '(+ 2 2)

pcons is used to crcale rails (sequence designators).  LENGTH, 1ST, REST, PREP, ctc., work on
arguments that designate rails as well as scquences.  Sequences and rails are known collectively as
vectors. '

1 '[1(+ 2 2) 3]
1= '[1 (+ 2 2) 3]
1> (TYPE '[1 (+ 2 2) 3])

1= 'RAIL
1> (1ST '[1 (+ 2 2) 3])
1= '1

1> (REST '[1 (+ 2 2) 3])

1= '[(+ 2 2) 3]

1> (PREP '1 "[(+ 2 2) 3])
J1='[1 (+ 2 2) 3]

The internal structures used to designate other internal structures arc called handles. Handles too
have handles. The term meta-structural hierarchy rcfers to the collection of structures that
designate other structures.  ‘The standard procedures up and pown, which arc usually abbreviated

&

with the prefix characters ‘+° and ‘4, arc used to cxplore this meta-structural hicrarchy.
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1> (TYPE ''(+ 2 2))
1= 'HANDLE

1> (TYPE ''+)

1= "HANDLE

1> (TYPE 'rrr'trrrrirrineg)
1= "HANDLE

1> (UP 1)

1= '1

1> (UP (+ 2 2))

1= '4

1> +1

1= '1

1> #(+ 2 2)

1= '4

1> (DOWN '1)

1= 1

1> (DOWN '[1 2 3])
1= [1 2 3]

141

1= 1 .

1> ¥'[1 2 3]

1= [1 2 3]

1> VA

{Error: You can't get down from an atom.}

To insure against forgetting which way is "up”, simply remember that going up adis additional *’s
to the printed representation of a structure. -Also note that in contrast to most LISPs **'s don’t "fall
off" expressions, so to speak; this property is called semantical flatness.

1> *1
1= '1
1> 1
1= ''1
1> tret
1= 'l'l

2.b.i. Normalization

Having defined an internal representation for 3-LISP program fragments, let us now take a closer
look at cxactly what it means to "process” them,  Recall that the basic operating cycle of 3-LISP
involves reading an cxpression, simplifying it, and printing the result. The "meat” of the cycle is
the middle step that takes an arbitrary cxpression onto a simpler cxpression.  This simplification
process is constrained in two ways: a) the "after” expression must be, in some sense, in fowest
terms, and b) both the "before™ and "after” cxpressions must designate the same object.  In 3-LISP,
"lowest terms” is defined as being in normal-form.  Conscquently, the simplification process which
converts an cxpression into a normal-form co-designating cxpression is called normalization.

We define a structurc to be in pormal form iff it satisfics three criteria: it is context-independent, . -
_ meaning that its scmantics (both declarative and procedural) are independent of context; it is side-

effect [ree, mcaning that processing it will engender no side-cffects; and it is stable meaning that it
is sclf-normalizing. Of the ninc 3-LISP structurc types, six-and-a-half arc in normal-form: the
handles, charats, numecrals, boolcans, closurcs, strcamers, and some of the rails (those whose
constituents are in normal form). The standard procedure norMAL is charged with the task of testing
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for normal-formedness.

1> (NORMAL ‘A)

1= $F

1> (NORMAL '1)

1= §T

1> (NORMAL '(1 . 2))
1= $F _

1> (NORMAL '[1 2 3])
1= §T

1> (NORMAL '[X Y 2])
1= §F

2.b.il. The Reflective Processor

Our problem, then, is to characterize the normalization procedurc; call it NorMALIZE. Reccall that
whereas a regular process will typically deal with abstractions like numbers, scquences, and
functions, the reflective processor will traffic in the internal structures that make up programs; i.e.,
pairs, atoms, numecrals, rails, ctc. In other words, the reflective processor will run one level of
designation further away from the real world than the program that the reflective processor runs.
We cxpect, thercfore, that this procedurc normMaLIZE will take at least onc argument — an argument.
that designates the internal structure to be normalized, and will return the corresponding normal-
form co-designator. Our expectations arc illustrated by the following:

11 1> (NORMALIZE '1)

1= 1 1= '1

1> ST 1> (NORMALIZE 'ST)

1= $T 1= '$T

1 [12 3] 1> (NORMALIZE '[1 2 3])
1= [1 2 3] 1= '[1 2 3]

1> (+22) 1> (NORMALIZE '(+ 2 2))
1= 4 1= '4

One minor problem: the mcaning of atoms, such as +, is dependent on context, and we have made
no allowance for anything along these lines. We will posit a sccond argumient to NORMALIZE, an
environment, that will cncode just such a context. An cnvironment is a sequence of two-tuples of
atoms and Dbindings; thus the cnvironment designated by the 3-LISP  structure
[['A '3] ['UGHFLG '$T] ['PROC ''F00]] contains bindings for three structurcs (A, UGHFLG, and PROC,
bound respectively to the numcral 3, the boolean 37, and the handle 'ro0). Note that all well-
formed environments contain bindings for only atoms, and all bindings arc normal-form structures.
If an cenvironment contains more than onc binding for the same variable, the leftmost one has
precedence. GLOBAL is the standard name for the global environment, which contains bindings for
all of the standard procedurcs such as +, 1ST, and T1F,

1> + 1> (NORMALIZE '+ GLOBAL)

1= {simple + cldsure} 1= '{simple + closure}

1> (+ 2 2) ] . . -+ .. .. 1> (NORMALIZE.'(+ 2.2) GLOBAL)
1= 4~ . J1= '4 .

More generally, we can now consider normalizations with respect to environments other than the
global cnvironment. For example: ‘
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1> (NORMALIZE '[A B] [['A '1] ['B '2]])

1= '[1 2]

1> (NORMALIZE '(ADD A B) [['A '1] ['B '2] ['ADD t+])
1= '3

1> (NORMALIZE '100 [])

1= '100

But be quite clecar on one thing. cLosAL dcsignates the real global environment. Conscequently, any
changes made to it in thc coursc of normalizing an cxpression will be "for real.”

1> (NORMALIZE '(SET SMILE 1234) GLOBAL)
1= "'0K

1> SMILE

1= 1234

1> (NORMALIZE '(SET + *) GLOBAL)

1= ''0K

1> (+ 2 5)

1= 10

We arc making progress. We have identified and made cxplicit the context, an important aspect of
any model of the processing of 3-LISP programs. While it would be feasible to basc a dialect on a
reflective processor that only madce cxplicit the cnvironment, the resulting language would be
limited to "well-bchaved" control operators, like 1F and LAMBDA; non-local cxit operators, like QuIT
and THROW, that do not exhibit simple flow of control would be beyond the realm of such a dialect.
To allow maximum flexibility with respect to control flow, it is essential that this control flow
information be explicitly encoded by structures within the reflective processor. ‘The solution
adopted in 3-LISP is analogous to the approach taken in the denotational semantics literature [Stoy
77. Gordon 79]. In addition to an ecnvironment, the reflective processor’s state includes a
continuation. NORMALIZE will take a third argument, called the continuation, that designates a
function that should be applied to the result of the normalization. Programs which explicitly
cncode control flow information in a continuation arc said to be written in continuation-passing
style (CPS). 'The pros and cons of CPS can be scen in the following two procedures: SUMMER sums
a sequence in a fairly obvious way; cps-suMMer is a CPS version of the same procedure.

1> (define SUMMER
(1ambda simple [s]
(if (empty s)
0

(+ (1st s) (summer (rest s))))))
1= 'SUMMER
1> (SUMMER [1 2 3])
i= 6

1> (define CPS-SUMMER
(1ambda simple [s cont]
(if (empty s)
(cont 0)
(cps-summer (rest s)
(1ambda simple [r]
: : (cont (+ (1st s) r))))))) -~
1= 'CPS-SUMMER

1> (CPS-SUMMER [1 2 3] ID)
=6

12




3-LISP PRIMER INTERIM 3-LISP REFERENCE MANUAL-

The most important difference to note is that the call to suMMeR inside SuMMER is buried within a +
redex, whercas the inner call to cps-SUMMER is not. Instcad of using the capabilities of the
underlying processor to remember what’s to be donc after the inner SUMMER computation is
complete, cpPs-SuMMER arranges for all information necessary to procced the computation to be
packaged as the continuation and cxplicitly passed along. The result is greater flexibility — at the
price of degraded perspicuity. For example, if it were suddenly decided that our summing function
was to rcturn -1 if any of the elements were ncgative, we could revise cPS-SUMMER without much
difficulty:

1> (define CPS-SUMMER,
(lambda simple [s cont]
(cond [(empty s) (cont 0)]
[(negative (1st s)) -1]
[$T (cps-summer, (rest s)
(lambda simple [r]
(cont (+ (1st s) r))))1)))

1= 'CPS-SUMMER,

1> (CPS-SUMMER, [1 2 -3 4 §] ID)
1= -1

However, the job of updating SuMmMER, while not hard, is not quite as straight-forward.

1> (define SUMMER,
(lambda simple [s]
(cond [(empty s) 0]
[(negative (1st s)) -1]
[$T (let [[r (summer, (rast s))]]
(if (negative r) -1 (+ (1st s) r)))1)))

1= 'SUMMER,
1> (SUMMER, [1 2 -3 4 §])
1= -1 -

In summary, norMALIZE will be written in CPS becausec we want the 3-LISP reflective processor to
encode an cxplicit thcory of control rather than simply engendering one. Again, using 1D, which
designates the identity function, as the continuation to cxtract the answer, we expcct NORMALIZE to
bchave as follows:

1> (NORMALIZE '[A B] [['A '1] ['B '2]] ID)

1= '[1.2]

1> (NORMALIZE '(+ A B) (APPEND [['A '1] ['B '2]] GLOBAL) ID)
1= '3

1> (NORMALIZE '100 [] ID)

1= '100

1> (NORMALIZE '(OUTPUT #* PRIMARY-STREAM) GLOBAL ID)
»

1= ''0K

1> (NORMALIZE '(SET SMILE $T) GLOBAL ID)

1= "'0K

1> SMILE

1= 8T

13




3-LISP PRIMER INTERIM 3-LISP REFERENCE MANUAL

2.b.iii, NORMALIZE

We can now begin to present the actual definition of norMALIZE, and explain why it docs the right
thing. lts dcfinition is as follows:

7 ... (define NORMALIZE
8 e (lambda simple [exp env cont]
| 2T (cond [(normal exp) {cont exp)]

10 etraentnnes [(atom exp) (cont (binding exp env))]
11 .. w [(rail exp) (normalise-rail exp env cont)]}
12 crcirrreecneenens [(pair exp) (reduce (car exp) (cdr exp) env cont)])))

Within NORMALIZE, £xP dosignates the expression (an internal structure) being normalized; eav, the
environment (a scquence), and conT, the continuation (a function of onc argument, also an internal
structure). NORMALIZE is little more than a dispatch on the type of exp (the only glitch being that
normal-form rails are not a category of their own): normal-form structures (numerals, booleans,
closurcs, charats, strcamers, and some rails) arc sclf-normalizing and arc therefore passed to the
continuation without furthcr fuss; atoms (i.c., variables) arc looked up (BINDING'S job) in the
current cnvironment and the resulting binding returned; pairs are dissected and farmed out to
REDUCE; and the remaining non-normal-form rails arc handed off to NORMALIZE-RAIL. .

(Aside: It is natural cnough to ask whether there could be a different reflective processor for 3-LISP.
The answer is both yes and no. If what is meant is a different reflective processor for the dialect of
3-LISP documented in this manual, the answer would have to be no. But "no" in the scnse that "a
six letter word spelied l-a-m-b-d-a" cannot mecan any word other than "lambda.” 3-LISP not only
gives the genceral shape to the language — it also spells everything out. Moreover, these details are
not just a part of this reference manual — interesting reading for the human reader, but completely
hidden from the view of any program (c.g., in the way the micro-code for your machine is). The
details of how 3-LISP programs arc processed are, upon reflection, matters of public record, so to
spcak, and any program can find this out if it cares to probe in the right places. There are very few
secrels in a reflective language. On the other hand, it is quite casy to imaginc all sorts of 3-LISP-like
languages, cach with their own reflective processor that differs in minor ways (or even major oncs)
for the 3-LISP reflective processor described in this manual.  For example, the 3-LISP described in
Smith’s thesis is definitely not the same 3-LISP as we arc talking about here.  In summary, for any.
particular dialect of a reflective language there can be but a single reflective processor; change
anything whatsoever and you'll have a slightly different dialect.

2.b.iv. NORMALIZE-RAIL

We'll dispense with NORMALIZE-RAIL ncxt. The utter simplicity of NORMALIZE-RAIL is somewhat
obscured by the CPS protocols. The following non-CPS version should help to make clear what is

going on:

(define NORMALIZE-RAIL .- . ; Demonstration model — not for actual use..
. (1ambda simple [rail env] ;
(if (empty rail)
{(rcons)
(prep (normatlize (1st rail) env) .
(normalize-rail (rest rail) env)))))
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Better still:

(define NORMALIZE-RAIL ; Demonstration model — not for actual use.
(1ambda simple [rail env]
(map (lambda simple [element] (normalize element env)) rail)))

NORMALIZE-RAIL simply constructs a rail whose components are the normal-form  designators
resulting from the normalizations of the compenents of the original rail.  Although not cxplicit in
the above, the components should be processed in left-to-right order. lincs 26-34 of the reflective
processor spell out the details of the actual version of NORMALIZE-RAIL:

26 ... (define NORMALIZE-RAIL
27 e (lambda simple [rail env cont]
28 rerrnesnnee (if (empty rail)

29 reeenenasaensnnenes (cont (rcons))

30 ... .. {(normalize (1lst rail) env

K} I (lambda simple [first!] ; Continuation C-FIRST!
32 (normalize-rail (rest rail) env

33 (lambda simple [rest!] : ; Continuation C-REST!
kL) ¥ {cont (prep lirst! rest!))}))))))

The two standard continuations (actually, continuation families), called C-FIRST! and C-REST!,.
correspond to intermediate steps in the normalization of a non-empty rail.  C-FIRST! accepts the
normalized first clement in a rail fragment. and initiates the normalization of the rest of the rail. C-
REST! accepts the normalized tail of a rail fragment, and is responsible for appending it to the front
of the normalized first clement,

2.b.v. REDUCE

We are now ready to tackle REDUCE, whose responsibility is to normalize pairs. As might be
cxpected, REDUCE is the soul of the reflective processor — all sorts of interesting things go on with
its confines.

13 ... (define REDUCE
14 . (1ambda simple [proc args env cont]
(normalize proc env
........ (lambda simple [proc!] ; Continuation C-PROC!
............................. (if (reflective proc!)

(¥(de-reflect proc!) args env cont)

(normalize args env

(1ambda simple [args!] ; Continuation C-ARGS!

(if (primitive proc!)

(cont t(dproc! . dargsl))

(normalize (body proc!)

(bind (pattern proc!) args! (environment proc!))

cont)))))))))

'There arc basically three different ways of processing pairs: onc way for non-primitive simple
procedures (lines 23-25), one for the primitives (line 22), and one for what arc called reflective
procedures (line 18). We can isolate and study cach of these cases one at a time, and free from the
obscurity introduced by CPS. The first casc is cssentially:
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(define REDUCE-NON-PRIMITIVE-SIMPLES ; Demonstration model — not for actual use.
(1ambda simple [proc args env]
(1et {[proc! (normalise proc env)]
[args! (normalise args env)]]
(normalize (body proc!)
(bind (pattern proc!) args! (environment proct!))))))

Here we sec that both the procedure, proc, and the arguments, ARGS, arc normalized in the current
cnvironment.  Since we arce performing a reduction, Proc! must designate a normal-form function
designator, namely a closure.  (Later we will sce just how LAMBDA construcls closures are
constructed.) Closures contain cnvironments designators, patterns, and bodies, which may be
accessed with the selector functions ENVIRONMENT, PATTERN, and BoDY, respectively. ‘T'he result of the
reduction is, then, just the result of expanding the closure (i.c., normalizing the body of the closure
in the environment produced by augmenting the cnvironment captured in the closure with new
variable binding obtained by matching the closure’s parameter pattern against the normalized
argument structure).  ‘This is the prescription to be followed for simple 3-LISP procedurcs.

The sccond case, the onc uscful only for primitive procedures, is as follows:

(define REDUCE-PRIMITIVE-SIMPLES ; Demonstration model — not for actual use.
(Tambda simple [proc args env]
(let [[proc! (normalise proc env)]
[args! (normalise args env)]]
t(Iproc! . dargs!))))

Here we see a much less clucidating cxplanation of how a reduction is done.  In cffect, it says
"normalizc Proc and ARGS, then just shift levels and go ahcad and do it!". It turns out that this
game must be played for the primitives because there isn’t a more-detailed explanation of how a
primitive is carricd out (at least, not from within 3-LISP; if you are unconvinced, try writing a
definition for the standard procedurc cAR using only the 3-LISP standard procedurcs).

Combining these two cascs, we come up with a (non-CPS) version of repuce that will handle all
reductions involving simple procedures:

(define REDUCE-SIMPLES : Demonstration model — not for actual use.
(1ambda simple [proc args env]

(1et [[proc! (normalize proc env)]

: [args! (normalize args env)l]
(if (primitive proc!)
t(dproc! . Yargsl)

(normalize (body proc!)
(bind (pattern proc!) args! (environment procl)))))))

Its CPS counterpart is as follows:

(define REDUCE-SIMPLES : Demonstration model — not for actual use.
(lambda simple [proc args env cont]
(normalize proc env
(1ambda simple [proc!]
(normalize. args env,
(1ambda simple [args!]
(if (primitive procl)
(cont t(iproc! . largs!))
(normalise (body proc!)
(bind (pattern proc!) args! (environment proc!))

cont)}))))))
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This brings us to the treatment of reflective procedurcs, which up to this point have not been
cxplained for rcasons that will soon become apparent. In stark contrast to simple procedures, which
arc run by the reflective processor, a reflective procedure is onc that is run ar the same level as the
reflective processor. ~ Reflective procedures arc always passed cxactly three arguments: an un-
normalized argument structure, the current environment, and the current continuation. A reflective
procedure is completely responsible for the remainder of the reduction process for that redex. Here
is a overly-simplified version of repuce that illustrates how reflective procedures are handled:

(define REDUCE-REFLECTIVES ; Demonstration model — not for actual use.
(lambda simple [proc args env cont]
(normalize proc env
(1ambda simple [proc!]
(¥(de-reflect proc!) args env cont)))))

Here we sce that the structure that proc! designates is converted (in an as yet uncxplained manner)
to a procedure that is then just called from the reflective processor with the cntire state of the
computation (i.c., the cnvironment and continuation).  What you arc sceing here is onc of the
essential aspects of reflection: a picce of object-level (user) code is run as part of the reflective
processor that is at that very instant running his program. (This is the hook to end all hooks!) ‘In a
moment we will demonstrate the clegant power of reflective procedures; for the time being, let's
complete our presentation of repuce.  In 3-LISP, all closures have a procedure-type ficld that
indicates whether it is a simple or a reflective procedure; the utility procedure REFLECTIVE is used to
recognize reflective closures; DE-REFLECT converts a reflective closure into a simple one.  Integrating
the last two CPS versions of REouce nets us the version that is actually used in the current 3-LISP
reflective  processor (again):

13 .. (define REDUCE

(lambda simple [proc args env cont]

erereesesnreane (normalize proc env :

........................ (1ambda simple [proc!] ' ; Continuation C-PROC!
.............................. (if (reflective proc!)

(¥(de-reflect procl) args env cont)

(normalize args env

(lambda simple [args!] ; Conlinuation C-ARGS!
(if (primitive proc!)

(cont t(dproc! . largs!))

(normalize (body proc!)

(bind (pattern proc!) args! (environment proc!))

cont)))))))))

Two more standard continuations (again, continuation families), called C-PROC! and C-ARGS!,
correspond to intermediate steps in the normalization of a pair. C-PROC! accepts the normalized
procedurc and cither passced the buck to a reflective procedure, or initiates the normalization of
argument structure. C-ARGS! accepts the normalized argument structure and is responsible for
sclecting the appropriate treatment for the simple closure, based on whether or not it is recognized
as onc of the primitive closurcs. ' :
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2.b.vi, READ-NORMALIZE-PRINT

There is onc other part of the 3-LISP system to be explained: READ-NORMALIZE-PRINT, 3-LISP’S top-
level driver loop. This is the bchavior one might cxpect from it:

1> (READ-NORMALIZE-PRINT 99 GLOBAL PRIMARY-STREAM)
99> (+ 2 2)

99= 4

99>

In other words, READ-NORMALIZE-PRINT is responsible for cycling through the issuing of a prompt,
the reading of the user's input cxpression, the normalizing of it, and the subscquent displaying of
the result.  Here is how it is defined:

1 ... (define READ-NORMALIZE-PRINT

2 e (lambda simple [level env stream]

3 .. (normalize (prompt&read level stream) env

Z: JURRO (1ambda simple [resuit]} ; Continuation C-REPLY
b J O SS . {block (prompil&reply result level stream)

6 (read-normalize-print level env stream))))))

Which brings us to the important question of just how is the system initialized. Recall that in a.

reflective model, object-level programs are run by the reflective processor one level up; in turn, this
reflective processor is run by another instance of the reflective processor once level above it; and so
on, ad infinium. 1n 3-LISP, cach reflective level of the processor is assumed to start off running
READ-NORMAL IZE-PRINT. 'The way this is imagined to work is as follows: the very top processor level
(infinitcly high up) is invoked by somcone (say, God, or some functional cquivalent) normalizing
the expression "(READ-NORMALIZE-PRINT 00 GLOBAL PRIMARY-STREAM)'.  When it rcads an expression,
it is given an input string requesting that a new top-level, numbered one lower, should be started
up; and so forth, until finally the sccond reflective level is given ‘(READ-NORMALIZE-
PRINT 1 GLOBAL PRIMARY-STREAM)’. 'This types out ‘13" on the console, and awaits your input. lLe.,
if it hadn’t scrolled off your screen, you'd have scen the genesis transcript that goes as follows:

god> (READ-NORMALIZE-PRINT ©0 GLOBAL PRIMARY-STREAM)
00> (READ-NORMALIZE-PRINT 00~1 GLOBAL PRIMARY~STREAM)
00-1>(READ-NORMALIZE-PRINT 00-2 GLOBAL PRIMARY-STREAM)

3> (READ-NORMALISE-PRINT 2 GLOBAL PRIMARY-STREAM)
2> (READ-NORMALISE-PRINT 1 GLOBAL PRIMARY-STREAM)

You came along here

»

The initialization scquence is another cssential part of a reflective system, since it determines the
initial state (i.c., environment and continuation) at cach reflective Ievel. One usually becomes aware

of these matters when one starts writing reflective procedures that break the computational chain .

“letter, so to specak, by neglecting to call their continudtion (it is for exactly this cventuality that cach
reflective “level identifics itself with its own distinctive prompt).
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1> (define FORGETFUL
(lambda reflect [[] env cont]
'SIGH!))
1= "FORGETFUL
1> (FORGETFUL)

2= "SIGH!
2> (FORGETFUL)

3= 'SIGH!

This completes the description of the core of the reflective processor, READ-NORMALIZE-PRINT (with
its continuation, C-REPLY) and the so-called "magnificent seven” mutually-recursive primary
processor procedures (ppp's): three named procedurcs (NORMALIZE, REDUCE, and NORMALIZE-RAIL) and
four standard continuations’ (C-PROCI, C-ARGS!, C-FIRST!, and C-REST!).

2.b.vii. Reflective Procedures

As promised carlicr, we are now in a position to show how reflective procedures can be put to use.
Just remember that when a reflective procedure is called, the body of it gets run at the level of the
reflective processor onc level up. A reflective procedure can cause the processing in progress to
proceed with a particular result simply by calling the continuation with the desired structurce. The
- following silly example illustrates a reflective procedure appropriately called THRCE that behaves
cxactly like the constant function of no arguments that always has the valuc threc.

1> (define THREE
(1ambda reflect [[] env cont]
(cont '3)))
1= 'THREE
1> (THREE).
1= 3 g
1> (+ 100 (THREE))
1= 103
1> (+ (THREE) (THREE))
1= 6

On the other hand, a reflective procedure may request that an cxpression. be normalized by

cxplicitly calling norMALIZE (or REDUCE, if appropriate), as the following version of 1o (the identity
function) demonstrates:

1> (define NEW-ID _
(1ambda reflect [[exp] env cont]
(normalize exp env cont)}))

1= 'NEW-ID .
1> (NEW-ID (+ 2 2))

1= 4

1> (+ 100 (NEW-ID (+ 2 2)))
1= 104

Before moving on to some justifiable uses of reflective procedures, we just can’t resist the urge to
write the old hackneyed factorial procedure as a -lambda-reflect: :
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1> (define REFLECTIVE-FACTORIAL
(1ambda reflect [[exp] env cont]
(normalize exp env
(1ambda simple [exp!]
(if (= exp! '0)
(cont '1)
(cont t(* VYexp! (reflective-factorial (1- Yexpl)))))))))
1= 'REFLECTIVE-FACTORIAL
1> (REFLECTIVE-FACTORIAL (+ 2 2))
1= 24
1> (+ 100 (REFLECTIVE-FACTORIAL §))
1= 220

Okay! Okay! Wc'll confine our attention to situations where reflective procedures are really
necessary.  Simple procedures turn out to be inadequate for defining control operators for a number
of reasons. Examples where reflective procedures are needed: 1F, where some of the arguments
may not be normalized; Lampa and seT, where explicit access to the current cnvironment is
required; and catcl, where explicit access to the current continuation is required. We will consider
each of these, in turn, beginning with I1F. (Note that the actual- i.c., Appendix A- dcfinitions of
these control operators differ in several rather uninteresting ways from the ones we will present
here.)

1> (define NEW-IF
(1ambda reflect [[premise consequent antecedent] env cont]
(normalize premise env
(1ambda simple [premisel]
(if dpremise!

(normalize consequent env cont)

(normalize antecedent env cont))))))
= "NEW-IF
1> (NEW-IF (= 2 2) (+ 2 2) (error))
= 4

We sce that New-1F normalizes cither its second or its the third argument expression depending on
whether the first expression normalized to '$7 or '$F, respectively. Morcover, all normalizations are
done in the current environment. Notice that the above definition of NEw-1F makes use of IF —
which scems like a cheap trick. The following definition of NTwEr-IF makes use of the primitive
(and therefore simple) procedure €F in conjunction with an idiomatic use of LaMBpA known as A-
deferral.

1> (define NEWER-IF
(1ambda reflect [[premise consequent antecedent] env cont]
(normalize premise env
(1ambda simple [premisel]
((ef Ypremise!
(1ambda simple [] (normalize consequent env cont))
(lambda simple [] (normalize antecedent env cont))))))))

1= 'NEWER-TF A
1> (NEWER-IF (= 2 2) (+ 2 2) (error))
1= 4

Next we look at SET (Note: That's 3-LISP's assignment statement, kriown in most other LISP dialccts
as SETQ.). Besides the ‘desire to avoid normalizing the first argument of a SET redex (the variable),
explicit access to the current environment will be required to complete the processing. (ReBInD does
the actual work of modifying the cnvironment designator.)
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1> (define NEW-SET
(1ambda reflect [[var exp] env cont]
(normalize exp env
(1ambda simple [exp!]
(block
(rebind var exp! env)

(cont ''0k))))))
1= "NEW-SET

1> (NEW-SET BLEBBIE (+ 100 100))
1= '0K

1> BLEBBIE

1= 200

We will now show how LamMBDA can be defined in stages, beginning with a stripped-down version
LAMBDA-SIMPLE:

1> (define LAMBDA-SIMPLE
(1ambda reflect [[pattern body] env cont]
(cont (ccons 'simple tenv pattern body))))
1= 'LAMBDA-SIMPLE
1> (LAMBDA-SIMPLE [X] (* X X))
1= {closure}
1> ((LAMBDA-SIMPLE [X] (* X X)) 10)

1= 100
1> (TYPE (LAMBDA-SIMPLE [X] (* X X)))
1= 'FUNCTION

LAMBDA-SIMPLE simply constructs a new closure containing an indication that it is a simple closure,
the current environment (or rather, designator thereof), and the pattern and body structures exactly
as they appeared in the LAMBDA-SIMPLE redex. LAMBDA-REFLECT differs from LAMBDA-SIMPLE only in
the choice of atom used in the procedurc-type ficld of the closure.

1> (define LAMBDA-REFLECT
(1ambda reflect [[pattern body] env cont]
(cont (ccons 'reflect tenv pattern body))))
1= 'LAMBDA-REFLECT
1> ((LAMBDA-REFLECT [ARGS ENV CONT] (CONT ''?)) (error))
1= '?

In the interest of being able to define not only simple and reflective procedures, we can devise a
general A-abstraction operator that takes, as its first argument, an expression designating a function
to be used to do the work. This function applied to three arguments — the designator of the
current cnvironment, the pattern structure, and the body structure — dcesignates a new function.

1> (define NEW-LAMBDA
(1ambda reflect [[kind pattern body] env cont]
(reduce kind t[tenv pattern body] env cont)))
1= "NEW-LAMBDA

1> (define NEW-SIMPLE
(lambda simple [def-env pattern body]
{(ccons 'simple def-env pattern body)))
1= 'NEW-SIMPLE . o . T

1> (define NEW-REFLECT
" (lambda simple [def-env pattern body]
Y(ccons 'reflect def-env pattern body)))
1= "NEW-REFLECT
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1> (NEW-LAMBDA NEW-SIMPLE [X] (* X X))

1= {closure}

1> ((NEW-LAMBDA NEW-SIMPLE [X] (* X X)) 10)

1= 100

1> (TYPE (NEW-LAMBDA NEW-REFLECT [ARGS ENV CONT] (CONT ''7)))
1= 'FUNCTION

With this general abstraction mechanism in place, it is a simple thing to dcfine macros. These are
procedures that arc reduced by first constructing a different structure out of the argument
expressions, and then normalizing this structure in place of the original redex. The body of the
macro procedure describes how to do the expansion; i.c., it maps structures into other structures.
For example, we can define a macro procedure sumMp so that any redex of the form (suMp var) will
be converted into onc of the form (SET VAR (1+ VAR)).

1> (define NEW-MACRO
(lambda simple [def-env pattern body]
(1et [[expander (SIMPLE def-env pattern body)]]
(1ambda reflect [args env cont]
(normalize (expander . args) env cont)))))
1= 'NEW-MACRO.

1> (define BUMP

(1ambda NEW-MACRO [var]

(xcons 'set var (xcons '1+ var))))

= 'BUMP
1> (SET BUMPUS 1)
= '0K
1> (BUMP BUMPUS)
= '0K
1> BUMPUS
1= 2

The back-quote feature (sce §3.b.) is very uscful when it comes to defining the bodies of macro
proccdurcs. For cxample, LET is defined as a macro utilizing back-quote, based on the following
transformation:

(LET [[V, E,J[V, E.] ... [V, E,]] BODY)
expands to ;
((LAMBDA SIMPLE [Vy V; ... V,] BODY) E; E; .. E,)

1> (define NEW-LET
(1ambda new-macro [1ist body]
‘((1ambda simple ,(map 1st 1ist) ,body) . .(map 2nd 1ist))))
1= 'NEW-LET
1> (NEW-LET [[X 1]] (+ X 2))
1= 3

As a final cxample of the power of reflective procedures, we shall define SCHEME's CATCH operator:

1> (define SCHEME-CATCH
(1ambda reflect [[catch-tag catch- body] catch-env catch cont]
(normalize catch-body
(bind catch-tag
t+(lambda reflect [[throw-exp] throw-env throw-cont]
(normalize throw-exp throw-env catch-cont))
catch-env)
catch-cont)))
1= 'SCHEME-CATCH
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1> (+ 2 (+ 5 10))
1= 17 :
1> (+ 2 (SCHEME-CATCH ESCAPE (+ 5 10)))
1= 17
1> (+ 2 (SCHEME-CATCH ESCAPE (ESCAPE (+ 5 10))))
1= 12
1> (+ 2 (SCHEME-CATCH ESCAPE (+ 5 (ESCAPE 10))))
1= 12
1> (+ 2 (SCHEME-CATCH ESCAPE

(BLOCK (ESCAPE 10)

(PRINT 'GOTCHA PRIMARY-STREAM))))

1= 12

2.b.viii. Reflective Protocols

Unless you have a particular reason to do otherwise, the following protocols concerning reflective
programming should be kept in mind:

* CPS procedures (this includes reflecive procedures) should always call continuations and
other CPS procedures from a tail-recursive position. That way, the explict continuation will
always rcflect the remainder of the computation.

* CPSV procedures should cither call their continuation or pass it along to another CPS
procedure.

* Continuations should be called with a single structurc-designating argument.

2.b.ix. A Note on Recursion and the Y-Operatar

Closures created via the standard procedurc DEFINE capturc the current environment augmented by
the binding of the procedure variable to the designator of the closure. This circularity is created via
Y-OPERATOR, a variation on Church's paradoxical combinator. (For further cxplanation, sce 4.c.8. of
Smith’s thesis.)
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3. 3-LISP Structures-and Notation

3-LISP is based on a scrial model of computation, consisting of a topology or graph of structures
collectively called a structural field, cxamined and manipulated by a single active processor. 'T'his
scction describes the clements of 3-LISP's structural field, and the notation used to display them,

3.a. Structural Ficld

Objects in the structural ficld arc called internal structures or, when it is not confusing, just
structures; mathematical cntitics like numbers and sequences are called external structures or
abstractions (but ncver just structures). ‘The world consists of cntitics of all sorts, including both
internal and cexternal structures, and undoubtedly many other things as well,

There are exactly ninc gypes (kinds, categorics) of internal structures that populate the structural
ficld. This immutable property of cach structure may be interrogated with the standard procedure
tyre. The standard procedure = can be used to test to sce if they arc one and the same structure.

Type Designation Normal Constructor Standard Notation
Numerals Numbers Yes — a sequence of digits
Boolcans Truth-Valucs Yes — $T or $F

Charats Characters Yes — #character

Strcamers Strcams Yes — {streamer)

Closures Functions Yes CCONS  {closure}

Atoms (Designation of Binding) No ACONS . a sequence of alphanumerics
Pairs (Value of Application) No PCONS (EXP . EXP)

Rails Scquences Some  RCONS [EXP EXP ... EXP]

Handles [nternal Structures Yes — "EXP

Recall that a structurc is said to be in normal form if it cannot be further simplified by the
processor. A normal-form structure Sy is canonical if all co-designating structures, S, normalize to
8. Note that six- and- a- half of the categorics are normal-form structures, and that all five of the
non-constructible (i.e., permancnt) structurc types arce canonical,

Each of these nine structure types can be bricfly described:

Numerals: 'There are an infinite number of 3-LISP integer numecrals, sct in one-to-one
correspondence to the abstract-cxternal numbers (ultimately we intend to support full
rational or repeating fraction arithmetic, but at the moment only integers are defined).
All numerals are canonical normal-form designators of numbers,

Booleans: "There arc just two boolean structures, notated as *$7° and ‘s¢°, that arc constants
(rigid designators) of ‘I'ruth and Falsity, respectively. ‘These normal-form structures may

. -be viewed as the canonical true and false- statements,

Charats: Wc do not claim to know what characters are, but charats arc their normal-form
designators.  More precisely, a charat is an atomic structure associated one-to-onc with
character ppes (in the linguist’s scnsc); there is only one charat for the character ‘+’,
although there, of course, may be an arbitrary number of tokens (occurrences) of that
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character.

Streamers: Streams are intended to serve as the interface with the outside world (i.e., to
function cssentially as communication channcls); as a conscquence, we say virtually
nothing aboult them, other than that they are legimitate arguments for INPUT and ouTPUT, ,
Streamers arc their normal-form designators.  Note that no ficld relationships are i
defined over strcamers. Strcamers will probably play a role in implementations and
cmbeddings of 3-LISP, but at present the language puts no specific constraints on the
way in which this role is played.

Closures: Closurcs are normal-form function designators; because we have no adequate
theory of procedural intension, they retain all the relevant contextual information from
the point of function definition (cxpression and enclosing cnvironment).  Although
closures, being first-class structurcs, can be inspected and compared, closure identity is
far more fine grained than function identity.

Atoms: As in standard LISPs, atoms arc atomic structures uscd as variables (schematic
names). Atoms arc associated with identifiers (lexical spellings) only through the READ
and pRINT functions.

Pairs: Pairs arc exactly as in LISP 1.5: they arc ordered pairs, consisting of a CAR and a
CDR (which may in turn be any structure in the ficld). Unlike standard LISPs, however,
3-LISP pairs arc used for only onc purposc: to encode function applications (a pair is
therefore somctimes called a redex, for ‘reducible expression’).

Rails: Rails, derivative from standard LISP’s lists, arc uscd to designate abstract scquences.
Like the lists of LISP 1.5, isomorphic rails may be distinct. Those rails whose clements
arc normal-form arc, by dcfinition, themsclves in normal-form; thus the rail {1 2] is in
normal-form, whercas the rail [1 (+ 1 1)] is not.

Handles: Handlcs arc unique normal-form designators of other internals structurcs — they
arc the 3-LISP ficld’s form of canonical quotation. Thus for the atom x therc is a single
handle, written 'Xx. All 3-LISP structurcs have handles (including handles themselves;
thus the handle of the handle of thc atom x is ''x).

The nine first-order locality relationships defined over internal structures are summarized in the
following table:

Name Type Total — Accessible «  Standard Procedure
CAR Pairs - Structures Yes Yes ‘No ' cAr
CDR Pairs — Structures - Yes Ycs No CDR
FIRST Rails - Structures No Yes No 1ST
REST Rails — Rails No Yecs No REST
PROC-TYPE Closurcs — Atoms Yes  Yes No PROCEDURE-TYPE
ENV Closurcs — Rails Yes Yes No  ENVIRONMENT-DESIGNATOR
PATTERN Closures - Structures Yes  Yes No PATTERN
BODY Closures — Structures Yes Yes No = Booy
REF " Handles - Structurcs’ Yes' Yes Yes  pown(4) -
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All of these rclations are, in fact, total functions, with the exception of FIRST and REST, which are
only partial, being undcfined together on empty rails. REF is one-to-onc and onto; therefore REF
is a total function on structurcs, called HANDLE, and is a subsct of the function that is designated
by the standard procedure up (r).

Some structurcs — all numerals, charats, booleans, strecamers, and their handles — are permancnt
members of any structural ficld configuration. Others — pairs, rails, atoms, and closures — can be
brought into existence and connccted to cxisting structures through the activation of onc of the
primitive constructors. For example, the standard procedures called pcons creates a new pair and
establishes a CAR and CDR relationship between this pair and the two structures passcd to PCONS as
arguments.

A structure X is accessible from structure Y if X can be reached from ¥ through a series of CAR,
CDR, FIRST, ctc., conncctions.  In addition, the handles of all structures are accessible from their
referents. When a so-called ‘new’ structure is gencrated (by RCONS, PREP, SCONS, ACONS, CCONS, Or
pcoNs) it is guarantced to be orherwise inaccessible, meaning that it cannot be accessed from any
other accessible structure. A rail is considered to be completely inaccessible if it and all of its tails
(i.c., rails reachable via one or more REST transitions) wre inaccessible.  Thus rcons returns an
otherwise completely inaccessible rail, whercas PREP rcturns an inaccessible, but not completely
inaccessible rail. .

Once created, a structure will remain a part of the structural ficld permancently, unless it is smashed
by REPLACE, the primitive structural field side-effect procedure. Replacing structure .Sy by .5, has
the cffect of permanently altering the topology of the structural ficld such that all structures that
were mapped to S via onc of the nine locality functions become mapped to ;. As a result, Sy
and all its handles suddenly become completely inaccessible.  Both .S; and Sy must be of the same
type, and that type must be onc of the non-canonical ones: rail, pair, closure, or atom.

3.b. Standard Notation

The 3-LISP internalization function (the notational interpretation function 0 that maps notations into
internal structures) is not, strictly speaking, a primitive part of the language definition, since it is not
used in internal processing (i.c., discarding it will not topple the tower). There is, however, what is
called a standard notation that is used in all documentation (including this reference guide), and
which is provided with a 3-LISP system upon initialization. (A user may, however, completely
replace it with his/her own version, if desired). ‘This scction cxplains that notation.

The lexical notation is designed to satisfy three goals:

1. Inso far as possible, to resemble standard LISP notational practice;
2. 'T'o maintain category alignment with the ficld (one lexical type per structural type);
3. To be convenient.

The goal of category alignment is met by having the standard notation for cach type be identifiable
in the first character (except for "notational .escapes,” described below), as indicated in the-following
chart: - '

Type Leading Character  Examples

Numeral digit 0, 1, -24, +100, 007

Atom letter A, REDUCE, CAR, ATOM
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Boolean $ $T, SF

Pair { (A . B), (PLUS 2 3)
Rail [ [1 23] (1

Handle ' A, (+23), ']
Charat # #A, #/

Other { {closure}, {streamer)

Examples: “(A . 1)" notates a pair whose CAR is the atom notated ‘A" and whose CDR is the
numeral notated ‘1" ‘{1 notates an cmpty rail; '[1 2 3 4 5 6] notates a rail whose FIRST and
REST would be notated ‘1" and ‘[2 3 4 5 67, respectively; 1100 notates the handle for the

1)

numecral ‘100’.

Some subtletics complicate this clean correspondence. Specifically:
1. Numerals can have a lcading *+" or - (i.c., -24°),

2. An atom label may begin with a digit (or sign) providing it contains at Icast onc non-
digit (i.c., 'sN237€", *-X" and ‘1+ arc valid atom labels). Any atom label that also satisfics
the rules for numeral tokens will be taken to be the latter.  For example, ‘1-" and '+
notate atoms, whercas “+1° notates a numeral.

3. Left brace (‘¢) is used as a general notational cscape, not only for closures and
streamers, but also for unlabelled atoms, crrors, and other notational commentary. "This
notation is currently cmployed only on ouput.

4, Casc is ignored in atom labels (converted to upper case on input). For cxample,
‘Zaphod’, ‘ZAPHOD', ‘zaphod’, and ‘zaPh0d’ all notatc the samc atom.

5. Somc lexical abbreviations (notational sugar) are supported:
‘(expy expy ... expy)’  abbreviates ‘(expr . [expy ... exprl)
“char, char, ... char,""  abbreviates ‘‘[#char, #char, ... #char ¥’ A
‘texp abbreviates ‘T(UP exp)’
‘texp” abbreviates ‘' (DOWN exp)’

The following grammar presents the essence of the standard 3-LISP notation, for those who like
such things:

Fxtended BNF Grammar for 3-LISP Standard Notation

Expression :2= Regular | Abbreviation | Escape :
2. Regular 1= Numecral | Boolean | Charat | Atom ] Pair | Rail | Handle

Numeral = [Sign-character] Digit-character®

Boolean = C$T'|'$F|'st’|'sf’

Charat = ‘# Any-character

Atom = Atom-character*

Pair. , ~u= (" Expression *.” Expression %y’

- Rail ~m= [ Expression® ‘7

Handle = Expression
3. Abbreviation = Up | Down | Extended-pair | String | Back-Quote | Comma

Up = '+’ Expression

Down =}’ Expression
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Extended-pair u=‘( Expression* ‘)’
String = ‘" (String-character | " n°)*
Back-Quote =" Expression
Comma = ‘,” Expression
4. FEscape w= ‘{Unspecified information 'y’

RITR
ORI O - N I - IR A I N

Any character in the character set

Any character except Space, End-of-line, '8’ "#°, ‘", *:", or Special
Any character except '™’

Any character except End-of-line

Sign-character
Digit-character
Any-character
Atom-character
String-character
Normal-character

il

il

it

It

il

Special = CIYICIr eIV SR eIy
6. Token-sequence = (Separator” Token Scparator™)”

Scparator = Space-character | Ind-of-line-character | Comment

Comment = *;" Normal-character” End-of-linc-character

In the standard notation, structures arc notated with scquences of lexical tokens, cach of which is
composed of a sequence of one or more characters chosen from a collection of characters called the
character set. Although the cxact composition of the character set is unimportant, we assume - that it
includes all of the ASClHl characters.

Sequences of characters are broken down into tokens in the conventional way, with the rule that
there must always be at least one token scparator between adjacent non-special tokens.  For
cxample, the character stream ‘(foo [1 $T t#x ''100])" consists of the ten tokens: *(’, ‘foo’, '[’, ‘1’,
ST, ‘e, e, rr100” 'Y, and ).

()

]

Special tokens do not notate structures by themselves; rather, they are used to punctuate the
notation  for composite structures.

For convenience, the following table lists all "special” (i.c., non alpha-numeric) characters that are
used for some special purpose. Note that the standard notation uses onc character (down-arrow:
*¥7) that is not part of the standard ASCH character set, but we reserve ASCH backslash (V') so that
it can be uscd in its stcad. We assume, in other words, that the 3-LISP standard notation is indeed
based on the standard ASCIl sequence, but simply choose to print backslash as a down-arrow.

Code, Character, and Use Code, Character, and Use
( - starts pairs + — abbreviation for up
— ends pairs + — abbreviation for bown (samc as '\")

. — scparates CAR and CDR ' — back-quote

[ — starts rails . — -normalized expression within back-quote
"1 —  ends rails i — starts comments (to CRLF)

* — handles - — starts negative numerals

# — charats + — starts some positive numerals

$ — boolcans ($1 and $F) { — starts notational cscapes

* — starts and cnds strings } — cnds notational escapcs

In addition to the foregoing notational protocols embodied in the internalizer and externalizer, we
adopt a set of additional notational conventions on identifiers. The 3-LISP system pays no attention
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to these, but all of the code presented in this manual honors them, and they are recommended for
users, as well.  Specifically:

1. A suffix exclamation point is used on variables (atoms) that arc intended always to
designate a normal-form structure.  For example:

(NORMALIZE (REST EXP) ENV (LAMBDA SIMPLE [REST!] (CONT (PREP FIRST! REST!)))).

2. A suffix asterisk is used on variants of procedurcs that take an indefinite number of
arguments, where the standard version accepts only a fixed number (for example: 0* is
a multi-argument version of o).

A general comment: ‘The internalization function described above is not onto; in other words, there
arc structurcs that arc not the result of internalizing any lexical expression, for two reasons.  First,
upon internalization, all pairs and rails notated are created from previously-inaceessible cells.
Hence, any structure with a shared sub-structure will have no lexical counterpart.  Sccond, closures
and un-named atoms (those created by acons) have no standard lexical counterparts. ‘T'he standard
version of PRINT, approximatcly the inverse of Reap, currently makes no attempt to deal in a
sophisticated way with cither of these problems. In particular, no attempt is made to show shared
substructure, and un-notatable structures — closures, namcless atos, and circular structures — arce
marked with a standard lexical cscape: a note enclosed in braces (c.g., ‘{closure}’, ‘{streamer}’,
etc.). .

The back-quote feature, borrowed from MACLISP [Moon 74}, is uscful when defining macros, since
it allows onc to convenicntly notate expressions for constructing structures that resemble the lexical
expression notated. For cxample, **(A . B)' is notationally cquivalent to ‘(pcoNs 'a *8)°, which
notates a structure that normalizes to a structure that would be notated ' (A . 8)'. The comma
notation, meaningful only within the scope of a back-quote, givés one a fill-in-the-blanks-like
capability; for cxample, the notation *“(A . ,x)’ is shorthand for ‘(pcons 'a x)’, which notates a
structurc that would normalize to a structure that would be notated ‘(A . HELLO)' in an
cnvironment where x was bound to 'HerLo.  ‘The following cxamples may help to make the
workings of this featurc clear (assumec that B is bound to '2 and ¢ to ''3):

Notation abbreviates and normalizes to

1 'l "1

‘(A . B) (PCONS 'A 'B) ‘(A . B)

‘[A 8] (RCONS ‘A 'B) '[A B]

‘[A ,B C] (RCONS 'A B 'C) '[A2C]

‘[LA BI[.C D]] (RCONS '[A B] (RCONS C 'D)) "[{A BI['3 D1]

“‘[A .8 ,,C] (PCONS ('RCONS ‘['A B ,C])) "(RCONS ['A B '3]) (i.c., ‘[A ,B 3])

To express the workings of this mechanism precisely requires a little care, since both notation and
designation must be spoken of cxplicitly. It can be summarized as follows:

Back-Quote Principle: A lexical expression E; preceded by a back-quote will notate a
structure Sy that designates a structure Sy that would be notated by g4, with the exception
that those fragments of Sy that would be notated by portions of €y that are preceded by a
comma will, in fact, be designated by the structures that those portions nolate, rather

than notated by them directly.

An intensional note: the back-quote expander will not usc a token /ail of a rail if any part of that
rail has a comma'ed cxpression within it.  Specifically, we have:
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1> (DEFINE TEST
(LAMBDA SIMPLE [A]
[.A 23]))
=> TEST
1> (LET [[X (TEST '1)]
LY (TEST '2)]]
(= (REST X) (REST Y)))
=> $F

since ‘[.,A 2 3] abbreviatcs (RCONS A '2 '3), not (PREP A '[2 3]).

Sce the Appendix A dcfinitions of DEFINE, LET, LETSEQ, and other macros for further examples.
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4. Standard Procedures

There arc approximately 150 standard procedures in 3-LISP: procedurcs that are described in this
reference guide, used without comment in utility packages, and so forth (we also expect to ‘compile’
these procedures into the standard implementation). A 3-LISP programmer should consider these to
be the base set, on top of which to define other functionality as desired.  Within the sct of standard
proccdures, however, arc two important sub-classes: primitive procedures that provide access to the
structural field and to the cxternal world (c.g.. 1/0); and kernel procedures that arc cssential to the
workings of the system. ‘These two sets are neither mutually exclusive nor exhaustive: many of the
primitives arc kernel procedures as well (ewery, for cxample), but there are some non-kernel
primitives (LENGTH, +, ACONS, REPLACE, ctc.). In addition, it is clcar that many kernel procedures are
not primitive (LAMBDA, BINDING, NORMALISE, and NORMAL, to name a few). Finally, there are
approximatcly 90 other standard procedures (MAX, LABELS, DO, ctc.) that arc ncither primitive nor
kernel.

4.a. Primitive Procedures

There arc 34 primitive procedures (listed below) that have no definition within 3-LISP, and that are
reduced with arguments in "unit time,” in the sense that from no level of reflective access is there
any visible grain to their operation. All the 3-LISP primitives are simple: there are no primitive
reflectives. To a certain extent the particular set is arbitrary, and it is certainly not minimal: Scons,
for example, could be defined in terms of rRcons, up, and pown; LENGTH could be defined in terms of
EMPTY and +; ctc. .

Category Standard Nane Functionality
Typing: TYPE defined on 15 types (9 internal, 6 external)
PROCEDURE-TYPE to distinguish simple and reflective closures
Identity: = defined on 14 types (all except functions)
Structural: PCONS, CAR, CDR to construct and cxamine pairs
CCONS, PATTERN, BODY to construct and
CNVIRONMENT-DESIGNATOR cxamine closures
ACONS ' to construct atoms
RCONS, SCONS, PREP to construct and cxamine
LENGTH, NTH, TAIL, EMPTY  rails and scquences
Modifier: REPLACE to modify mutable structures
Control: EF an extensional if-then-clse conditional
Scmantics: UP, DOWN to mediate between sign & signified
Arithmetic:  +,-,*,7,¢,>,<=>= as onc would expect
1/0: INPUT, QUTPUT primitive opcrations on streams
System: LOADFILE, EDITDEF system support

- 4,h. Kernel Procedures

The kernel procedures are those that arc used crucially in the 3-LISP reflective processor (i.e., they are
used by the rellective processor to process the reflective processor).  As a conscquence, smashing
onc of these closures, or redefining the binding of its standard name in the global environment

33




STANDARD PROCEDURES INTERIM 3-LISP REFERENCE MANUAL

(more accurately: in any environment capturcd inside any of the kernel closures), will cause the
tower to fall. Thus, for all practical purposes, the kernel procedures are as ‘wired-in' to 3-LISP as
arc the primitives, even though in a strict scnse they have visible definitions, and are
compositionally cxecuted by the processor (by cxpanding closures). Note that there are reflective
kernel procedures as well as simple ones. It turns out that the kernel procedures are cxactly the
acquaintances of NORMALIZE, although this ncedn’t have been so (they could have been a subsct,
since there might have been code in the reflective processor that, although used when processing
somc forms of user code, didn’t happen to bc used to process the processor itsclf).

Kernel Primitives

CAR, CDR, RCONS, SCONS, PREP, NTH, TAIL, EMPTY, CCONS, PROCEDURE-TYPE, ENVIRONMENT-
DESIGNATOR, PATTERN, BODY, TYPE, =, EF, UP, DOWN

Kernel Non-primitives

UNIT, DOUBLE, REST, 1ST, 2ND, MEMBER, VECTOR-CONSTRUCTOR, MAP, ENVIRONMENT, REFLECTIVE,
DE-REFLECT, ATOM, PAIR, RAIL, HANDLE, EXTERNAL, LAMBDA, SIMPLE, BINDING, BIND, LET, IF,
COND, COND-HELPER, AND, AND-HELPER, NORMALISE, REDUCE, NORMALISE-RAIL, NORMAL, NORMAL-
RAIL, PRIMITIVE

4.c. Standard Procedure Guide

The remainder of this section is taken up with descriptions of cach of the standard procedurcs. The
3-LISP codc for the standard procedures can be found in Appendix A.  Notes on the format of
these descriptions:

1. Each procedure is illustrated with non-objectified arguments, but many can be used in
“other ways (for example: (PCONS . (REST ['A 'B 'C])) = '(B . C)).

2. For cach procedure, we give the declarative import. In many cascs that is the only
semantical information provided, since if the designation has a canonical normal-form
designator, what is returned can be determined from this designation in conjunction
with the normal-form thecorem. For example, since (+ 2 3) designates the number 5, it
will return the numecral 5; since (= 'A '8) designates falsity, it will return the boolecan
s$f. If, however, the normal-form dcesignator is not canonical, or if there arc side
cffects, the relevant parts of the procedural significance arc described . as well,

3. Typing information is typically given only in terms of what we call the functions “&-
type." Thus, for cxample, the division function 7 would be said to have @-type of
[ NUMBERS X NUMBERS ] —» NUMBERS. In some cascs, the typing restrictions specificd in
this scction are stricter than onc would cxpect given the Appendix A definitions.

4, Underlined arguments in the title line of a procedurc description indicate those
positions that are normalized tail recursively with respect to the procedure call (e.g., the
2nd and 3rd arguments to IF).

5. Several onc-word attributes arc associated with cach procedure that can provide a quick
reference for determining the nature of the procedure. The following keywords are

used:
Cons This procedurc may create new structurcs that will be
accessible from the result; c.g., APPEND.
Smash Internal structurcs accessible from the argument dcesignators

may bc smashed (with REPLACE); c.g., REBIND,
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10.

Env Some of the arguments to this procedure may be normalized in
some environment other that the current one; however, these
cnvironment manipulations are accomplished through non-
destructive means; e.g., LET.

Smash-env  This procedure may destructively change the current
environment;  e.g., SET.

170 This proccdure may side effect the outside world by doing
I/0; c.g., outpur.
CPS This procedure is written in the continuation-passing style —

instcad of returning, the result is cxplicitly passed to the
continuation (usually as the last argument); c.g., NORMALIZE.

Abnormal  Some of the arguments may not always be normalized; e.g.,
IF.

Still other keywords arc used to indicate the naturc of the procedure’s status within the
implementation: '

Primitive This procedure is one of the 30 or so primitives that have only
viciously circular definitions within the 3-LISP system. All
non-primitives have complete and accurate descriptions in
terms of the primitives.

Kernel This procedure is an cssential part of 3-LISP because it is used
rcgularly by the reflective processors at all levels.

The symbol ‘=" (used in cxamples) means "normalizes to."
Some comments in regard to examples involving 170:  all input cxpressions are printed

“in italics following the level 1 processor’s ‘1> prompt and output expressions appear

unitalicized following the ‘1=’ prompt.

1> 'HELLO
1= 'HELLO

Input destined for an explicit call to ReAD (or INPUT, etc.) are underlined as well as
italicized.

1> (READ PRIMARY-STREAM) HELLO

1= "HELLO
Output produced by an cxplicit call to PRINT (or ouTpuT, ctc.) is printed in bold.

1> (PRINT 'HELLO PRIMARY-STREAM) HELLO

1= '0K
Note that in the interest of readability scveral libertics have been taken with the
formatting of output cxpressions — actual results may vary.

To facilitate the writing of macros and other reflective procedures, the argument-to-
paramecter pattern matcher (BIND) will convert a rail-designating argument into a
scquence of designators.  For example, '[1 2 3] will be converted to ['1 '2 '3] in
order to fit the pattern [A B ¢]. This is consistent with thc polymorphism. of 1sT and

- REST, ctc. — (1ST '[1 2 3]) and.(1sT ['t '2 '3}) both normalize to '1.

All standard procedures return a result.  However, the ones that arc used solely to
accomplish a sidc-effect (c.g., REPLACE, SET, and output) usually rcturn a gratuitous *OK.
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4.c.l. PAIRS

(PCONS S;1 S3)
Designates an otherwise inaccessible pair whose CAR is the internal structure designated by
s, and whosc CDR is the internal structurc designated by s,.

o-Type: [ STRUCTURES X STRUCTURES ] — PAIRS Properties: Primitive; cons.
Iixamples:  (PCONS 'A 'B) = ‘(A . B)
(PCONS '+ '[2 3]) = '(+ 2 3)
(PCONS 2 3) => {ERROR: Structure expected.}
(CAR PAIR)
Designates the internal structure that is the CAR of the pair designated by PaIR.
d-Type: [ PAIRS ] — STRUCTURES Properties: Primitive; kernel,
Ixamples:  (CAR "(A . B)) = ‘A
(CAR '(1 . 8T)) = '1
(CAR '(+ 2 3)) = '+
(CAR *'+))- = {ERROR: Pair expected.}
(CDR PAIR)
Designates the internal structurc that is the CDR of the pair designated by paAIR.
¢-Type: [ PAIRS ] — STRUCTURES . Properties: Primitive; kernel,

Fxamples:  (CDR "(A . B)) => 'B
(COR '(1 . $T)) = 'S8T
(COR '(+ 2 3)) = '[2 3]
(CDR '(ACONS)) =>  '[]
(CDR '1)) => {ERROR: Pair expected.}

(XCONS S31 Sz ... Sk)
Designates an otherwisce inaccessible pair whose CAR is the internal structure dcsngnatcd by

s, and whose CDR is an otherwisc completely inaccessible rail whose clements arc the
internal structurcs desighated by s, through s, (x > 1)

®-Type: [ STRUCTURES X {STRUCTURES}* ] — PAIRS Properties: Cons. .
Fxamples:  (XCONS '+ '2 '3)  => '(+ 2 3)

(XCONS 'ACONS) => ' (ACONS)

(XCONS 1 2 3) => (ERROR: Structure expected.}

4.c.2. RAILS and SEQUENCES

(RCONS Si ... Sk)
Designates an otherwise completely inaccessible rail of length k whose clements are the
internal structurcs desighated by s, through s, (k > 0).
b-Type: [ {STRUCTURES}* ] — RAILS Properties: Primitive; kernel; cons.

Ixamples: (RCONS '1 '2 13) = 'T1 2 3]
(RCONS 'A (PCONS 'B 'C)) = ‘'[A (B . C)]
(RCONS) . =[]
(= (RCONS) (RCONS)) = . §F
(= {(RCONS) {(RCONS)) = $T
(RCONS 1 2 3) =>  {ERROR: Structure expected.}
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(SCONS Ej ... Ey)

Designates the sequence of length k of objects (internal or external) designated by €, through
E, (k > 0): returns an otherwise completely inaccessible normal-form designator (rail) of that
scquence.  Note that sequence identity is as in mathematics: two scquences are the same if,
and only if, they consist of the same elements in the same order.

b-Type: [ {OBJECTS}* ] — SEQUENCES ~ Properties: Primitive; kernel; cons.

Ixamples:  (SCONS 1 2 3) = {12 3]
(SCONS "1 '2 '3) = ['1'2 '3]
(SCONS 'A (+ 2 2)) = ['A 4]
['A (+ 2 2)] = ['A 4]
(SCONS) = []
(= (SCONS) (SCONS)) = $T
(= *{SCONS) *(SCONS}) = §F
(LET [[X [t 2]71 (= X (SCONS . X))) => 8T
(LET [[X [1 2]]] (= tX t(SCONS . X))) => &F

(PREP E VEC)

Designates a vector (of the same type as designated by vec) whose first clement is the object
designated by £, and whose first tail is the vector designated by vec. When vec designates a

sequence, (PREP E VEC) returns an otherwisce inaccessible rail whose first tail is the same rail

as that to which vec normalizes (i.c., it returns an inaccessible but not completely inaccessible
rail).  When vec designates a rail, (pRep £ vec) returns the handle of an otherwise
inaccessible rail whose first tail is the rail which vec designates. Note that ‘prep’ — short for

‘prepend’ — is pronounced in a way that connotes alligators,
d-Types: [ OBJECTS X SEQUENCES ] — SEQUENCES Properties: Primitive; kernel; cons.

[ STRUCTURES X RAILS ] — RAILS

Iixamples:  (PREP 10 [20 307]) = [10 20 30]
(PREP 'A '[B C]) = ‘[ABC(C]
(PREP #S "pain") =>  "Spain"
(PREP [$T] [SF]) => [[$T] $F]
(PREP 10 '[20 30]) => (ERROR: Structure expected.}
(PREP '10 [20 30]) = ['10 20 30]
=>  {ERROR: Vector expected.}

(PREP 1 2)

(LENGTH VEC)

(NTH

Designates the number of clements in the rail or scquence designated by vec.

d-Type: [ {RAILS U SEQUENCES} ] — NUMBERS Properties: Primitive.
I'xamples:  (LENGTH '[A B C]) = 3

(LLNGTH (SCONS)) = 0

(LENGTH "Five") = 3

(LENGTH 3) =>  {ERROR: Vector expected.}

N VEC)

When w designates the number k, (NTH N VEC) designates the k'th clement of the rail or

scquence designated by vec. Vector elements are numbered starting at 1, not 0; therefore k

may range from 1 to the length of the designation of vec.

&-Types: [ NUMBERS X RAILS ] — STRUCTURES Properties: Primitive; kernel,
[ NUMBERS X SEQUENCES ] — OBJECTS

Examples:  (NTH 1 [(+ 5 5) 20 30]) => 10
: (NTH 2 ['10 '20. '30]) =- '20
(NTH 3 '[{10 20 30]) = '30
(NFHl 4 "Eight") => #h
(NTH 2 [10]) => {ERROR: Index too large.}
(NTH '2 [10 20 307) = (ERROR: Mumber expected.}
(NTH 1 10) => {ERROR: Vector expected.}
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(TAIL N VEC)
Designates the N'th tail of the rail or sequence designated by vec (where ¥ may range from 0
to the length of vec). In general, the k'th tail of a vector of length K is that vector consisting
of the (k+1)'th through K'th clement; thus the 0'th tail of A is identically . If (TAIL N vEC)
designates a scquence, it will return the w'th tail of the rail to which vec normalizes.
O-Types: [ NUMBERS X RAILS ] — RAILS Properties: Primitive; kernel.
[ NUMBERS X SEQUENCES ] — SEQUENCES

Ixamples: (TAIL 2 [10 20 30 40}) = [30 40]
(TAIL 1 (CDR '(RCONS 'A 'B 'C))) = '['8 'C]
(LET [[X '[A B]}] (= X (TAIL 0 X))) = $T
(LETSEQ [[X [2 31]
LY (PREP 1 X)]11]
(= tX t(TAIL 1 Y))) => T
(TAIL 1 [11) = L1
(TAIL 4 "Kangaroo") => "aroo”
(TAIL 3 [1 2]) = {ERROR: Index too large.}
(TAIL $F [1 2]) =5 {ERROR: Number expected.}
(TAIL 1 #C) = {ERROR: Vector expected.}

(EMPTY VEC)
Truc just in casc vec designates an empty rail or sequence; false in case vec designates a
non-empty rail or scquence; error otherwise. Notc that (EMPTY vEC) will return $F cven if
vec dcesignates an infinite vector (in contrast with LENGTH)

&-Type: [ {RAILS U SEQUENCES} ] - TRUTH-VALUES Properties: Primitive; kernel.

I'xamples:  (EMPTY [1) = $T
(EMPTY '[T) = $T
(EMPTY '[A B C]) = $F
(EMPTY (SCONS)) = $T
(EMPTY (RCONS)) = $T
(EMPTY "No") = §F
(LET [[X (RCONS '1)]]
(BLOCK (REPLACE (TAIL 1 X) X)
(EMPTY X))) = $F
(EMPTY (A . B)) => - {ERROR: Vector expected.}

(UNIT VEC)

(DOUBLE VEC)
True just in case the vector designated By vec is of length 1 or 2, respectively. Note that
cach of these forms will return $F cven if vec designates an infinite vector (i.c., they arc
defined in terms of EMPTY, not LENGTH).

o-Type: [ {RAILS U SEQUENCES} ] — TRUTH-VALUES Properties: Kernel.
Examples:  (UNIT '[A]) = $T
(DOUBLE (REST [10 20 30])) = 37
(DOUBLE "Two") = $F
(UNIT 1) => (ERROR: Vector expected.}
(FOOT VEC)

Designates the empty vector that is the last tail of the vector designated by vec. If vec
designates a sequence, (FOOT VEC) will return the last tail of the rail to which vec normalizes. |
FOOT is pnmanly uscful in the (dcstructlvc) extcndmg of vectors (sce the dcfinition of .
CONCATENATE, for examplc). :
" o-Types: [ RAILS ] — RAILS
[ SEQUENCES ] — SEQUENCES

Examples:  (F00T [1 2 3]) = []
(= (FOOT [1 2 3]) []) = $T
(= (FOOT '[1 2 3]) '[]) v = $F
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(LET [[X (SCONS 10 20)]]
(BLOCK (REPLACE (FOOT +X) '[30 40])
X)) [10 20 30 40]

(REST VEC)

(1ST
(ZND
(3RD
(4TH
(6TH
(6TH

Designates the first tail of the vector designated by vec. ResST plays the role in 3-LISP that
cor plays in standard LISPs when used on lists signifying cnumecrations.

o-Types: [ RAILS ] — RAILS Properties: Kernel,
[ SEQUENCES ] — SEQUENCES
I'xamples:  (REST [1 2 3]) = [2 3]
(REST 1) =>  (ERROR: Vector expected.}
VEC)
VEC)
VEC)
VEC)
VEC) -
VEC)

These forms designate, respectively, the first, sccond. third, fourth, fifth, and sixth clements
of the vector designated by vec. In case vec designates a scquence, cach returns the Kth
clement of the rail to which vec normalizes (1 € K <6). Defined to be (NTH 1 VEC),
(NTH 2 VEC), ctc.

&-Type: [ SEQUENCES ] — OBJECTS Properties: Kernel (1s1 and 2D only).
[ RAILS ] — STRUCTURES
FExamples:  (3RD [10 20 30 40]) => 30
(1ST (PREP 'A '[B C])) = ‘A
(2ND [1]) =>  {ERROR: Index too large.}

(MEMBER E VEC)

True when the object designated by £ is an clement of the- vcctm designated by vec. |If
(MEMBER E VEC) is truc, it is guaranteed to return; if not, it will terminate only if the vector
designated by vec is finite. Note: Since MemBenr is defined in terms of =, it can’t be used over
sequences of functions.

&-Type: [ OBJECTS X SEQUENCES ] — TRUTH-VALUES Properties: Kernel.
[ STRUCTURES X RAILS ] — TRUTH-VALUES :

Isxamples:  (MEMBER 1 [2 3 4]) = $F
(MEMBLR "3 [1 12 (+12)]) = 38T
(MEMBER '2 '[1 2 3]) = §T
(MEMBER 2 ['1 '2 '3]) = §F
(MEMBER '[7 '[[A] [] [B]]) = §F
(MEMBER [] [[1] [] [2]]) = 8T
(MEMBER 1 2) ‘ =>  {ERROR: Vector expected.}
(MEMBER * [+ - » /1]) => {ERROR: = not defined over functions.}

(VECTOR-CONSTRUCTOR TEMPLATE)

-IExamples:  (VECTOR-CONSTRUCTOR '[]) -

Designates the rcons or scons procedure, depending on whether TeMPLATE designates an
internal structure or external object, respectively.  VECTOR-CONSTRUCTOR is primarily uscful in
the terminating clause of a recursive dcimmon defined over gencral vectors (sce the
definition of map, for example).

o-Type: [ OBJECTS ] — FUNCTIONS _ . - Properties: .Kerncl.
{Simple RCONS closure}

( (VECTOR-CONSTRUCTOR '[1)) '
. (VECTOR-CONSTRUCTOR 100)
((VECTOR-CONSTRUCTOR 100))

(VECTOR-CONSTRUCTOR t11)

{Simple SCONS closure}
(]
]

IR
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(MAP FUN V, V, ... V)
Designates the vector obtained by applying the function designated by rFun (of arity &) to
successive clements of the vectors designated by v, through v,. The vectors v, through v,
should be of cqual length.
®-Type: [ FUNCTIONS X {SEQUENCES}® ] — SEQUENCES Properties: Kernel; cons,
[ FUNCTIONS X {RAILS}® ] — RAILS

Examples:  (MAP 1+ [2 3 4]) = [3 4 5]
(MAP * [1 2 3] [1 23]) = [1 4 9]
(MAP EF [8T 8F] [1 2] [3 4]) => [1 4]
(MAP CAR []) = []
(MAP UP '[1 A 8T]) = '['1 'A '$T]
(MAP 1+ [1 2 3] [4 5 6]) => {ERROR: Too many arguments.}
(MAP 1 [1 2 3]) => {ERROR: Not a function.}
(MAP 1+ 100) =» {ERROR: Vector expected.}

(COPY-VECTOR VEC)
If vec designates a rail, (copy-veECTOR veC) designates an otherwise completely inaccessible
rail whose clements arc the clements of the rail designated by vec. If vec designates a
sequence, (CoPY-VECTOR VEC) designates the same scquence as Vec, but returns an otherwise
completely inaccessible designator (rail) of it. Note that when vec designates a scquence,
(scons . vec) could be uscd to achicve the same cffect.

o-Types: [ RAILS ] — RAILS Properties: Cons,
[ SEQUENCES ] — SEQUENCES
Examples:  (COPY-VECTOR '[A B C]) = '[ABC]
(COPY-VECTOR []) = []

(LET [[Y [1 2 37111
[(= Y (COPY-VECTOR Y))
(= *Y *+(COPY-VECTOR Y))]) = [$T $F]

(CONCATENATE R; R3)
CONCATENATE replaces the foot of the rail designated by g, with the rail designated by R,.
More formally, if L1 and Ly arc the lengths of the mils designated by r, and R,, respectively,
then (CONCATENATE R, R,) designates a rail of length L+ Ly, whose first Ly clements arce the
clements of the rail designated by r,, whose Ly'th tail is the rail r,. The rail to which g,
normalizes is affected, so CONCATENATE should be used with extreme caution; normally APPEND
will do the job.
o-Types: [ RAILS X RAILS ] — RAILS Properties: Smash.

I'xamples:  (CONCATENATE '[A] '[B C]) = '[AB C]
(LET [[X (RCONS)]1]
(BLOCK (CONCATENATE X '[NEW TAIL])
X)) = '[NEW TAIL]
(LET [[Xx '[1 2 3]]
LY '[4 5]1]
(BLOCK (CONCATENATE X Y)
LA Y1) = ['[12345]
{4 5]]
(APPEND V; V3)
If L; and L, arc the respective lengths of the vectors designated by v, and v,
(APPEND v, v,) designates the vector of length Ly+Ly whose first Ly clements arc the
clements of v, and whose remaining Ly clements are those of v,. Both vectors must be of
the samie type. ‘The vector. to which v, normalizes is not copied (i.c., v, is accessible from the

result).
b-Types: [ RAILS X RAILS ] —» RAILS Properties: Cons.
[ SEQUENCES X SEQUENCES ] — SEQUENCES
Ixamples:  (APPEND [1 2 3] [4 6 6]) => [123456]
: (APPEND *[7] '[A B C]) = '[A B C]
(LET [[X "[M NJ]] (APPEND X X)) = "[MNMN]
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(LETSEQ [[X '[M NJ] [Y (APPEND X X)1]
(= X (TAIL 27Y))) = 8T
(LET [[X [1 2]] [Y [3 4111
(BLOCK (APPEND X Y)
‘ X
(APPEND "Of gl)mes_" " and ships")
(APPEND 1 [2 3])

(APPEND* V; Vy ... V)

APPEND* is a variant of AppeND that accepts multiple argument vectors. More formally, if L; is
the length of the vector designated by cach vy, (APPEND v, V, .. V) designates the vector of
length Ly +Lo+ ... + Ly whose first L clements arc the elements of the vector designated by
v, and whosc next Ly clements are the clements of the vector designated by v,, cte. (K > 1).
All vectors must be of the same type. The vectors to which v, normalizes is not copied (i.c.,
ve is accessible from the result),

b-Types: [ RAILS X (RAILS}* ] — RAILS Properties: Cons.

[ SEQUENCES X {SEQUENCES}* ] — SEQUENCES
Ifxamples:  (APPEND* [1 2 3] [4 6 6] [7 8 9]) = [12345¢6789]

[t2]
"0f shoes and ships”
{ERROR: Vector expected.}

bl

(APPEND* '[A B C]) = '[A B C]
(LET [[X '[G 0]]] (APPEND* X X X)) => '[6 0 G 0 G 0]
(APPEND* "Mac" |l}l" "»i" "n" "e") => "Mac}line"

(REVERSE VEC)
Decsignates a vector (of the type of the vector designated by vec) whose clements are the
same as the clements of the vector designated by vec, cxcept in reverse order. 'The resulting
vector is otherwisc complctely inaccessible,
o-Types: [ RAILS ] — PRAILS Properties: Cons.
[ SEQUENCES ] — SEQUENCES :

Examples:  (REVERSE []) = []
(REVERSE [1 2 3]) = [3 2 1]
(REVERSE '[[A B] [C D]]) = '[[C D] [A B]]
(LET [[X [10]]] (= X (REVERSE X))) = 3T
(LET [[X [10]]]
(= tX t(REVERSE X))) = $F
(LET [[Y '[AJ]] (= Y (REVERSE Y))) = §&F

(INDEX ELEMENT VECTOR) .
Scarches the vector designated by vector for an clement cqual to the object designated by
eLemMenT, and yiclds the number indicating the first position in which it was found. Designates
0 if the object is not a member of the vector,
o-Type: [ OBJECTS X VECTORS ] — NUMBERS

I'xamples: (INDEX 3 [2 3 6 1])
(INDEX 'B ['A 'B 'C])
(INDEX [10] [1 $T [10]1])
(INDEX #1 "Hello")
(INDEX '+ [])

(PUSH ELEMENT STACK) »
Pushes the object designated by eLeMeENT onto the sequence designated by sTack.  Structural
ficld side ecffects arc involved.  Returns oK.

IR ERN

o-Type: [ OBJECTS X SEQUENCES ] — ATOMS .. Properties: Smash; cons.,
Lxamples: 1> (SET S []) ' C '
. : = '0K .

1> (PUSH 1 §)

1= '0K

1> (PUSH 2 S)

= '0K

135

= [2 1]
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(POP STACK)
Pops the most recently pusHed object off of the scquence designated by srack.  Structural

ficld side cffects are involved.  Designates the object popped off.
o-Type: [ SEQUENCES ] — OBJECTS Properties: Smash,

Lxamples: 1> (BLOCK (SET S []) (PUSH 1 §) (PUSH 2 S))
= '0K
S
= [2 1]
1> (POP"S)
2

1> s
=[!

CLOSURES

(CCONS KIND DEF-ENV PATTERN BODY)

Designates an otherwise inaccessible closure of the type designated by kInvo (typically cither
SIMPLE OF REFLECI) containing designators of the environment designated by DEF-£nv, the
pattern designated by PATTERN, and the body designated by 8. (Note that (LAMBDA MACRO ...)
and (LAMBDA REFLECT! ...) both construct REFLECT-typc closurcs.)

Properties: Primitive; kerncl; cons.

b-Type: [ ATOMS X RAILS X STRUCTURES X STRUCTURES ] — CLOSURES
Properties: Primitive; kernel; cons,

Examples:  (CCONS 'X '[] 'Y 'Z) = '{closure: X [] Y Z}
(CCONS 'SIMPLE tGLOBAL '[X] 'X) => '{closure: simple {global} [X] X}
(+(CCONS 'SIMPLE
tGLOBAL
'[X]
"(+ X 1)) 10) = 11

(PROCEDURE-TYPE CLOSURE)

Designates the atom that is the PROCEDURE-TYPE of the closurc designated by CLOSURE.
&-Type: [ CLOSURES ] — ATOMS Properties: Primitive; kernel,

Iixamples:  (PROCEDURE-TYPE (CCONS 'X '[] 'Y 'Z)) = X
(PROCEDURE-TYPE 1t+) => 'SIMPLE
(PROCEDURE-TYPE +IF) => 'REFLECT
(PROCEDURE-TYPE IF) => {ERROR: Closure expected.}

(ENVIRONMENT-DESIGNATOR CLOSURE)

Designates the rail that is the ENV of the closure designated by ctosure. Note that while

ENVIRONMENT-DESIGNATOR is scmantically flat, closurcs arc a little confused (they contain

cnvironment designators instcad of cnvironments).  ENVIRONMENT is almost always more

appropriate.

o-Type: [ CLOSURES ] — RAILS Properties: Primitive; kernel.

Ixamples:  (ENVIRONMINT-DESIGNATOR (CCONS 'X '[] 'Y 'Z)) = '[]
(ENVIRONMENT-DESIGNATOR +) => {ERROR: Closure expected.}

(ENVIRONMENT CLOSURE)

Designates the environment in the closurc dcmgnatcd by CLOSURE

-o-Type: [ CLOSURES ] — SEQUENCES Properties: Kernel,
Lxamples:  (ENVIRONMENT (CCONS 'X '[] 'Y 'Z)) = []
(ENVIRONMENT +) => (ERROR: Closure expected.}
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(PATTERN CLOSURE)
Designates the internal structure that is the PATTERN of the closure designated by cLOSURE.
&-Type: [ CLOSURES ] — STRUCTURES Properties: Primitive; kernel.

Ixamples:  (PATTERN (CCONS 'X '[] 'Y 'Z)) = 'Y
(PATTERN *(LAMBGA SIMPLE [A B]

(PCONS B A))) = '[A B]
(PATTERN *NORMALISE) = '[EXP ENV CONT]
(PATTERN +) : => {ERROR: Closure expected.}

(BODY CLOSURE)
Designates the internal structure that is the BODY of the closure designated by CLOSURE.
Properties: Primitive; kerncl.
&-Type: [ CLOSURES ] — STRUCTURES Properties: Primitive; kerncl.
Ixamples:  (BODY (CCONS 'X '[] 'Y 'Z)) = 7
(BODY +(LAMBDA SIMPLE [A B]
(PCONS B A)))
(PATTERN tREST)
(BODY +)
(REFLECTIVE CLOSURE)

True just in case the PROCEDURE-TYPE of the closure designated by cLoSURE is the atom

"(PCONS B A)
*"(TAIL 1 VECTOR)
{ERROR: Closure expected.}

el

REFLECT.
&-Type: [ CLOSURES ] — TRUTH-VALUES Properties: Kernel; cons.
I'xamples:  (REFLECTIVE t+) => §F

(REFLECTIVE tIF) = $7

(REFLECTIVE tLET) = 3T

(RETLECTIVE (CCONS 'X '[] 'Y 'Z)) => §F

(DE-REFLECT CLOSURE)
Designates an otherwise inaccessible closure whose PROCEDURE-TYPE is the atom SIMPLE
and whosc other components arc the same as those of the closure designated by CLOSURE.

d-Type: [ CLOSURES ] — CLOSURES : Properties: Kernel.
I'xamples:  (DE-RETLECT (CCONS 'X '[] 'Y 'Z)) = ‘{closure: simple [] Y Z}
(DE-REFLECT *IF) = '{simple IF closure}

(REFLECTIFY FUN)
Designates a function; returns an otherwise inaccessible closure whose PROCEDURE-TYPE is
the atom REFLECT and whosc other components arc the same as those of the closure to which
FuN normalizes. For cxample, BLocK is defined in scction 8 to bc (REFLECTIFY BLOCK-

HELPER). _
-Type: [ FUNCTIONS ] — FUNCTIONS Properties: Cons.
Examples:  (REFLECTIFY {(CCONS 'X '[] 'Y 'Z)) => {closure: reflect [] Y Z}

(REFLECTIFY NORMALIZE) => {reflective NORMALIZE closure}

4.c4. ATOMS

(ACONS) o L
" Designates a nameless and otherwise inaccessible atom.
o-Type: [ 1 — ATOMS Properties: Primitive; cons.
Examples:  (ACONS) =  {atom}

(= (ACONS) (ACONS)) =>  SF
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4.c5. TYPING

(TYPE A) ,
DPesignates the atom associated with the type of the object designated by a (chosen from the
standard 15). :

o-Type: [ OBJECTS ] — ATOMS Properiies: Primitive; kernel,
IExamples:  (TYPE 3) => 'NUMBER
(TYPE '3) => 'NUMERAL
(TYPE $T) => 'TRUTH-VALUE
(TYPE '$F) => 'BOOLEAN
(TYPE #A) => 'CHARACTER
(TYPE '#4) => 'CHARAT
(TYPE [1 2 3]) =» 'SEQUENCE
(TYPE '[1 2 3]) = 'RAIL
(TYPE +) => 'FUNCTION
(TYPE 1+) => 'CLOSURE
(TYPE PRIMARY-STREAM)  => 'STREAM
(TYPE tPRIMARY-STREAM) => 'STREAMER
(TYPE '(= 2 3)) = 'PAIR
(TYPE 'A) = 'ATOM
(TYPE ''3) => 'HANDLE
(TYPE '*'''''?) => 'HANDLE

(ATOM E)

(BOOLEAN E)

(CHARACTER E)

(CHARAT E)

(CLOSURE E)

(FUNCTION E)

(HANDLE E)

(NUMBER E)

(NUMERAL E)

(PAIR E)

(RAIL E)

(SEQUENCE E)

(STREAM E)

(STREAMER E)

(TRUTH-VALUE E)
Each of the fifteen type predicates are truc of clements of each of fifteen semantic categorics,
and falsc of all others. Spccifically, (atoM £) is truc iff £ designates an atom (and similarly
for the others).

o-Type: [ OBJECTS ] - TRUTH-VALUES Properties: Kerncl (ATOM, PAIR, RAIL, HANDLE only).

Lxamples:  (ATOM 'A) = $T
(PAIR *(1ST '[A B])) => §T
(FUNCTION +) = $T
(CLOSURE '+) = $F

~ (VECTOR E) o o : .
“Truc if, and only if, £ dcsignates cither "a rail or a scquence; false otherwise.
©-Type: [ OBJECTS ] — TRUTH-VALUES

Fxamples:  (VECTOR [1 2 37) = 3T
(VECTOR '[A B]) = T
(VECTOR '(1 23)) = $F

(VECTOR "String™) = $T
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(INTERNAL E)

(EXTERNAL E)
(INTERNAL E) is truc if, and only if, £ designates an internal structure such as a numeral or a
rail; false otherwisc. Similarly, (EXTERNAL E) is truc just in casc £ designates an external
structure (i.c., an abstraction) such as a number or a scquence: false otherwise.

o-Type: [ OBJECTS ] — TRUTH-VALUES Properties: Kerncl (ExTERNAL only).

I'xamples:  (EXTERNAL 123) = $T
(INTERNAL (+ 2 2)) = $F
(EXTCRNAL +) = $T
(INTERNAL '+) = T
(INTERNAL t+) = $T

(CHARACTER-STRING E)
True if, and only if, E designates a sequence of one or more characters; false otherwise.

&-Type: [ OBJECTS ] — TRUTH-VALUES

I'xamples:  (CHARACTER-STRING "Hello") = $T
(CHARACTER-STRING [#A #B #C1]) = $T
(CHARACTER-STRING #X) = $F
: (CHARACTER-STRING "") => §F
(CHARACTER-STRING '[1 2 37) = $F
(CHARACTER-STRING (PREP 1 "2")) => $F

4.c.6. IDENTITY

(= E1 Ez ... Eg)

When k is 2, truc if £, and £, designate the same object; false otherwise. However, an crror
will be detected if borh E, and E, designate functions. When both g, and £, designate
sequences, corresponding clements are compared (using =) from left to right until it can be
established that the two scquences differ, or until an ecrror is detected.  Consequently,
(= E, E,) may fail to terminate when g, and £, designate infinite sequences (or sequences )
containing infinite sequences). Note that although cquality is defined over closures, it is too

finc-grained to be used for function identity. When x is greater than 2, g; will not be %
compared to g, unless g, through £;_, have been determined to all desighate the same object.

d-Type: [ OBJECTS X OBJECTS X ({OBJECTS}* ] — TRUTH-VALUES [Propertics: Primitive;

kerncl.
Lxamples: (= 3 (+ 1 2)) = $T
: (= 5 '5) => SF
. (= '5 '5) => $T
(= $F S$F $F $F) = $T
: (= [10 20} [10 207) = 3T ,
: (= '[10 207 '[10 201) =  $F
,. (= ["10 '20] "[10 20]) =»  $F
: (= '[10 201 ['10 '20]) = $F
(= CAR CDR) => {ERROR: = not defined over functions.}
¢ (= CAR 3) = $F
: (= [+ 2] [+ 3]) = {ERROR: = not defined over functions.}
| (= [2 +] [3 +1). = SF . P
P (= +1+) = §F -
! (= ++ 1) =>  (ERROR: = not defined over functions.}

(ISOMORPHIC E; Ep)

Truc if £, and €, designate similar structurcs; false otherwise. When cither £, or &,
designates an external structure 1SoMORPHIC behaves just like =, Otherwise, two internal
structures arc isomorphic if they are = or have isomorphic corresponding components,
1soMorPHIC may fail to terminate on circular structurcs.
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o-Type: [ OBJECTS X OBJECTS ] - TRUTH-VALUES

Examples:  (ISOMORPHIC 'S '5) = $T
( ISOMORPHIC '[10 207 '[10 20]) = $T
1SOMORPHIC '[10 207 ['10 '20]) = $F
‘TSOMORPHIC +CAR tCDR => $F
ISOMORPHIC '(A . B) "(A . B)) = $T
grsomonpnzc TTIXY X = $T
1SOMORPHIC +(LAMBDA SIMPLE [X] X)
+(LAMBDA SIMPLE [X] X)) => $T

4.c.7. ARITHMETIC OPERATIONS

(+ N1 Nz ...Ng)
(* Ny Ny ...Ng)
Designate, respectively, the sum and product of the numbers designated by v, through »,.
(+) dcsignates 0, and (*) dcsignates L ;

o-Type: [ {NUMBERS}* ] — NUMBERS Properties: Primitive. &
Examples: (* 2 2 2 2) = 16

(+ 13 5) = 9

(+ 3) => 3

(* 3) = 3

(+) = 0

*) = 1

(+'1'2) => (ERROR: Number expected.}

(- Ni Nz ...Ng) _
Designates the difference of the numbers designated by », through w,. & must be at least 1.
Spccifically, (- ¥) is cquivalent to (- 0 N), and (- N; N, ... N,) is cquivalent to (-
Ny (+ Nz oo W)

o-Type: [ NUMBER X {NUMBERS}* ] — NUMBERS Properties: Primitive. _
Examples: (- 100 2) = 98
’ (- 3) => -3 :

(- 10 20) = -10

(-9135) = 0

(-9 (+1385)) =0

(-3) => (ERROR: Not a function.}

(- 0 8T) => ({ERROR: Number expected.}

(/ N1 Np)
Decsignatés the quotient of the numbers designated by v, and ¥,. (/ N, N,) will cause an
error if n, designates zero. Currently, arithmetic is defined only on integers; ultimately we
intend to define full rational (or repeating fraction) arithmetic, with no upper limit on

numeral size, and no limit on precision.

®-Type: [ NUMBERS X NUMBERS ] —> NUMBERS Properties: Primitive.
Examples: (7 10 3) = 3

(/ -10 3) = -3

(/ 10 -3) = -3

(/ -10 -3) = 3

(/ 100 0) => (ERROR: Division by zero.}

(REMAINDER Nj N;)
Designates the remainder upon dividing v, by »,; crror if #, designates. zero. The sign of a .-
‘non-zero remainder is that of the first argument.

&-Type: [ NUMBER X NUMBERS ] — NUMBERS

Examples:  (REMAINDER 10 3) => 1
(REMAINDER 10 -3) = 1
(REMAINDER -10 -3) => -1
(REMAINDER -10 -3) = -1
(REMAINDER 10 0) =5 {ERROR: Division by zero.}
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(1+ N)

(1- N)
Designates the number onc greater or onc less than the number designated by n, respectively.
®-Type: [ NUMBERS ] — NUMBERS
Examples: (1+ 20) = 21

(MAP 1- [2 3 4]) = [1 2 3]

(< N1 Nz .. Ny)

(<= Ny Nz e Nk)

(> N1 Nz ..Ng)

(>= Ni Nz ... Ng)
True if, and only if, the number designated by w, is less than the number designated by «,,
the number designated by n; is less than the number designated by w,, cte. Similarly for the
others, cxcept that the relationship is that of being less than or cqual (<=), greater than (5), or
greater than or cqual (>=). In all cascs, k must be -at least 2.

®-Type: [ NUMBERS X NUMBERS X (NUMBERS}* ] — TRUTH-VALUES Properties: Primitive.
Examples: (< 2 3) = 3T
(>> 5442 -1-7) = $T
(<= 99 1 '1) => {ERROR: Number expected.}
(> 100 1000) = $F ~
(ABS N)

Designates the absolute valuc of the number designated by w.
o-Type: [ NUMBER ] — NUMBERS

Examples:  (ABS 100) = 100
: (ABS -100) = 100
(ABS 0) => 0

(ABS '1) = {ERROR: Number expected.}

(MIN Ny Nz ...Ny)
(MAX Ng Nz ...Ny)
Designate, respectively, the minimum and maximum of the numbers designated by w,
through N, (kK > 1).
" ®-Type: [ NUMBERS X ({NUMBERS}* ] —> NUMBERS

Examples: (MIN 3 1 4) = 1

(MIN 0 1 -7) = -7

(MAX 4) = 4
(oDD N)
(EVEN N)

True if ~ dcsignates an odd or cven number, respectively.
&-Type: [ NUMBERS ] — TRUTH-VALUES

Examples: (0bb 100) = $F
(EVEN 100) = $T
(0DD -1) = $T
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(ZERO N)
(NEGATIVE W)
(POSITIVE N)
(NON-NEGATIVE N)

True if the number v designates is equal to, less than, greater than, or greater than or equal
to zcro, respectively.

&-Type: [ NUMBERS ] — TRUTH-VALUES

Examples:  (ZERO 1) =  §F
(NEGATIVE -1) =  §T
(POSITIVE 0) = SF

(NON-NEGATIVE 0) = ST
(®** N1 W)

Designates the n,-fold product of the number designated by w, with itsclf. v, must designate
a non-ncgative number.

w-Type: [ NUMBERS X NUMBERS ] — NUMBERS

Examples:  (** 2 10) = 1024
(** 10 0) = 1

(** -5 3) =  -125
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4.c.83. PROCEDURE DEFINITION and VARIABLE BINDING

(DEFINE LABEL FUN)

Establishes a binding of the atom LaseL (not the designation of that atom — i.c., LABEL is in
an intensional context) to the function designator that results from normalizing Fun.  Unlike
SET, DEFINE normalizes Fun in an environment in which tager will ultimatcly be bound to the
result of the normalization, to facilitate recursion.  In other words, (DEFINE LABEL FUN)
cstablishes LABEL as the public name for the function designated by fFuwn, and also cnables Fun
to usc LABEL as ifs own internal name for itsclf. Recturns a handle to LABEL.

Properties:  Smash-cnv: abnormal.

Macro: (DEFINE LABEL FUN)
=> (BLOCK (SET LABEL
(Y-OPERATOR (LAMBDA SIMPLE [LABEL) FUN)))
"LABEL)

I'xamples: 1> (DEFINE SQUARE (LAMBDA SIMPLE [N] (* N N)))
1= 'SQUARE
1> (DEFINE FACTORIAL
(LAMBDA SIMPLE [N]
(IF (= N 0) 1 (* N (FACTORIAL (1- N))))))
1= 'FACTORIAL
1> (FACTORIAL 6)
1= 120
(Y-OPERATOR FUN)

(Y-OPERATOR fFUN) designates a function with the property that (FUN (Y-OPERATOR FUN)) also
designates that same function.  In other words, (Y-OPERATOR FUN) is a fixed point of the
function designated by Fun. Fun must designate a mapping from funciions to functions. This
Sfixed point operator is used in defining recursive procedures (sce the definition of DEFINE).

o-Type: [ FUNCTIONS ] — FUNCTIONS

Ixamples: 1> (SET FACTORIAL
(Y-OPERATOR
(LAMBDA SIMPLE [SELF]
(LAMBDA SIMPLE [N]
(IF (= N 0) 1 (* N (SELF (1- N))))))))

1= '0K
1> (FACTORIAL 6)
1= 120

(Y*-OPERATOR Fq Fz ... Fg)
Y*-QOPERATOR is & gencralization of v-oPeraTOR that is uscful in defining multiple mutually-
recursive  procedures.

o-Type: [ {FUNCTIONS}* ] — SEQUENCES

Examples: 1> (SET EVEN&ODD
(Y*-OPERATOR
(LAMBDA SIMPLE [EVEN 0DD]
(LAMBDA SIMPLE [N]
(IF (= N 0) $T (ooo (1- N)))))
(LAMBDA SIMPLE [EVEN O
(LAMBDA SIMPLE [N] ‘
(IF (= N 0) $F (NOT (sveu N)))))))
1= '0K
1> ((1ST EVEN&ODD) 2)
1= $T
1> ((2ND EVEN&ODD) 2)
1= $F
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(LAMBDA TYPE PAT BODY)

Informally, an cxpression of the form (LAMBDA Type PAT BooY) dcsignates the function of
type TYPE (typically SIMPLE, REFLECT, or MACRO) that is significd by the lambda abstraction of
the formal paramecters in pattern pAT over the expression BoDy. LAMBDA is intensional in its
second and third argument positions: ncither pAT nor Booy is normalized. Morc formally,
(LAMBDA TYPE PAT B0DY) designates the result of applying the function designated by TYpE to
three arguments: a designator of the current environment, and the two expressions PAT and
ooy (un-normalized).

Properties:  Kernel; cons; abnormal.

Examples: 1> (LAMBDA SIMPLE [A B] (* A B))

1= {closure: SIMPLE {global} [A B] (* A B)}
1> ((LAMBDA SIMPLE [N] (+ N N)) 4)
8 :

1=
1> ((LAMBDA REFLECT [ARGS ENV CONT] ARGS) . XXX)
2= "XXX

(SIMPLE DEF-ENV PAT BODY)

This procedure, together with REFLECT, MACRO, REFLECT!, E-MACRO, and E-REFLECT, are most
uscful as the rype spccification in the context (LAMBDA TYPE PAT BODY). SIMPLE is uscd to
define simple procedures. When a procedure call (Foo . ARaS) is normalized at level N and
Foo designates a simple procedure, the sequence of cvents will be as follows:  arGs will be
normalized in the current level N environment: the defining cnvironment, per-env, will be.
extended by matching the pattern, PAT, against the arguments; finally, the body, sony, will be
normalized at level N in this new cnvironment.

&-Type: [ RAILS X STRUCTURES X STRUCTURES ] — FUNCTIONS Properties: Kernel; cons.
Examples:  (SIMPLE '[['X '1]7 '[1 'X) => {closure: SIMPLE [['X '1]] [] X}
((SIMPLE '[['X '1]1 '[1 'X)) => 1
((SIMPLE tGLOBAL
'[X]
"(+ X 2)) 99) = 101
((SIMPLE '[] '[X] '(ACONS))) => {ERROR: Unbound variable ACONS.}

(REFLECT DEF-ENV PAT BODY)

REFLECT is used to dcfine reflective procedures. When a procedure call (Foo . ARGS) is
normalized at level N and Foo designates a reflective procedure, the sequence of cvents will
be as follows: the defining cnvironment, peF-env, will be extended by matching the pattern,
PAT, against a designator of the un-normalized ar6s, the level ¥ environment, and the current
level N+1 processor continuation; lastly, the body, sopy, will then be normalized at level N+1
in this ncw cnvironment.

&-Type: [ RAILS X STRUCTURES X STRUCTURES ] — FUNCTIONS Properties: Cons.

IExamples: 1> (SET REFLECT-TEST
(LAMBDA REFLECT [ARGS ENV CONT]
(BLOCK (SET STASH ARGS) (CONT ''0K))))
1= '0K
1> (REFLECT-TEST + (+ 2 2))
1= '0K
1> STASH
1= [+ (+ 2 2)]
1> (REFLECT-TEST ., +)

1= '0K
1> STASH -
1= '+

(REFLECT! DEF-ENV PAT BODY)

REFLECT! is very similar to REFLECT except that the arguments to the reflective procedure are
normalized before being matched against the pattern.

&-Type: [ RAILS X STRUCTURES X STRUCTURES ] -> FUNCTIONS Properties: Cons.
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Examples: 1> (SET REFLECT!-TEST
(LAMBDA REFLECT! [ARGS ENV CONT]
(BLOCK (SET STASH ARGS) (CONT ''0K))))
= 0K
1> (REFLECTI-TEST + (+ 2 2))
= 0K
1> STASH
= '[{simple + closure} 4]
1> (REFLECTI-TEST . +)
= "0K
1> STASH
= "{simple + closure}

(MACRO DEF-ENV PAT BODY)

When a procedure call (Foo . ArGS) is normalized (at level N) and Foo designates a macro
procedure, the sequence of cvents will be as follows: the arguments to the procedure will not
be normalized; the defining environment will be extended by matching the pattern against a
designator of the un-normalized arguments; the body will be normalized in this new
environment; finally, the result of this normalization will be re-normalized in the original
environment,

o-Type: [ RAILS X STRUCTURES X STRUCTURES ] —> FUNCTIONS Properties: Cons.

Examples: 1> (SET MACRO-TEST
(LAMBDA MACRO ARGS
(BLOCK (SET STASH ARGS) ARGS)))

1= ‘0K
1> (MACRO-TEST + (+ 2 2))
1= [{simple + closure} 4]
1> STASH .
1= [+ (+ 2 2)]
1> (MACRO-TEST ., +)
1= {simple + closure}
1> STASH
1= '+

(REBIND VAR BIND ENV)

(SET

Modifics the environment designated by Env to contain a binding of the internal structure
designated by var to the internal structure designated by s1np. If the structure designated by
vAR is alrcady bound, that binding will bc modified in place; if not, a new binding of the
structure designated by vAr to the structure designated by 81np will be added to the foot of
the environment designated by evv.  Environments gencrated by the 3-LISP processor consist
only of atoms bound to normal-form structures, so that var should designate an atom and
BInND a normal-form internal structure if Env is intended to continue to designate a well-
formed 3-LISP cnvironment.  Returns 'Ok,

&-Type: [ STRUCTURES X STRUCTURES X SEQUENCES ] — ATOMS Properties: Cons; smash.

Examples:  (LET [LENV [['X *1] ['Y '211]]
(BLOCK /REBIND 'Y t(+ 2 3) ENV)
(REBIND 'Z '$T ENV)
ENV)) = [['X '1] ['Y '8] ['Z '$T]]

VAR BINDING)
SET alters the current environment’s binding of the atom var to be the result of normalizing

" gInpInNG (in the current environment). Note that the first argument, vAR, is not normalized.

Returns 0K,

" Propeérties: Smash-cnv; abnormal.

Examples: 1> (SET X (+ 2 2))
" 1= '0K
DX
1= 4
1> (SET X (+ X X))
1= '0K
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(SETREF VAR BINDING)
SETREF is a variant of SET in which both VAR and BINDING arc normalized. Reiurns ‘ox,
Properties: Smash-cnv.
D-Type: [ ATOMS X OBJECTS ] — ATOMS Properties: Smash-eny,
IExamples: 1> (SET X 'y)
1= '0K
1> (SETREF X (* 2 2))
1= '0K
1y
1= 4
(BINDING VAR ENV)
Designates the binding of the internal structure designated by vaRr in thc cnvironment
designated by env.  The 3-LISP processor will, on its own, only cstablish normal-form
bindings for atoms, so vAr should designate an atom unless the user provides his or her own
environment structure (in which casc 8INDING can be used as a 3-LISP analog of LISP 1.5's

ASSOC).
®-Type: [ STRUCTURES X SEQUENCES ] — STRUCTURES Properties: Kernel.
Examples: (BINDING 'Y [['X '1] ['Y '2] ['Z '3]]) => '2

(BINDING 'NORMALIZE GLOBAL) .=> '{simple NORMALIZE closure}
(LET [[X (+ 1 2)]]
({LAMBDA REFLECT [ARGS ENV CONT]
(CONT (BINDING 'X ENV))))) = 3
(BIND PATTERN ARGS ENV)

Designates an environment obtained by augmenting the environment designated by env with
the variable bindings that result from the matching of the pattern structure designated by
PATTERN against the argument structure designated by ArGs. A pattern consisting of a single
atom will match any argument structure directly; this results in the atom becoming bound to
the entire argument structure. This basic matching process is extended to rail patterns in the
usual way: pattern and argument rails must match on an clement by clement basis. The
designator of the old cnvironment is always a tail of the result.

@-Type: [ STRUCTURES X STRUCTURES X SEQUENCES ] — SEQUENCES Properties: Kerncl; cons.

Examples: (81ND 'X '2 [['Y '1]]) = [['X '21['Y "11]
(BIND '[X] '[2] [['Y '11]) = [['X '2] ['Y "1]]
(BIND *[X] '*[2] [['Y '1]1) = [['%x ""2]['Y '1]]
(BIND *[x Z] '[2 3] [['Y '11]) = [['X '2] ['Z '3]['Y '1]]
(BIND ‘[X Y] '[[2] 3] [['Y "1]]) = [['x '[2]] ('Y '3]['Y '1]1]
(BIND '[X Z ‘(2 {331 [['Y "111) = [L'X 2] ['Z "3] ['Y '1]]
(BIND '[X] '27[['Y "11]) =>  {ERROR}
(BIND "{X] "''[2] [['Y "11D) =  {ERROR
(BIND "(A". B) '(1 . 2) [['Y '1]1) =  (ERROR}

(LET [[P1 E1] .. [Px Ex]] BODY)
Designates the designation that sopy has in an cnvironment which is like the current
cnvironment except cxtended by matching the patterns p, to the resuits of nonmnalizing the
expressions £; in cnvironment the current environment.  In other words all of the g, arc
normalized in the same cnvironment. 1t can be determined (because of the way in which
rails are normalized) that the £, will be normalized sequentially, but it is considered bad
programming practice to depend on this fact (only srock should be uscd for cxphc:t
_ scquential  processing). : : '

Properties: Kcernel; env; abnormal,

Macro: (LET [[P, E;] .. [P, E(]] BODY)
=> ((LAMBDA SIMPLE [P, .. P,] BODY) E, .. E;)
Iixamples:  (LET [[X 3] [Y 4]] (+ X Y)) = 7

(LET [[[A B] (REST [1 2 3])]1 (+ AB)) = 5
(LET [[X 377
(LET [[X 47 [Y X1 (+ X V))) = 7
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(LETSEQ [[P1 E1] ... [Px Ex]] BODY)
LETSEQ is like LET cxcept that each cxpression £y, is normalized in the environment that
results from cxtending the previous cnvironment with the results of matching pattern p,
against the normalization of E,.
Properties:  Env; abnormal.

Macro: (LETSEQ [[P, EJI[P, E»1 ... [P, Ei]1] BODY)
=> (LET [[P; E;]]
(LETSEQ [[P; E;] ... [Pc E 1] BODY))
Examples:  (LET [[X 311
(LETSEQ [[X 41 LY X]]1 (+ X Y))) = 8

(LETREC [[V; E1] ... [Vk Ex]] BODY)
Iike LET and LETSEQ cxcept that cach cxpression E, is normalized in the cnvironment that
results from extending the original cnvironment with the results of binding all of the
variables v, against the normalizations of their e,
Properties:  Env; abnormal.
Macro: (LETREC [[V, E,I[V; E,] .. [V« E,]] BODY)
=> (LET [[Vy 'HUCAIRZ]J[P, 'HUCAIRZ] .. [V, 'HUCAIRZ]]

(BLOCK (SET V, E;)
(SET V, Ej)

(SET V, Ey)
BODY))
Fxamples: (LETREC [[EVEN (LAMBDA SIMPLE [N]
(IF (= N 0) $T (0DD (1- N))))]
[ODD (LAMBDA SIMPLE [N]
(IF (= N 0) $F (NOT (EVEN N))))]]
(SCONS (EVEN 2) (0DD 2))) = [$T $F]
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4.c9. CONTROL

(EF PREM C; C2)

(IF PREM Cq C2)
Both (1F PREM €, C,) and (EF PREM C, C,) designate the referent of ¢, or ¢, depending on
whether prRem designates true or false, respectively.  In the case of 1F, ¢, (¢,) is normalized
only if prEm designates true (false), whercas eF is fully (procedurally) extensional.
&-Type: [ TRUTH-VALUES X OBJECTS X OBJECTS ] — OBJECTS
Properties: Primitive (eF only): kernel; abnormal (1F only).

Ixamples: 1> (IF (= 1 1) 'A '8)
1= 'A

1> (IF (= 1 2) 'A 'B)
1= 'B
1> (EF (= 1 2)
(PRINT-STRING "Hello" PRIMARY-STREAM)
(PRINT-STRING "Good-bye" PRIMARY-STREAM)) Hello Good-bye
1= '0K
1> (IF (= 1 2)

(PRINT-STRING
(PRINT-STRING

"Hello" PRIMARY-STREAM)

“Good-bye" PRIMARY-STREAM)) Good-bye
1= '0K

1> (EF [] 'A 'B)

ERROR: Truth value expected.

(COND [Py €17 ... [Px Ck])

Designates ¢ for the least 7 such that p; designates true. Only pq, Py, ... P; and C; are
normalized.  Error if no p; designates true, or some py doesn't designate a truth value.

Properties: Kernel; abnormal,

Examples: 1> (COND [(= 1 2) 10]

[(=13) 20]
[(=11)30]
[$T 40])

1= '30 :

1> (COND [(= 1 2) (PRINT '10 PRIMARY-STREAM)]
[(= 1 3) (PRINT '20 PRIMARY-STREAM)]
[(= 1 1) (PRINT '30 PRIMARY-STREAM)]
[T (PRINT '40 PRIMARY-STREAM)]) 30

1= '0K

(BLOCK Cj ... Cy)

The results of normalizing ¢; through ¢y .1 arc discarded, and the result of normalizing ¢y is
returned.  Note that ¢, is normalized tail-recursively with respect to the BLOCK.

&-Type: [ {OBJECTS}* X OBJECTS ] — OBJECTS

Ixamples: 1> (BLOCK 1 2 3)

1= 3

1> (BLOCK (PRINT-STRING "2 " PRIMARY-STREAM)
(PRINT-STRING "+ " PRIMARY-STREAM)
(PRINT-STRING "2 " PRIMARY-STREAM)
"OONE) 2 + 2

= 'DONE

"(CATCH () '

| Declaratively speaking, catcH designates the
‘ to. However, if (THROW E) is normalized in

identity function — it returns what ¢ normalizes
the process of normalizing ¢ (and assuming that

there are no intervening catcHes) the result of normalizing £ is immediately returned as the

! result . of thce enclosing (CATCH C).
‘ o-Type: [ OBJECTS ] — OBJECTS
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Lxamples:

(THROW ()

Causes the result of normalizing ¢ to be returned immediately as the result of the most
recently exccuted enclosing carcn. ‘The current reflective level is abandoned if there is no

1> (CATCH (+ 2 2))
1= 4 :
1> (CATCH (+ 2 (THROW 3)))
1= 3
1> (CATCH
(BLOCK (THROW (+ 3 3))
100))

cnclosing CATCH.
Properties: (Hairy).

I'xamples:

(DELAY ()
Defers the

1> (CATCH (BLOCK (PRINT-STRING "-2 " PRIMARY-STREAM)
" (PRINT-STRING "-1 " PRIMARY-STREAM)

(THROW 'BLAST-OFF)

(PRINT-STRING "1 " PRIMARY-STREAM)

(PRINT-STRING "2 " PRIMARY-STREAM))) -2 -1
1= 'BLAST-OFF R
1> (CATCH (+ (CATCH (* 5 3))

(THROW (* 6 (THROW 4)))))

1= 4 ‘
1> (THROW (+ 2 2))
2= '4

normalization of ¢ by cmbedding it in a LAMBDA expression.

Properties: Abnormal.

Macro:
Examples:

(FORCE C)
Causcs the
IExamples:

(DELAY C) => (LAMBDA SIMPLE [] C)

1> (SET X (DELAY (* Y Y)))
1= '0K
1> (SET Y 7)
1= 0K
1> (FORCE X)
1= 49
1> (SET Y 9)
1= '0K
1> (FORCE X)
1= 81
1> (DEFINE NEW-IF
(LAMBDA MACRO [P C1 C2]
“(FORCE (EF ,P (DELAY ,C1) (DELAY ,C2)))))
1= "NEW-IF :
1> (NEW-IF (= (+ 2 2) 4)
(PRINT 'YES PRIMARY-STREAM)
(PRINT 'NO PRIMARY-STREAM))
YES
1= '0K

normalization of the peiaved cxpression designated by c.
1> (SET X (DELAY (PRINT-STRING GREETING PRIMARY-STREAM)))
1= '0K

1> (SET GREETING "Hi there")

1= '0K
1> (FORCE X) Hi there

1= '0K — :
1> (SET GREETING "Good-bye")
1= '0K

1> (FORCE X) Good-bye

1= '0K
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(SELECT INDEX [Mg C1] ... [Mx Ck])

(SELECTQ INDEX [M1 C1] ... [Mx Ck])
SeLecTQ allows one of several clauses (the ¢;) to the processed based upon the designation of
INDEX. The M, arc tested from left to right, stopping as soon as a clause is sclected. If M, is
an atom, the I'th clause will be sclected if the selector designates this atom; if M, is a rail, the
Ith clausc will be selected if the selector is a member of this rail; otherwise, M; should be
the boolcan $1 which will always be sclected, if given half a chance.  Error if no clause is
sclected. SELECT is similar except that the selection is based on the designation of M, instead
of the unnommalized structure.

Properties: Abnormal.

Macro: E.g. (SELECTQ INDEX
[A €]
[[A1 ... AN] C;]
[$T )
=>
(LET [[{selector} INDEX]]
(COND [(= {selector} 'A) (]
[(MEMBER {selector} '[Al ... AN]) C.]
(ST 1))
Example: 1> (DEFINE ACTIVITY
(LAMBDA SIMPLE [DAY]
(SELECTQ DAY
[SUNDAY ‘'SLEEP]
[[MONDAY THURSDAY] 'WORK]

[ST 'RUMINATE])))
= 'ACTIVITY ~

1> (ACTIVITY 'SUNDAY)
= "SLEEP

1> (DEFINE ACTIVITY-2
(LAMBDA SIMPLE [DAY]
(SELECT DAY
['SUNDAY 'SLEEP]
[[ 'MONDAY 'THURSDAY] 'WORK]
. [ST 'RUMINATE])))
1= 'ACTIVITY-2

1> (ACTIVITY-2 'THURSDAY)
1= 'WORK

(DO [[VAR; INITy NEXT4] .. [VARx INITy NEXTy]]

[[EXIT-TEST; RETURN;1] .. [EXIT-TEST; RETURN;]]

BODY)

po is a gencral-purposc iteration opcrator (taken from SCHEME, and gencralized from
MACLISP and ZETALISP). 'The variables var, through vag, arc initially bound to the results
of normalizing the expressions INIT, through InIT, (these "initializing” cxpressions are
normalized scquentially, but all of them arc normalized before any of the bindings are
cstablished). Then cach of the exrr-r1est; arc processed in order; if any is true, the
corresponding expression RETURN, is processed, with the result of that reTurn, being returned
as the result of the entire po form. If nonc of the tests are true, 8ooy is processed (result
ignored), and the variables vaRr, through var, arc bound.to the results of processing NEXT,-
through wnex7,, and the process repeats. ‘The wexr; arc normalized in an cnvironment in
which all of the var, remain bound to their previous bindings. 800y may be omitted.

Properties: Abnormal; cnv,
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Macro: (DO [[VAR; INIT{ NEXT1] .. [VARg INIT NEXTy1]
[[EXIT-TESTy RETURN1] ... [EXIT-TESTj RETURN;]]
BODY)
=)
(LETREC
[[{1o0p}
(LAMBDA SIMPLE [VARj ... VARy]
(COND [EXIT-TEST3 RETURN;]
[EXIT-TEST; RETURNj]
[$T (BLOCK BODY ({loop} NEXTi .. NEXT))IN1]
({toop} INITy .. INITk))
Example: 1> (DEFINE NEW-REVERSE
(LAMBDA SIMPLE [VEC]
(DO [[V VEC (REST V)]
[R ((VECTOR-CONSTRUCTOR VEC)) (PREP (1ST V) R)]]
[L[(EMPTY V) R]])))
1= 'NEW-REVERSE
1> (NEW-REVERSE "Rogatien")
1= "neitagoR"
4.¢c.10. TRUTH VALUE OPERATIONS
(NOT E)
True if £ designates false, and falsc if £ designates true.
&-Type: [ TRUTH-VALUES ] — TRUTH-VALUES
Iixamples:  (NOT $F) =>  $T
(NOT (EVEN 102)) =>  $F
(NOT 1) =>  (ERROR: Truth value expected.}
(AND E; E» ... Eg)
(OR Eg Ep ... Ex)
(AND E; E, .. E) is truc just in casc all the g, are fruc: (OR E, E, .. E) is truc just in case

at lcast one of the g, is true.

(OR) recturns $F.

d-Type: [ {TRUTH-VALUES}* ] — TRUTH-VALUES

FExamples:

(AND (= 1 1) (= 1 2)) = $F
(OR (= 10) (=12) (=1 1)) = $T
(AND) = §T
(OR) = §F

(LET [[X 317
(BLOCK™ (AND (= 1 2)
: (BLOCK (SET X 4) $T))
X))

Y

4.c.11.  STRUCTURAL - SIDE - EFFECTS -~ -

(REPLACE S; S3)

Replaces the pair, rail, atom, or closure designated by s, with the structure of the same type
designated by S, Returns ok (thercfore it will typically be used only within the scope of a
BLOCK); however, subsequent to its exccution the ficld will be altered in such a way that every
relationship in which the designation of s; participated will be changed to have the
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designation of s, as its participant (with the consequence that the designation of s, becomes
henccforth inaccessible).  RepLACE is not defined over the other internal structure types:
numerals, charats, strcamers, or handles. REPLACE is a very dangerous operation that should
be used with extreme caution.

o-Types: [ PAIRS X PAIRS ] — ATOMS Properties: Primitive; smash.
[ RAILS X RAILS ] — ATOMS
[ CLOSURES X CLOSURES ] —> ATOMS
[ ATOMS X ATOMS ] — ATOMS
Examples:  (LET {[X '(+ 2 3)]]
(BLOCK (REPLACE (CDR X) '[20 30])
X)) = '(+ 20 30)

(LET TTX *[]]]
(BLOCK (REPLACE X '[NEW TAIL])

X)) = [NEW TAIL]

(LET [[X '[A1 A2]]]

(BLOCK (REPLACE 'Al 'A2 )
. X)) = '[A2 A2]
(RPLACA PAIR NEW-CAR)
(RPLACD PAIR NEW-CDR)

RPLACA (RPLACD) alters the pair dcsignatcd by paIr, making its CAR (CDR) be the internal
structurc designated by wNeEw-CAR (NEW-CDR). Rcturns 'OK.

d-Types: [ PAIRS X STRUCTURES ] — ATOMS Properties: Smash,
Examples: 1> (SET X '(A . B))
1= '0K
1> (SET Y X)
1= '0K
1> (RPLACA X 'C)
1= ‘0K
X
1= '(C . B)
DY
1= "(C . B)

(RPLACN N RAIL NEW-ELEMENT)

RPLACN alters the rail designated by rAIL, making its ath componcnt be the internal structure
designated by NEw-ELEMENT. '0K is recturncd.

&-Types: [ NUMBERS X RAILS X STRUCTURES ] -» ATOMS Properties: Smash.
Fxamples: 1> (SET X '[ONE TWO THREE])
1= '0K

1> (SET Y (REST X))
1= '0K .
1> (RPLACN 2 X '**)
1= ‘0K

1> X

1= '[ONE ** THREE]
Y

1= '[** THREE]

(RPLACT N RAIL NEW-TAIL)
(RPLACT N RAIL NEW-TAIL) rcplaces (using REPLACE) the nth TAIL of the rail designated by
RAIL with the rail designated by wnew-rAIL.  Returns 'ok. ‘

o-Types: [ NUMBERS X RAILS X RAILS ] — ATOMS Properties: Smash.
IExamples: 1> (SET X '[ONE TWO THREE])
1= '0K

1> (SET Y (REST X))
1= ‘0K

1> (SET Z (REST Y))
1= '0K
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1> (RPLACT 1 X '[N
. [END])

1= '0
X

1= '[ONE END]
Y

1= '[END]
1z

1= '[THREE]

4.c.12. LEVEL CROSSING OPERATORS

(UP 8)

*S

Designates the form to which s normalizes. *+s' expands to (up s) in the standard notation
Note that up, although it is not a reflective procedure, is nonetheless not strictly extensional,
since what it designates is a function not only of its arguments’ designation, but also of its
argument's procedural consequence (what it returns).

&-Type: [ OBJECTS ] — STRUCTURES Properties: Primitive; kernel.
Examples: +5 = 'B
1(+ 2 3) = '§
t(LAMBDA SIMPLE [X] X) = '{closure: SIMPLE {global} [X] X}
['(=23) (=2 3)] = ['(=23) '$F]
(LET [[X [2 331]
(= X [23])) = §T
(LET [[X [2 3]]]
(= tXx *[273])) = $F
(DOWN S) '
S

If s designates R — a normal-form designator — then (powN £xp) will normalize to R. 4§
cxpands to ‘(powx S)' in the standard notation, '
&-Type: [ STRUCTURES ] — OBJECTS - Properties: Primitive; kernel.

Examples: 44 . = 4
(NTH 2 '[10 20 30]) = 20
3. => {ERROR: Structure expected.}
187 = 8T .
'X =>  {ERROR: Not a normal form structure.}

(REFERENT EXP ENV)

If exp designates R and R normalizes to R’ in the cnvironment designated by env, then
(REFERENT EXxP ENV) will return R'. Thus REFERENT can obtain the rcferent of any structure,
whereas DowN is restructed to normal-form structures.

o-Type: [ STRUCTURES X SEQUENCES ] —» OBJECTS

Properties: (Arbitrary cffcects due to sub-normalization).

Examples: (REFERENT '1 GLOBAL) = 1
(REFERENT "X [['X '11]) = 1
(REFERENT "'(+ 2 2) [ = '(+22

(REFERENT (PCONS '+ '[2 2]) GLOBAL) => 4 ..
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4.c.13. SYSTEM UTILITIES

(VERSION)
Designates a character string that identifics the 3-LISP implementation.
o-Type: [ ] — SEQUENCES
Example: 1> (VERSION)

1= "3-LISP version AQOO. iay 1, 1983"

(LOADFILE FILENAME)
Loads 3-LISP definitions from the file with the same spelling as the atom designated by
FILenaMe,  ‘These definitions, which are stored as character strings, arc stuffed into the
primary strecam so that subsequent ReAbs will sce them. Returns 'ok. (This is an interim
mechanism; work is under way in providing a more rcasonable means of saving and loading
input files.)
o-Type: [ ATOMS ] — ATOMS Properties: Primitive; 1/0.

Fxample: 1> (LOADFILE 'MY-FILE)
= '0K
(... contents of file MY-FILE arc read in at this point.)

(LOAD FILENAME)
A variant of roaprILE that docs not normalize its argument.
Properties: Abnormal; [/0.

Macro: (LOAD FILENAME) => (LOADFILE 'FILENAME)
Example: 1> (LOAD MY-FILE)
= '0K

(... contents of file MY-FILE are read in at this point.)

(EDITDEF PROCNAME)
Every timc a character string of the form ‘(DEFINE FOO FUM)Y or ‘(SET FOO FUM)’ are
encountered by ReAD, the string is remembered with the atom foo.  Anytime later,
(EDITDEF 'fFo0) will retrieve this string so that it can be edited (with INTERLISP-D' TTYIN).
Upon completion of cditing, the string is qucued for Reap, just as is donc when a file is
roancd. Returns 'ok. Note that the code for the standard procedures can be accessed in this
manner.  (This too is an interim mechanism; work is under way in providing a more
rcasonablc means of cditing 3-LISP code.) :
O-Type: [ ATOMS ] — ATOMS Properties: Primitive; 1/0,
Ixample: 1> (EDITDEF 'F00)

(... the text string definition of Foo is displayed for editing.)

(EDIT PROCNAME)
A variant of epITpeF that docs not normalize its argument.
Properties: Abnormal; 170.
Macro: (EDIT PROCNAME) => (EDITDEF 'PROCNAME)

Fxample: 1> (EDIT NORMALISE)
(... the text string definition of NORMALIZE is displayed for cditing.)
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4.c.14. INPUT and OUTPUT

PRIMARY-STREAM
Designates the primary input-output stream through which all communic
that only characters can be rcad from or written to this stream,
@-Type: STREAMS

Examples:  PRIMARY-STREAM = {streamer}
(TYPE PRIMARY-STREAM) =  'STREAM

(INPUT STREAM)

Designates the next item in the stream designated by s. Tt should be assumed that s is side-
effectcd by this operation.

ation is donc. Note

Properties: Variable,

&-Type: [ STREAMS ] — OBJECTS Properties: Primitive; 1/0,
Examples: 1> (INPUT PRIMARY-STREAM) ?

1= #?7

1> [(INPUT PRIMARY-STREAM) (INPUT PRIMARY-STREAM)] 0z

1= "0z" ‘

(OUTPUT S STREAM)

Puts the structure designated by s into the strcam designated by STREAM. Returns 'oxk. It
should bc assumed that sTream is sidc-cffected by this operation.

&-Type: [ OBJECTS X STREAMS ] — ATOMS Properties: Primitive; 170.
Examples: 1> (OUTPUT #? PRIMARY-STREAM) 2

1= '0K

1> [(OUTPUT #0 PRIMARY-STREAM) (OUTPUT #z PRIMARY-STREAM)] Oz

1= "0K ;

(NEWLINE STREAM)
Outputs a carriage rcturn character to the strcam designated by STReaM. Returns 'OK,
o-Type: [ STREAMS ] — ATOMS Properties: 1/0.

Examples: 1> (BLOCK (NEWLINE PRIMARY-STREAM)
(OUTPUT #7 PRIMARY-STREAM))

z
1= '0K
(PROMPT&READ N STREAM)
Outputs a level ¥ input prompt to the stream designated by STREAM, READS an cxpression from
that strcam, and returns a designator of that cxpression.

@-Type: [ NUMBERS X STREAMS ] - STRUCTURES Properties: 1/0.
Examples: 1> (PROMPT&READ 100 PRIMARY-STREAM)

100> Hello

1= "HELLO

‘(PROMPTZREPLY ANSWER N STREAM)

PRINTS the structure designated by AwnSWER, preceded by a level ¥ output prompt, to the
strcam dcsignated by STReAM.  Returns ‘oK.

&-Type: [ STRUCTURES X NUMBERS X STREAMS ] —- ATOMS Properties: 1/0.

Fxamples: 1> (PROMPT&REPLY 'HELLO 100 PRIMARY-STREAM)
100= HELLO
1= 0K
1> (PROMPT&REPLY (PROMPT&READ 15 PRIMARY-STREAM) 15 PRIMARY-STREAM))
15> (+ 2 2) _
16= (+ 2 2
1= '0K
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(PRINT-STRING STRING STREAM)

outpuTs the character in the string designated by STRING to the stream designated by STREAM.
Returns 'ok.

®-Type: [ SEQUENCES X STREAMS ] — ATOMS Properties: 1/0.
Fxamples: 1> (PRINT-STRING "Hello there" PRIMARY-STREAM) Hello there
1= '0K

(READ STREAM)

READ parscs and internalizes a character sequence notating a 3-LISP structure and returns a
handle to that structurc. The sequence of characters is obtained from the strcam designated
by sTreaMm. Note that all pairs and rails accessible from the result were previously completely

inaccessible.
®-Type: [ STREAMS ] — STRUCTURES Properties: 1/0; cons. (Not currently explained.)
Examples: 1> (READ PRIMARY-STREAM) (A . B)

1= (A . B) :

1> (READ PRIMARY-STREAM) 'ST

1= 8T

(PRINT S STREAM)

PRINT cxternalizes the structures designated by § and scnds the sequence of character to the
strcam dcsignated by sTrReaM.  Returns ‘oK.

o-Type: [ STRUCTURES X STREAMS ] — ATOMS Properties: 1/0; cons. (Not currently explained.)
Ixamples: 1> (PRINT '(A . B) PRIMARY-STREAM) (A . B)

1= '0K
1> (PRINT ''$T PRIMARY-STREAM) ‘ST
1= '0K

(INTERNALIZE STRING) .

STRING is taken as designating a character sequence that notates some 3-LISP structure,
INTERNALIZE rcturns a handle to this structure. Note that all pairs and rails accessible from
the result were previously completely inaccessible.

&-Type: [ SEQUENCES ] — STRUCTURES Properties: Cons. (Not currently implemented.)
Examples: 1> (INTERNALIZE "(A . B)")

1= '(A . B)

1> (INTERNALIZE (PREP #' "$T"))

1= 'S8T

(EXTERNALIZE S)

The internal structure designated by s is converted to a character string that would notate
this structure (up to structurc isomophism). The result designates this character sequence.
Note that some structurcs, such as circular rails, will usually causc this procedure to loop
indcfinitely.

&-Type: [ STRUCTURES ] — SEQUENCES Properties: Cons. (Not currently implemented.)

Examples: 1> (EXTERNALIZE '(A . B))
1= "(A . B)" ‘
1> (2ND (EXTERNALIZE ''$T))
1: nsn
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4.c.15. OTHER GENERAL UTILITIES

(ID E)
ID designates the single argument identity function. (Ip £) returns what £ normalizes to
&-Type: [ OBJECTS ] -> OBJECTS
Fxamples: (1D 3) = 3
(ID (+ 2 2)) = 4
(ID *(+ 2 3)) = '(+ 2 3)
(10 1D) => {simple ID closure}

(ID* Eg Ep ... Ex)
1D* designates the multi-argument identity function. (1p* . £) returns what £ normalizes to.
o-Type: OBJECTS — OBJECTS

Examples:  (1D* 3) = [3]
(ID* (+ 2 2) (TYPE '1)) = [4 'NUMERAL]
(ID* " (+ 2 3)) = ['(+ 2 3)]
(1D* . GLOBAL) = {global}
(ID* . (+ 2 2)) = 4

(MACRO-EXPANDER FUN)

Fun must normalize to a closure that was gencrated with macro. Designates a function that
will perform the macro cxpansion cntailed in normalizing a call to Fum

o-Type: [ FUNCTIONS ] — FUNCTIONS :
Examples:  ((MACRO-EXPANDER DELAY)
"[(FOO X)1) =5 '(LAMBDA SIMPLE [] (FOO X))
((MACRO-EXPANDER LET)
[LLX 11 (+ X 2)]) => '((LAMBDA SIMPLE [X] (+ X 2)) 1)

(QUOTE EXP)
Returns a designator of the structurc exp. Notc that Quote docsn’t normalize its argument.
(It is interesting to sece what happens when QuUoTE is used as a functional argument; other
than that, quoTe is ncver rcally nceded since the 3-LISP structural ficld provides this
capability via handles.)
Properties:  Abnormal.

Lxamples:  (QUOTE 2) = '2
'2 = ,2
(QUOTE (+ 2 2)) = '(+ 2 2)
(+ 2 2) = '(+ 2 2)
(NORMALISE 'A [] QUOTE) => '(BINDING EXP ENV)
(MAP QUOTE [1 27) = ['(1ST (2ND ARGS)) '(1ST (2ND

ARGS))]
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4.c.16.

PROCESSOR

(NORMALIZE EXP ENV CONT)

Normalizes the structure designated by exp in the environment dwgnatcd by ewnv with
continuation designated by cowvt. Under normal circumstances, the normal-form designator
that results from this normalization will be passed as the single argument to the continuation.
Error if exp does not designate a structure.

o-Type: [ STRUCTURES X SEQUENCES X FUNCTIONS ] — OBJECTS  Properties: Kernel; CPS.

Examples:  (NORMALIZE '1 [] ID) = '
(NORMALIZE X [['X '17]] ID) = 1
(NORMALLZE '(+ 2 2) GLOBAL 1D} => '4
(NORMALIZE '+ GLOBAL QUOTE) => '(BINDING EXP ENV)
(NORMALIZE '$T GLOBAL QUOTE) = 'EXP

(REDUCE PROC ARGS ENV CONT)

Reduces the referent of the structure designated by proc with the referent of the structure
designated by ArGs in the environment designated by env with continuation designated by
cont. Under normal circumstances, the normal-form designator that results from this process
will be passed as the single argument to the continuation.

o-Type: [ STRUCTURES X STRUCTURES X SEQUENCES X FUNCTIONS ] — OBJECTS
Properties: Kernel; CPS.

Fxamples: (REDUCE '+ '[2 2] GLOBAL ID) = '4
(REDUCE 'TF '[$T 1 2] GLOBAL ID)=> '1
(REDUCE '+ '[2 2] GLOBAL
(LAMBDA MACRO [X] 1X)) => 't(¢PROC! . ARGS!)

(NORMALIZE~RAIL RAIL ENV CONT)

Normalizes the rail designated by RrAIL in the cnvironment dcmgnatcd by Eenv with
continuation designated by convr. Under nommal circumstances, the normal form rail that
results from this processing will be passed as the single argument to the continuation.

o-Type: [ RAILS X SEQUENCES X FUNCTIONS ] — OBJECTS Properties: Kernel; CPS.
Examples:  (NORMALIZE-RAIL '[1] [] 1D) = '[1]
(NORMAL TZE~-RAIL '[X X] [['X '171 1D) = '[1 1]

(NORMALIZE-RAIL '[(+ 2 2)] GLOBAL ID) = '[4]
(NORMALIZE-RAIL '[+] GLOBAL
(LAMBDA MACRO [X7] +X)) => "(PREP FIRST! REST!)
(NORMALTZE-RAIL '[] GLOBAL
b3

(LAMBDA MACRO [X] X)) ' (RCONS)

(READ-NORMALIZE-PRINT LEVEL ENV STREAM)

Starts a READ, NORMALIZE, PRINT loop with ewv designating the initial environment. STREAM
designates the stream through which this driver loop communicates; the designation of LEVEL .
is used as a (hopcfully unique) identifying prompt.  Under normal circumstances, READ-
NORMALIZE-PRINT will not terminate.

d-Type: [ OBJECTS X SEQUENCES X STREAMS.] — OBJECTS Properties: CPS.
Iixamples: 1> (READ-NORMALIZE- PRINT "NEW GLOBAL PRIMARY-STREAM)
. 'NEW> (+ 2 2)
"NEW= 4

'NEW> ; This level is just as good as the old one.
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(NORMAL S)
True just in casc § designatcs a normal-form internal structure.
®-Type: [ STRUCTURES ] — TRUTH-VALUES Properties: Kernel.
Examples:  (NORMAL '3) = $T
(NORMAL '(+ 2 3)) => §F
(NORMAL t(+ 2 3)) => §T
(NORMAL '[1 2 3]) = §T
(NORMAL '[1 2 A]) => SF
(NORMAL 'A) = §Ff
(NORMAL ''A) = 8T

(NORMAL-RAIL RAIL)
True just in case RAIL dcsignates a normal-form rail.

o-Type: [ RAILS ] — TRUTH-VALUES Properties: Kernel.
Fxamples:  (NORMAL-RAIL '[]) = $T :

(NORMAL-RAIL '[1 ST #C]) = $7

(NORMAL-RAIL '[1 2 A]) => $F

(PRIMITIVE CLOSURE)
True just in casc cLOSURE dcsignates onc of the thirty or so primitive closures; false

otherwise. :
@®-Type: [ CLOSURES ] — TRUTH-VALUES ~ Properties: Kernel.
Examples:  (PRIMITIVE 1+) = $T .
(PRIMITIVE TNORMALISE) => S§F
(PRIMITIVE *IF) = §F

PRIMITIVE-CLOSURES
This variable dcsignates the sequence of primitive closures.

o-Type: SEQUENCES Properties: Variable; kernel.
Fxamples:  (MEMBER tEF PRIMITIVE-CLOSURES) = $T -
(MEMBER +IF PRIMITIVE-CLOSURES) =>  $F
GLOBAL

This variable designates the global environment. The rail to which 6LoBAL is bound is shared
across all rcflective levels, and is a tail of the cnvironment designator capturcd in most
closures.

&-Type: SEQUENCES Properties: Variable.

Fxamples: 1> (DEFINE LAST
(LAMBDA SIMPLE [S]
(IF (UNIT S) (1ST S) (LAST (REST S)))))
= 'LAST
1> (SET XXXX ‘'[HORTUS SICCUS])
= '0K i
1> (BINDING 'XXXX GLOBAL)
= "'[HORTUS SICCUS]
1> (LAST GLOBAL)
= ['XXXX ''[HORTUS SISSUS]]
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H

(COND-HELPER ARGS ENV CONT)
(BLOCK-HELPER CLAUSES ENV CONT)
(AND-HELPER  ARGS ENV CONT)
(OR-HELPER ARGS ENV CONT)
These are auxiliary procedures used in the definition of conp, BLock, AND, and o,
respectively;  c.g., COND is defined as (REFLECTIFY COND-HELPER).
&-Type: [ STRUCTURES X SEQUENCES X FUNCTIONS ] — OBJECTS
Properties: Kerncl (COND-HELPER and AND-HELPER only); CPS; (smash; cons; [/0).

Lxamples:  (COND-HELPER '[[(= 2 2) 1][$T 2]] GLOBAL ID) = '2
(BLOCK-HELPER '[X X X] [['X '17] 1ID) = 1
(AND-HELPER '[(= 2 2) (= 3 3)] GLOBAL ID) = '$T
(OR-HELPER '[(= 2 2) (= 3 4)] GLOBAL ID) = '$T
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5. Running 3-LISP

In comparison to the LISP MACHINE LISP implementation of 3-LISP presented in the appendix of
[Smith 82a], the current implementation is a couple of orders of magnitude more cfficient. ‘This
version of 3-LISP is implemented in INTERLISP-D for the Xecrox 1100, 1108, and 1132 processors;
this scction cndcavors to explain to someone familiar with INTERLISP-D how to go about starting
up 3-LISP.

5.a. Starting Off

Restoring the 3-LISP SYSOUT file in the standard way will put you at the INTERLISP top level.
After connecting to your dircctory, you invoke the function 3-L1sP to get to the (level 1) 3-LISP top
Ievel.  lmportant note: You cannot mix INTERLISP and 3-LISP code; i.c this is not an cmbedded
implementation like, say, the original implementations of SCHEME.

5.b. Special Characters

In addition to the notational conventions cxplained in §3 the user must be aware of the following
special interrupt characters.

Character  In 3-LISP In_Interlisp
D¢ Hard reset to 3-LISP ‘1>’ top level. Hard resct to INTERLISP top level.
Y€ Exit to INTERLISP. Enter 3-LISP.

As mentioned in §3, the backslash character \' should be used in place of the down-arrow character
*4’. However, Xcrox 1100 scries keyboards do not have the back-quote character **’ — type the
tilde character ‘~’ instcad. ‘

5.c. Editing

The TTYIN package is used to read 3-LISP expressions, thereby providing parenthesis balancing and
the usual stable of input cditing capabilities (with the cxception of automatic (re-)formatting, which
docs not work properly duc to read macros).

Expressions of the from ‘(DEFINE Foo Expression)’ or ‘(SET Foo Expression)’ arc trcated spccially
by rean. When such an cxpression is encountered, it is saved in the INTERLISP world as the 3-
Lisp-FNS file package type definition of the literal atom named fFoo. The entire text of the
cxpression is saved cxactly the way it was cntered: a subscquent call to the 3-LISP primitive EDITDEF
(or eniT) redisplay the cxpression in the cditor window and open it up for cditing (again, with

~TTYIN). After the text in the window has been. fixed; a single well-formed 3-LISP expression is

qucucd for REap. The modificd cxpression is not automatically written back; what happens will
depend on whether the modified expression begins in 'DEFINE’ or "SET’. An cditing scssion can be
abandoned by using the D¢ interrupt; the modified cxpression will be discarded.

Important notc: Although the cditor window can be cnlarged, it cannot be scrolled. This imposes
an unfortunatc constraint on the length of one’s 3-LISP procedure definitions,
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5.d. Saving Your Work

An mentioned above, the INTERLISP file package type 3-L15P-Fns is used for recording the text
string definitions of 3-LISP variables that acquire their binding via perINE or SET. These definitions
can be assigned to files as per the normal INTERLISP mechanisms (c.g., CLEANUP, FILES?, cfc.).

The 3-LISP primitive LtoADFILE (or LOAD) is implemented with an INTERLISP Loap of the named file.
Once loaded, all 3-L1sp-£Ns contained on that file arc extracted and qucucd for rReap. (Note that it
is nccessary to conncct to the appropriate dircctory prior to doing a 3-LISP LoADFILE since the file
namec cannot contain special characters like ‘", ), ‘. or %)

5.e. A Word on Protection

The current implementation of 3-LISP protects itself from accidental damage by disallowing REPLACE
opcrations on all of the atoms, pairs, rails, and closurcs created as part of the standard system, The
onc cxception, of course, is the foot of the global environment rail, which must be repLACEable if
global sets and DEFINES arc to be possible. However, the text string definitions of the standard
procedurces arc nol profected since they play no cffectively connected role in the operation of the 3-
LISP processor. Since it is convenient to be able to consult the standard definitions from time to
time, and to clone them when a variant is required, it is best to avoid mangling them (i.c., always
lcave the editor via D¢ to cnsure that the modified definition is not saved).
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Appendix A. Standard Procedure Definitions

This appendix contains definitions for all of the standard procedures described in §4, and illustrates
the structure of the primitive closures, Some of the definitions given here (such as for LaMspa and
DEFINE) arc viciously circular, in that they use themsclves (the definition of pefFIng, for cxample,
starts out as (define DEFINE .. ), but these circular definitions are far more illuminating than the
code that is actually used to construct the appropriate closures. What is true about these definitions
is that once the procedurces arce defined, the definitions presented here will Ieave them semantically
unchanged.

The Reflective Processor (the "Magnificent Seven')

2 e (lambda simple [level env stream]

3 ieeei. (normalize (prompt&read level stream) env

L 2 (lambda simple [result] ; Continuation C-REPLY
b OO (block (prompt&reply result level stream)

O e (read-normalize-print level env stream))))))

T . (define NORMALIZE

. {(lambda simple [exp env cont]

| ST (cond [(normal exp) (cont exp)]

10 [(atom exp) (cont (binding exp env))]

[(rail exp) (normalize-rail exp env cont)]

[(pair exp) (reduce (car exp) (cdr exp) env cont)])))

13 ... (define REDUCE

14 ... (lambda simple [proc args env cont]

15 e (normalize proc env

16 .. (tambda simple [proc!] ; Continuation C-PROC!
17 e (if (reflective proc!) '

18 . (¥(de-reflect proc?) args env cont)

19 .. (normalize args env

20 (lambda simple [args!] ; Continuation C-ARGS!
2 OO (if (primitive proc!)

22 et te s st s b e sb e n e (cont t(dproct . dargs!))

23 et srinenenens (normalize (body proc!)

24 (bind (pattern proc!) args! (environment proc!))
y XS cont))) )N

26 ... (define NORMALIZE-RAIL ‘

27 ... (lambda simple [rail énv cont]

28 et (if (empty rail)

A" TN (cont (rcons))

30 .. w. (normalize (1st rail) env e

1 i (tambda simple [first!] ; Continuation C-FIRST!
32 : .. {(normalize-rail (rest rail) env

33 . (lambda simple [rest!] ; Continuation C-REST!
34 (cont (prep first! rest!)}}))))))
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Processor Utilities

(define NORMAL
(lambda simple [x]
(Tet [[tx (Lype x)]1]
(cond [(member tx ['atom 'pair]) $F]
[{(member tx [ 'numeral 'charat 'boolean 'handle
‘closure 'streamer]) $T7]
[(= tx 'rail) (normal-rail x)]))))

(define NORMAL-RAIL
(lambda simple [rail]
(cond | (emply rail) $T]
[(normal (1st rail)) (normal-rail (rest rail))]}

(3T $F1)))

(define PRIMITIVE
(lambda simple [closure]
(member closure primitive-ciosures)))

(set PRIMITIVE-CLOSURES
[r+ - t* t/ 1< 1> (= t>= tef riype treplace
tnth tempty ttail tlength trcons tprep tscons
tccons tprocedure-type tenvironment-designator
tpattern tbody tpcons tcar tcdr tacons tup tdown
tinput toutpul tloadfile teditdef])

(def ine BINDING
(lambda simple [var env]
(if (= var (lIst (1ist env)))
(2nd (1st env))
(binding var (rest env))) N

(define BIND
(lambda simple [pattern args bindings]
(cond [(atom pattern) (prep [pattern args] bindings)]

[ (handle args) (bind pattern (map up ‘args) bindings)]

[(and (empLy pattern) (empty args)) bindings]

[$T (bind (lst pattern)
(1st args)
(bind (rest pattern) (rest args) bindings))])))

(define REFLECTIVE
(Tambda simple [closure]
(= (procedure-type closure) 'reflect)))

(define DE-REFLECT
(tambda simple [closure]
(ccons 'simple
(environment-designator closure)
{(pattern closure)
(body closure))))

Naming and Procedure Definition

(def ine LAMBDA
“(lambda reflect [[kind pattern body] env cont]
(reduce kind t[tenv pattern body] env cont)))

(define SIMPLE
(lambda simple [def-env pattern body]
{(ccons 'simple def-env pattern body)))

(define REFLECT
(lambda simple [def-env pattern body]
Y(ccons ‘'reflect def-env ‘pattern body)))
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(define MACRO
(lambda simple [def-env pattern body]
((tambda simple [expander]
(Tambda reflect [args env cont]
(normalize (expander . args) env cont)))
{(simple def-env pattern body))))

(define REFLECTI
(tambda simple [def-env pattern body]
(lel [{fun (simple def-env pattern body)]]
(lambda reflect [args env cont]
(normalize args env
(lambda simple [args!]
(fun args! env cont)))))))

~

(define Y-OPERATOR
(lambda simpie [fun]
© {let [|ltemp (lambda simple 7 ?)]]
' (block (replace rtemp *{fun temp)) temp))))

(def ine Y*-OPERATOR
(lambda simple funs
(let [[temps (map (lambda simple [fun] (lambda simple 7 ?)) funs)]]
(map (lambda simple [temp fun]
(block (replace ttemp t(fun . temps)) temp))
{ Ltemps

funs))))

(define REFLECTIFY
(lambda simple [fun]
(reflect (environment-designator tfun) (pattern *fun) (body tfun))))

(define DEFINE
(lambda macro [label form]
“(block (set ,label (y-operator (lambda simple [,label] ,form)))
,tlabel)))

(define SET
(lambda reflect [[var binding] env cont]
(normalise binding env
(1ambda simple [binding!]
{block (rebind var binding! env)

(cont "*0K})))))

(define SETREF
(lambda reflect! [[var! binding!] env cont]
(block (rebind var binding! env)
(cont ''0K))}))

(define REBIND
(1ambda simple [var binding env]
(cond [(empty env) (replace tenv t[[var binding]])]
[(= var (Ist (1st env))) (rplacn 2 t(1st env) tbinding)]
[$T (rebind var binding (rest env))])))

(define LET
(tambda macro [1ist body]
‘((1ambda simple ,(map lst 1ist) - body) . ,{map 2nd 1ist))))

(define LETSEQ
(lambda macro [1ist body]
(if (empty list)
body
(lTet [.(1st Vist)] v . o
" (letseq ,{rest list) ,body)))))
(define LETREC '
(lambda macro [1ist body]
“((1ambda simple ,(map 1lst list)
(block
(block . ,(map (lambda simple [x] “(set . ,x)) Tist))
,body)) i
.,(map (lambda simple [x] ''?) 1ist))))
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Control Structure Ultilities

(define IF
(lambda reflect [args env cont]
((ef (rail args)
(lambda simple []
(normalize (1st args) env
(lambda simple [premise!]
(normalize (ef Ipremise! (2nd args) (3rd args))
env

cont))))
(lambda simple []
(reduce tef args env cont))))))

(def ine COND-HELPER
(tambda simple [clauses env cont]
(normalize (1st (Ist clauses)) env
{(lambda simple [premisel]
(if {premise!
(normalize (2nd (1st clauses)) env cont)
(cond-helper (rest clauses) env cont))))))

(define COND (reflectify cond-helper))

(define BLOCK-HELPER
(lambda simple [clauses env cont]
(if (unit clauses)
(normalize (1st clauses) env cont)
(normalize (1st clauses) env
‘(lambda simple 7
(block-helper (rest clauses) env cont))))))

(define BLOCK (reflectify block-helper))

(define DO
(lambda macro args
(let [[loop-name (acons)]
[variables (map 1st (1st args))]
[init (map 2nd (1st args))]
[next (map 3rd (1st args))]
[quitters (2nd args)]
[body (if (double args) '$T {(3rd args))]]
“(letrec
[[.1oop-name
(lambda simple ,variables
(cond
,(append quitters
[[$T (block ,body

(,7cop-name . , next))11) 1]
(.loop-name . , init)))))

(define SELECT
(1ambda macro args
(letseq
[{dummy (acons)]
[select-helper
(1ambda simple [[choice actvon]]
(cond [(ra1l choice) o . .
‘[(member ,dummy ,cho1ce) .action]]
[{not (boo]ean choice))
‘[(= ,dummy ,choice) ,action]]
[8T “[.choice ,action]]))]]
‘(let [[,dummy ,(1st args)]]
(cond . ,(map select-helper (rest args)))))))
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(define SELECTQ
(Tambda macro args
(letseq
[[dummy (acons)]
[selectqg-helper
(lambda simple {[choice action]]
(cond [(atom choice)
“[(= .dummy ,tchoice) ,action]]
[(rail choice)
“[(member ,dummy ,tchoice) ,action]]
[$T “[.choice ,action]]))]]
(let [[.dunmy ,(1st args)]]
(cond . ,(map selectq-helper (rest args)))))))

(define CATCH
(l1ambda reflect [[exp] env cont]
(cont (normalize exp env id))))

(define THROW
(lambda reflect! [[exp!] env cont] exp!))

(define DELAY
(lambda macro [exp]
*(lambda simple [] ,exp)))

(define FORCE
(lambda simple [delayed-exp]
(delayed-exp)))

Vector Utilities

(define 1ST (lambda simple [vector] (nth 1 vector)))
(define 2ND (lambda simple [vector] (nth 2 vector)))
(define 3RD (lambda simple [vector] (nth 3 vector)))
(define 4TH (lambda simple [vector] (nth 4 vector)))
(define 6TH (lambda simple [vector] (nth 5 vector)))
(define 6TH (lambda simple [vector] (nth 6 vector)))

(def ine REST (lambda simple [vector] (tail 1 vector)))

(define FOOT
(lambda simple [vector]
(tail (length vector) vector)))

(define UNIT
(l1ambda simple [vector]
(and (not (empty vector)) (empty (rest vector)))))

(define DOUBLE
(1ambda simple [vector]
(and (not (empty vector)) (unit (rest vector)))))

(define MEMBER
(1ambda simple [element vector]
(cond [(empty vector) $F]
[(= element (1lst vector)) $T]
[T (member element (rest vector))])))
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(define 1SOMORPHIC
(1ambda simple [el e2]
(cond [(not (= (type el) (type e2))) $F]
[(= el e2) §T]
[(rail etl)
(or (and (empty el) (empty e2))
(and (not (empty el))
(not (empty e2))
(isomorphic (1lst el) (1st e2))
(isomorphic (rest el) (rest e2))))]
[(pair el)
(and (isomorphic (car el) (car e2))
(isomorphic (cdr el) (cdr e2)))]
[(closure et)
(and (isomorphic (procedure-type el)
(procedure-type e2))
(isomorphic (pattern el) (pattern e2))
(isomorphic (body el) (body e2))
(isomorphic (environment-designator el)
(environment-designator e2)))]
[(handle el) (isomorphic ‘el {e2)]
(ST $F1)))

(define INDEX
(lambda simple [element vector]
(letrec
[[index-helper
(lambda simple [vector-tail pos1t1on]
(cond [(empty vector-tail) 0]
[{(= (1st vector-tail) element) position]
[$T (index-helper (rest vector-tail) (1+ position))]}))]1]
(index-helper vector 1))))

(define VECTOR-CONSTRUCTOR
(tambda simple [template]
(if (external template) scons rcons)))

(define XCONS
(l1ambda simple args
(pcons (1st args) (rcons . (rest args)))))

(define MAP
(lambda simple args
(cond [(empty (2nd args)) ({(vector-constructor (2nd args)))]
[(double args)
(prep ((1st args) (1st (2nd args)))
(map (1st args) (rest (2nd args)})))]
[$T (prep ((1st args) . (map ist (rest args)))
(map . (prep (1st args) (map rest (rest args)))))1)))

(define COPY-VECTOR
(lambda simple [vector]
(if (empty vector)
({vector-constructor vector))
(prep (1st vector) (copy-vector (rest vector))))))

(define CONCATENATE
(lambda simple [raill rail2]
(replace (foot raill) rail2)))

(define APPEND
(lambda simple [vectorl vector2]
(if (empty vectorl)
vector2
(prep (1Ist vectorl)
‘(append. (rest vectorl) vectorZ)))))

(define APPEND*
(1ambda simple args
(if (unit args)
(1st args)
(append (1st args) (append* . (rest args))))))
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(define REVERSE
(letrec
[[rev (lambda simple [vi v2]
(if (empty v1)

v2
(rev (rest vi rep (1

(lambda simple [vector] ) (prep (1st Yh v2)mig

(rev vector ((vector-constructor vector))))y)

(define PUSH
(lambda simple [element stack]
(replace tstack
t(prep element
(if (empty stack)
(scons)
(prep (1st stack) (rest stack)))))))

(def ine POP
(lambda simple [stack]
(let [[top (1st stack)]]
(block
(replace tstack t(rest stack))

top))))

Arithmetic Utilitics

(define 1+ (Tambda simple [n] (+ n 1)))
(define 1~ (lambda simpte [n] (- n 1)))

(define **
(tambda simple [m n]
(do [[i 0 (1+ )]
[a1(*am]]
[L(= i) alD))
(define REMAINDER

{lambda simple [x y]
(- x (* (/ xy) ¥y))))

(define ABS
{lambda simple [n]

(if (< n 0) (- n) n)))

(define MAX
(lambda simple numbers
(letrec
[[max2
(lambda simple [x y] (if (> x y) x y))]
[max-helper
(lambda simple [unseen-numbers maximum]
(if (empty unseen-numbers)
max imum
(max-helper (rest unseen-numbers)
(max2 maximum (1st unseen-numbers)))))]1]
(max-helper (rest numbers) (1st numbers)))))

(def ine MIN
(1ambda simplie numbers
{letrec
[[min2 )
(lambda simple [x y] (if (<& x y) x.¥))]
[min-helper
(1ambda simple [unseen-numbers minimum]
(if (empty unseen-numbers)
minimum
(min-helper (rest unseen-numbers)
(minZ minimum (1st unseen-numbers)))))]]
(min-helper (rest numbers) (1st numbers)))))

(define ODD (lambda simple args (not (zero (remainder n 2))))
(define EVEN (lambda simple args (zero (remainder n 2))) ‘

L
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(define NEGATIVE (lambda simple [n] (< n 0)))
(define NON-NEGATIVE (lambda simple [n] (>= n 0)))
(define POSITIVE (lambda simple [n] (> n 0)))
(define ZERO (lambda simple [n] (= n 0)))

Genceral Utilities

(define ATOM (lambda simple [x] (= (type x) ‘atom)))
(define RAIL (tambda simple [x] (= (type x) 'rail)))
(define PAIR (lambda simple [x] (= (type x) 'pair)))
(define NUMERAL (lambda simple [x] (= (type x) 'numeral)))
(define HANDLE (lambda simple [x] (= (type x) 'handle)))
(define BOOLEAN (lambda simple [x] (= (Lype x) 'boolean)))
(define CHARAT (lambda simple [x] (= (type x) 'charat)))
(define CLOSURE (lambda simple [x] (= (type x) ‘closure)))
(define STREAMER (lambda simple [x] (= (type x) 'streamer)))
(define NUMBER (lambda simple [x] (= (type x) 'number)))
(define SEQUENCE (lambda simple [x] (= (type x) 'sequence)))
(def ine TRUTH-VALUE (lambda simple [x] (= (type x) 'truth-value)))
(define CHARACTER (1ambda simple [x] (= (type x) 'character)))
(define FUNCTION (lambda simple [x] (= (type x) 'function)))
(define STREAM (lambda simple [x] (= (type x) 'stream)))

(define VECTOR
(lambda simple [x] (member (type x) ['rail 'sequencel)))

(define INTERNAL
(lambda simple [x]
(member (type x)
['atom 'rail 'pair 'numeral 'handle 'boolean 'charat
'closure 'streamer])))

(defxne EXTERNAL
(lambda simple [x]
(member (type x) ['number ’sequence 'truth-value 'character
'function 'stream]))) ‘

(define CHARACTER-STRING -
(lambda simple [s]
(cond [(or (not (sequence s)) (empty s)) $F]
[(and (unit s) (character (1st s))) $T]
[$T (and (character (1st s))
. (character-string (rest s)))])))

(define ENVIRONMENT
(lambda simple [closure]
Y(environment-designator closure)))

(define REFERENT
(1ambda reflect! [[exp! env!] env cont]
(normalize Yexp! Jtenv! cont)))

(define MACRO-EXPANDER
(lambda simple [macro-closure]
I(binding 'expander (environment tmacro-closure))))

(define ID (lambda simple [x] x))
(define ID* (lambda simple x x))

: (define QUOTE (lambda reflect [[a] e c] (¢ fa)))

(define RPLACT
(1ambda simple [n rail new-tail]
(replace (tail n rail) new-tail)))

(define RPLACN
(lambda simple [n rail new-element]
(replace (tail (- n 1) rail) (prep new-element (tail n rail)))))
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(define RPLACA
(lambda simple [pair new-car]
(replace pair (pcons new-car (cdr pair)))))

(define RPLACD
(lambda simple [pair new-cdr]
(replace pair (pcons (car pair) new-cdr})))

(define NOT (lambda simple [x] (if x $F $T)))

(define AND
(lambda reflect [args env cont]
(if (rail args)
(and-helper args env cont)
(normalize args env
(lambda simple [args!]
(and-helper args! env cont))))))

(define AND-HELPER
(lambda simple [args env cont]
(if (empty args)
(cont '3T)
(normalize (1st args) env
(lambda simple [premisel]
(if ipremise!
(and-helper (rest args) env cont)

(cont '$F)))))))

(define OR
(1ambda reflect [args env cont]
(if (rail args)
(or-helper args env cont)
(normalize args env
(lambda simple [args!]
(or-helper args! env cont))))))

(define OR-HELPER
(1ambda simple [args env cont]
(if (empty args)
(cont '$F)
(normalize (1st args) env
(1ambda simple [premisel]
(if {premise!
(cont '$T)

(or-helper (rest args) env cont)))))))

INTERIM 3-LISP REFERENCE MANUAL

Input / Ouput

(define READ (lambda simple [stream] (mystery)))

(define PRINT (lambda simple [x stream] (mystery)))
(define INTERNALIZE (lambda simple [x] (mystery)))
(define EXTERNALIZE (lambda simple [x] (mystery)))

(define PRINT-STRING
{1ambda simple [string stream]
(if (empty string)

(b1ock (output (1st string) stream)
(print-string (rest string) stream)))))

(def1ne NEWLINE
(1ambda simple [straam]
(output #
stream)))
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(define PROMPT&READ
(lambda simple [level stream]
(block (newline stream)
(print tlevel stream)
{(print-string "> " stream)
(read stream))))

(define PROMPT&REPLY
(lambda simple [answer level stream]
(block (print tlevel stream)
(print-string "= " stream)
(print answer stream))))

System

(define VERSION
(1ambda simple []
"3-LISP version A0OO. May 1, 1983"))

(define LOAD
(lambda macro [filename]

“(loadfile ,tfilename)))

(define EDIT
(1ambda macro [name]
“(editdef ,tname)))

Primitive Procedures

(define TYPE (1ambda simple [e] (type @)))

(define = (lambda simple entities (= . entities)))

(define EF (lambda simple [premise cl c2] (ef premise ¢l c2)))
(define UP (lambda simple [e] (up e)))

(def ine DOWN (tambda simple [s!] (down s!)))

(define REPLACE (lambda simple [s1 s2] (replace sl s2)))

(define ACONS (lambda simple [] (acons)))

(define PCONS (lambda simple [s1 s2] (pcons sl s2)))

(define CAR (lambda simple [pair] (car pair)))

(define CDR (lambda simple [pair] (cdr pair)))

(define RCONS (lambda simple structures (rcons . structures)))
(define SCONS (lambda simple entities (scons . entities)))
(define PREP (lambda simple [e vector] (prep e vector)))
(define LENGTH (lambda simple [vector] (length vector)))
(define NTH (tambda simple [n vector] (nth n vector)))
(define TAIL (lambda simple [n vector] (tail n vector)))
(define EMPTY (lambda simple [vector] (empty vector)))

(define CCONS

(lambda simple [kind def-env pattern body]

(ccons kind def-env pattern. body)))
(def1ne PROCEDURE~-TYPE .
: (lambda simple [closure] (procedure type c1osure)))

(def ine ENVIRONMENT-DESIGNATOR

(Tamhda simple [closure] (environment-designator closure)))
(define PATTERN  (lambda simple [closure] (pattern closure)))

(define BODY (lambda simple [closure] (body closure)))
(define + (1ambda simple numbers (+ . numbers)))
(define = (lambda simple numbers (- . numbers)))
(define / (lambda simplte [nl n2] (/ nl n2)))

80




APPENDIX A

(define *
(define <
(define (=
(define >
(define >=

(define INPUT
(define OUTPUT

(define LOADFILE
(define EDITDEF

(lambda
(lambda
(lambda
(lambda
(lambda

(1ambda
(lambda

(lambda
(lambda
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simple numbers (* . numbers)))
)

simple numbers (< . numbers))))
simple numbers (<= . numbers)))
simple numbers (> . numbers)))
simple numbers (>= . numbers)))
simple [stream] (input stream)))

simple [e stream] (output e stream)))
simple [file-name] (loadfile file-name)))
simple [procedure-name] (editdef procedure-name)))
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Appendix B. How to Implement 3-LISP

Since the 3-LISP reflective tower is infinite, and since the standard defirition of 3-LISP is
non-cffective, neither the reflective processor nor the informal meta-theoretic descriptions of 3-LISP
show how the language is finite. In this section, however, we show why 3-LISP is indeed finite, and
present a program that implements a full virtual tower, as a constructive demonstration of how it
can be cffectively implemented.  As it happens, we use 3-LISP as the implementing language, and
for simplicity embed the structural ficld, global cavironment, cte., isomorphically (i.c., a rail is
implemented directly as a rail, cte.). ‘The resulting processor therefore bears the same relationship
to 3-LISP as standard meta-circular processors bear o standard LISPs. The implementation makes
no crucial usc of the reflective capabilities of the embedding 3-LISP, and no crucial usc of rccursion:
the code, therefore, could be straightforwardly translated into PASCAL, microcode, or any other
language of choice. If one were to implement 3-LISP in such a language, however, one would have
to implement the 3-LISP structural ficld as well ’

An analysis of the 3-LISP tower is given in section B.1., showing how all but a finitc number
of the lowcest levels contain no information. A simple but complete implementation (about 120 lines
of code) is then presented in section B.2.  In scction B3, we show how to "compile” other
procedures into the implementation (kernels, standards, cte.), including many simples and some
reflectives (Lamppa, 1F, ctc.), and show how to make the control flow in the implementation
processor more transparent,

B.1. The Finite Nature of 3-LISP

It is first important to understand how 3-LISP treats tail-recursion. In particular, notice that
if the processor normalizes a redex of the form ‘(Fun . ARGS)’ in some environment Eg with
continuation Cp, the form ‘Fun’ is normalized with a C-PROC! continuation that cmbeds a binding of
the atom ‘coNT’ to Co.  Assuming that the closure that results (Fun!, so to speak) is not reflective,
*ARGS’ is normalized with a C-ARGS! continuation that also has "conT” bound to Cy. "Then, assuming
that ‘Funt” was not primitive, cither, the body of the closure is normalized, in an environment built
by cxtending the cnvironment from ‘runt’ by matching the pattern to ARGS!, and with the
continuation Cy. In other words (as Steele and Sussmian point out in the SCHEME literature), the
processor continuation embeds  for argument processing, but not for procedure calling.

We say, because of this continuation protocol, that the 3-LISP processor runs programs tail-
recursively. If, in other words, there is a call to foo, for cxample:

(+ 2 (FOO X Y))
.and foo has the following dcfinition:

(define FOO
(lambda simple [a b]
(* a (1+b))))
then the continuation in effect when the expression ‘(Fo0 X v)' is normalized will be identical to
the onc in which the body of fFoo — *(* a (t+ b)) — is normalized.

Generalizing slightly, we say that a position or context within an cxpression is tail-recursive
with respect to the embedding expression if, and only if, when a sub-cxpression in that context is
normalized in the course of normalizing the cmbedding context, it is normalized with the same
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continuation as that used to normalize the whole. We have just scen that the bodies of closures are
tail-recursive with respect to full procedure calls, but there arc some other cases. Specifically,
consider the cxpression

(IF (= 1 2) 'YES 'NO)
given the following definition of 1f (simplified for clarity from the standard onc):

(define IF

(1ambda reflect [[premise cl1 c2] env cont]
(normalize premise env

(lambda simple [premise!]
(normalize (ef Ipremise! cl c2) env cont)))))

The first argument to IF  ((= 1 2) in the cxample) is normalized with a
(LAMBDA SIMPLE [PREMISE!] .. ) continuation, but when the premise has returned a boolean of one
sort or the other, the selected consequent (C1 or ¢2 — 'YES or 'NO in the cxample) is normalized
with the same continuation as was the whole 1F redex. The sccond and third argument positions to
1F, therefore, arc tail-rccursive with respect to the cmbedding IF.

We adopt the presentational convention of underlining an cxpression (or the left parenthesis
and the car, if the expression is another redex) if it is in a tail-recursive context with respect to the
redex it occurs within.  thus we would have the following presentation for Foo:

(define FOO
(lambda simple [a b]

{* a (1+ b))))

and the following definition of the normal recursive FACTORIAL (since both arguments to If arc tail-
recursive with respect to IF): '

(define FACTORIAL
(1ambda simple [n]

f (= n 0)
i: n (factorial (1- n))))))
Since the cmbedded call to FACTORIAL is not underlined, FACTORIAL, as a whole, will generate
continuation structure ("stack”) proportional to the depth of the recursion.  An.iterative version,
however, is the following:
(define FACTORIAL

(lambda simplie [n]
(factorial-helper 1 n}))

(define FACTORIAL-HELPER
"(lambda simple [acc n]

Gf (= 0 0)
acc
(factorial-helper (* acc n) (1- n)))))

In this case the recursive call is underlined, since it is tail-rccursive with respect to its own
definition, which implics (because the processor runs programs tail-recursively) that no continuation

. structure is gencrated- by recursive calls to FACTORIAL-HELPER, or, to put it another way, FACTORIAL-
HELPER is iferative. '

It can be determined by simple inspection of the definitions that all of the consequent
clauses of conps arc tail-recursive with respect to the conp, as are the clauses of SELECT and SELECTQ,
as well as other common constructs.

Given this analysis of tail-recursion, we then look at the processor code itself (not, this time,
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at what it does with the continuations for the program it is running, but at its own code, with
respect to the continuations it will require in the processor that is running it). Specifically, we can
immediately underline the tail-recursive positions in the magnificent scven. We have distinguished
the continuations from the main bodics of the three named primary processor procedures by using
italics and bold-face. For cxample, C-PROC! (lincs 16—25) is shown in italics: the call to 1F (line
17) is the top-level call in its body, and the calls to the de-reflected version of proct and to
NorMALIZE arc underlined, since they arc tail-recursive with respect 1o the C-PROC! continuation as a
whole (not with respect to repuck).  The other three continuations are treated similarly.

(define READ-NORMALIZE-PRINT

......... (lambda simple [level env stream]

. (normalize (prompt&read level stream) env

werieees (Tambda simple [result] ; Continuation C-REPLY
............................ (block (prompt&reply result level stream)
........................................... (read-normalise-print level env stream))))))

(define NORMALISE

......... {(lambda simpie [exp env cont]

............... (cond [(normal exp) (cont exp)]}

[(atom exp) {cont (hinding exp env))]
[(rail exp) (normalize-rail exp env cont)]

[(pair exp) (reduce (car exp) (cdr exp) env cont)])})
(define REDUCE

......... (lambda simple [proc args env cont]

............... (normalize proc env

......... (lambda simple [proc!] ' ; Continuation C-PROC!
..... (if (reflective procl)

.............. rvsrsersnenenenenens (V(de-reflect procl) args env cont)

(normalize args eav
(1ambda simple [args!] : ; Continuation C-ARGS!

.................................................. (if (primitive procl)

..................... (cont t({proc! . largsl))
......... .. (DOTMalize (body proct)

.................................... (bind (pattern procl!) args! (environment proc!))

.............................

..................................... (normalize-rail (rest rail) env

.................................................................................... cont)))))))))

.. {(define NORMALIZE-RAIL
......... (lambda simple [rail env cont]

............... (if (empty rail)

(cont (rcons))

........................ (normalize (1ist rail) env

(lambda simple [first!] ; Continuation C-FIRST!

(1ambda simple [rest!] ; Continuation C-REST!
........................ (cont (prep firstl restl)))))))))

The finitencss of 3-LISP now follows dircctly (by inspection) from this annotated code, as manifested
by the following simple control and data flow angumcnt l--'irst, we cnrry out the zu'gumcnt ignoring
- the existence of line 18: L : ~ :

" Note first that the four standard continuations plm C-REPLY will always be bound to
the formal paramcter cont, and furthermore that that paramcter will never have any
other binding. ‘This is truc a) because cach continuation is bound to the formal
parameter CONT in the procedure to which it is first pussed (C-REPLY, C-PROC!, C-
ARGS!, and C-FIRST! arc cach third arguments to NorMALT1ZzE, and C-RLST! is a third
argument to NORMALIZE-RAIL); b) bhecause in the three places where conT is in turn
passcd as an argument to a processor procedure (lines 11, 12, and 25) it is passed to a
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procedure that binds it to cont; and c) because thosc cight calls (lines 3, 11, 12, 15, 19,
23, 30, and 32) are the only places in the processor that the three named procedures are
called.

2. Each of the ninc calls to a named processor procedure (again, lines 3, 6, 11, 12, 15, 19,
23, 30, and 32) is in a tail-recursive position with respect to the procedure or
continuation in which it occurs (i.c., all ninc arc underlined).

3. Each of the five calls to cont (on lines 9, 10, 22, 29, and 34) arc also in tail recursive
positions with respect to the procedures or continuations in which they occur (they too
ar¢ undcrlined),

4, From the previous three facts, it follows that all cight of the mutually recursive
processor procedures (the magnificent scven plus READ-NORMALIZE-PRINT) always call
cach other tail-recursively. 'Thercfore, it follows that the processor that is running this
processor will build up no continuation structurc by running the processor. (Actually,
this is not strictly true; rather, at each call to a ppp procedure the continuation will be
the same, but between them — as for example within a call to norMaL — it will build
up tcmporarily.)

5. Since (by hypothesis) all levels of the tower were initialized by the level above’s reading
in an cxpression of the form ‘(READ-NORMALIZE-PRINT LEVEL GLOBAL PRIMARY-STREAM), it
follows that the continuation being passed around at cach rcflective level is an
unchanging instance of a C-REPLY continuation (again, morc accuratcly, this is a
constant base, on top of which small excursions are constantly constructed and then
discarded). Al of these C-REPLYs arc isomorphic except that cach cmbeds its own
binding for the variable LEvVeL,

6. Sincce the call to 4(DE-REFLECT PROC!) is in a tail-rccursive position (underlined), the

continuation that i will be called with by the processor running it — ic., the
continuation that will be passed to REbuce up one level with proc designating 4 (DE-.
REFLECT Proc!) — will always be a C-REPLY continuation.

If the processor contained no reflective procedures, that would be all there is to the proof.
However, the processor docs (crucially) contain five reflectives: AND, COND, IF, LAMBDA, and LET
(it would be possible to reduce this number from five to one, but not o zcro — ic., it can be
proved that the processor must contain at Icast onc reflective closure). In order to complete the
proof, therefore, we have to examine the definitions of these five procedures, and show that the de-
reflected versions that are called by the processor that is running the processor share the crucial
propertics we just demonstrated for the basic scven proccdures.  LAMBDA is straightforward: its
definition is:

(define LAMBDA
(1ambda reflect [[kind pattern body] env cont]}
(reduce kind t[tenv pattern bodyl env cont)))

It is manifest that Repucte is called tail-rccursively, and that coNT is passcd to REDUCE'S CONT;

therefore processing (4 (DE-REFLECT tLAMBDA) ARGS ENV CONT) will preserve the iterative nature of

-the- processor.  Similarly COND; (DE-REFLECT +COND) is simply COND-HELPER:

(define COND (reflectify cond-helper))

(define COND-HLLPER i
(Tambda simple [clauses env cont]
(normalize (1st (1st clauses)) env
(Tambda simple [premisel] ; Continuation C-COND
(if dpremisel
(normalize (2nd (1st clauses)) env cont)
(cond-helper (rest clauses) env cont})))))
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COND-HELPER is itself tail-recursive, calls NORMALIZE tail-recursively, passes a more comple
continuation that calls NORMALIZE tail-recursively, and passes cont only as an argument to couir) iz
NORMALIZE; it too, therefore, keceps the processor iterative,

AND is called in the processor only with rail arguments, so the sccond clause in the definition
of AND is ncver invoked in running the processor, although it is well-formed in any case:

(define AND
(lambda reflect [args env cont]
(if (rail args)
(and-helper args env cont)

(normalize args env
(1Tambda simple [args!]

(and-helper args! env cont))))))

AND-HELPER, which is called tail-recursively with conT passcd through, calls NORMAL1ZE tail-recursively,
with a continuation that preserves both protocols for continuations and tail-recursion.

(define AND-HELPER :
{(lambda simple [args env cont]
{if (empty args)
(cont 'S$T)

- (normalize (1st args) env
(lambda simple [premise!] ; Conlinuation C-AND

(if dpremisel
(and-helper (rest args) env cont)

L(cont '§F})))))) :
IF is very slightly more difficult to analyse, although its behavior is straightforward. The invocation
of eF will construct two closures, built with LaMBDA, one of which will be selected and returned as
the result of the call to eF. In constructing those closures no ppp’s are called, so the processor does
not embed. The result of the eF is the procedure that is called tail-recursively with respect to the
call to $(DE-REFLECT +IF), which cnables us to annotatc the definition of 1f as follows:

(define IF
(1ambda reflect [args env cont]

((ef (rail args)
(1ambda simple []

(normalize (1st args) env

(1ambda simple [premise!] ; Conlinuation C-IF
(normalize (ef Ypremise! (2nd args) (3rd args)) :
. anv
cont))))

(lTambda simple []
(reduce tef args env cont))))))

Again, all calls to 1F in the processor are with rail arguments, so that the middle clause is always

sclected.  Again, the call to norMaLIzZE is appropriately tail-recursive, as is the call within the

provided continuation, and the continuation of the level below is passed through intact.
Finally we have Let. The definition is as follows:

(define LET
(lambda macro [1ist body]
“((1ambda simple ,(map 1st 1ist) ,body) . ,{map 2nd 1ist))))

It is clcar that no processor procedures are called at all in constructing the form to be handed back
-to_the processor. for -normalization; and the form that is constructed contains only a LaMBDA, which
we have alrcady trcqtcd. ’
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B.2. 3x3: A Direct Embedding of 3-LISP in 3-LISP

This scction contains a complete implementation of 3-LISP in 3-LISP. (It has becen ruy
successfully by the current implementation, albeit very slowly. Furthcrmore, the actual INTERLISp
implementation was dcrived from this code.)

The differences between the following implementation processor and the reflective processor
arc rclatively minor:
1. :norMALIZE is thc implementation of NORMALIZE; :REDUCE implements REDUCE, ctc.

2. All calls between the implementations of primary processor procedures arc done
indirectly by caiLing the real version. For cxample, the linc (normalize-
rail exp env cont) i NORMALIZE becomes (call normalize-rail exp env cont) in
:NORMALIZE. A quick glance at the implementation processor will reveal no explicit calls
to any procedurcs with a namc beginning in *:°

3. The closures for the standard continuations are cxplicitly constructed with MAKE-
CONTINUATION. 'This ensurcs that legitimate standard continuation closures are built (we
would not want to give the object program access to an implementation level closure;
REDUCE and :REDUCE arc similar but not identical).

4. 'The four classes of standard continuations, C-PROC!, C-ARGS!, C-FIRST!, and C-REST!,
arc implemented by top-level procedures :C-PROC!, :C-ARGS!, :C-FIRST!, and :C-RESTH,
respectively,  The procedure 1MporT is used to access non-local variables (e.g., C-PROC!
uses ARGS SO :C-PROC! must import ARGS).

5. :c-ARGS!, thce implementation of C-ARGS!, contains additional code that shifts the
implementation processor down whencver possible (i.c., whenever one of the closures
for which an implementation procedurcs cxists is about to be cxpanded). (The
corresponding logic for shifting up a level whenever nccessary is buried in cALL.)

6. The paramcter pattern for a primary processor ‘procedure should also be used by the,
implementation in order to cnsurc that pattern match failures happen to the
implementation if, and only if, thcy would happen to the reflective processor.

Italics arc used in the following code to indicate those ragments that differ from the corresponding
code in the reflective processor.

:NORMALIZE, :REDUCE, and :NORMALIZE-RAIL

(define :NORMALIZE
(lambda simple [exp eanv cont]
(cond [(normal exp) (call cont exp)]
[{(atom exp) (call cont (binding exp env))]
[(rail exp) (call normalize-rail exp env cont)]
[(pair exp) (call reduce (car exp) {cdr exp) env cont)])))

(define :REDUCE
{lambda simple [proc args env cont]
(call normalize proc env
(make-continuation @sample-c-procl))))

(define :C-PROC!
(Tambda simple [proc!]
(import [args env cont]
(if (reflective proc!)
(call d(de-reflect procl) args env cont)
(call normalize args env
(make-continuation @sample-c-argsl})))))
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(define :C-ARGS!
(lambda simple [args!]
(import [proc! cont]
(cond [(primitive proc!) (call cont t{iproc! . dargs!))]
[(processor-procedure procl)
(block (shift-down cont)

(register Yproc! dargs!)
((implementation-of procl) . dargsl))]

[$7 (expand-closure proc! args! cont)]))))

(define EXPAND-CLOSURE
(1ambda simple [proc! args! cont]
{(call normalize (body proc!)
(bind (pattern proc!) args! (environment proc!))
cont)))

(define :NORMALIZE-RAIL
(lambda simplie [rail env cont]
(if (empty rail)
1 (call cont (rcons)) '
(call normalize (1st rail) env
(make-continuation @sample-c-first!)))))

(define :C-FIRST!
(lambda simple [first!]
(import [rail env]
(call normalize-rail (rest rail) env
(make-continuation @sample~c-restl}))))

" (define :C-REST!
(1ambda simple [rest!]
(import [first! cont]
(call cont (prep first! restt)))))

CALL

We can't call object-level continuations with (cont ...), since if they were reflective, that would cause
the implementation processor to reflect, rather than cnabling us to reflect the tower it is running.
Similarly we can’t call any of the seven primary processor procedures directly, like NORMALIZE and
C-PROC!, since we need to use our own private versions of them (:NORMALIZE, :C-PROC!, ClC.).
Also, we can’t call simple user procedures directly if they arce nof primary processor procedures,
since we won't have implementation level code for them: they require that we shift up and expand
their bodies explicitly.

caLL-sImMpLE, which is only used by (the expansions of) cait, checks to see if the procedure to be
called at the current level is a primary processor procedure.  Since primary processor proccdures
have an implementation cquivalent that can be run at the current Ilevel, there is no need to change
levels. However, we must REGISTER this call so that we can "chicken out” later. In all other cascs,
lacking code to run at the current level, the implementation processor shifts up onc level and
expands the closure — i.c., runs the implementation of NORMALIZE af the next higher level. In cffect,
cat implements both "compiled-to-compiled” and “compiled-to-interpreted” calls, where the

- -primary processor procedures are- the only “compiled™ routines in the system.

By assumption, all of the primary processor procedure implementations (the *:' routines) arc correct
implementations of their counterparts in the reflective processor provided that no "funny business”
is involved, In particular, the implementations arc not designed to handle reflective continuations
(if the continuation would be called; no harm is donc if a reflective continuation is simply passed
along to some other proccdure, or cmbedded in a continuation). When an implementation
procedure is on the verge of calling a reflective continuation, cact will detect this fact, shift up, and
expand the closure for the primary processor procedure that was making the catL using the
information rccorded by ReGISTER in the global variables @LAST-PROCESSOR-PROCEDURE, and GLAST-
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PROCESSOR-ARGS (we refer to this process as chickening out).

We also have to chicken out when we encounter onc of the primitive procedures being used as 3
continuation.  Onc rcason is that the primitives rcturn an answer — that would cause the
continuation-passing implementation processor to cease its processing.  Another rcason is that there
might be a reflective continuation fwoe levels up that should prevent the primitive from being called
(scc notc at cnd of scction).

(define CALL
(1ambda macro exp
“(let [[fun ,(1st exp)]]
(if (or (reflective tfun) (pr|m1t1ve tfun))

(expand closure @last-processor-procedure ; chicken-out!
@last-processor-args
(shift-up))

(call-simple fun ,(rest exp))))))

(define CALL-SIMPLE
(1ambda simple [fun args]
(if (processor-procedure tfun)
{(block (register fun args)
((impiementation-of tfun) . args))
(expand-closure tfun targs (shift-up)))))

REGISTER

Every time we enter the implementation version of a primary processor procedure we usc REGISTER
to record in global variables (registers) the dcetails of the event. 'This information is used in three
distinct ways: 1) by MAKE-CONTINUATION in constructing continuations, 2) by IMPORT as the source of
non-local variable bindings, and 3) by caiL in "chickening out.”

(define REGISTER
(1ambda simple [fun args]
(block (set @last-processor-procedure tfun)
(set @last-processor-args targs))))

MAKE-CONTINUATION

It is important that the continuation closures built by the implementation processor be
indistinguishable from the oncs that the reflective processor would build. In particular, all C-
PROC! (say) closurcs sharc the samce pattern and body structures. ‘They also have an environment
designator (rail) whosc initial bindings cclls are made from fresh lengths of rail, but whose fourth
tail is the environment designator found in the closure for Ripuce.  Also, all C-ARGS! continuation
closures contain an cnvironment designator whose first tail is the environment designator found in
some (unique) C-PROC! closure. MAKE-CONTINUATION is passed a template closure, from which the
appropriate pattern and body structurcs are cxtracted, and uscs the globally-recorded current
primary processor procedure and the arguments passed to it

(define MAKE-CONTINUATION
(1ambda simple [template]
(simple t(bind (pattern @last- processor procedure)
@last-processor-args
(environment @last-processor- procedure))
(pattern template)
(body template))))
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IMPORT

The standard continuations use some variables defined in an enclosing non-global scope. For
example, a C-PROC! continuation uscs ARGS, ENV, and conT, which arc local to REDUCE; a C-ARGS!
continuation uscs CoNT and proc!, which arc local to RrRepuce and the enclosing C-PROC!,
respectively,  Thus the implementations of the standard continuations need to get hold of these
bindings. This is achicved by having 1MporT cxtract the bindings from the environment designator
" of the closure for the current primary processor procedure (@last-processor-procedure).

(define IMPORT
(lambda macro [vars body]
“(let ,(map (lambda simple [var]
‘[.var ¥(binding ,tvar (environment @last-processor-procedure))])
vars)
+body)))

For cxample, the code:
HHH (define :C-REST!

HHH (Tambda simple [rest!]
HH (import [first! cont]
HHH (call cont (prep first! rest!))}))))

is cquivalent by this macro-cxpansion to the following:

HHH (define :C-REST!

iis (1ambda simple [rest!]

(let [[first! V(binding "first! (environment @last-processor-procedure))]}
HEN [cont {(binding 'cont (environment @last-processor-procedure))}]

HHH (call cont (prep first! rest!)))))

PROCESSOR-PROCEDURE

PROCESSOR-PROCEDURE is used to rccognize closurcs that corrcspond to some primary processor
procedure. For thesc procedures, IMPLEMENTATION-OF retricves the corresponding implementation
procedure that can be called instead of expanding their closure. TABLE-OF-EQUIVALENTS scrves as the
basis of this mapping; but a simple cquality test is inadequate since cach standard continuation is
actually a whole family of closurcs. 'The procedure MATCH-CLOSURE is used to determine if a
particular closure is sufficiently similar to a canonical member of its family to cnsure that the
implementation procedure would be a correctly implementation.  "Sufficiently similar” amounts to
having identical patterns and bodies, and sufficiently similar environment designators, as determined
by MATCH-ENV. For marcu-eNv to succeed, both rails must be the same length, share a tail that
includes the global rail as a proper tail, and have plausible binding cells for the same atoms and in
the samc ordcr.

Note that in a scrious implementation it would be ludicrous to do all of this pattern matching:
instcad the implementation should "stamp™ the processor procedurc closures in a way that is
. invisible to 3-LISP proper, but visible to its internal version of PROCESSOR-PROCEDURE (and the stamp
would be invalidated if a user ever obtained access to such a closure and smashed it). Recognition
(PROCESSOR-PROCEDURE) and mapping onto implementation equivalent (IMPLEMENTATION-OF) could
then be unit-time operations (but with a price: the criteria for class membership would be restricted,
so that some closures isomorphic to standard processor procedures would not be recognized, cven
though they deserve to be).

(define PROCESSOR-PROCEDURE
(lambda simple [proc]
(do [[table table-of-equivalents (rest table)]]
[[(empty table) $F]
[(match-closure proc (1st (1st table))) 3T]1])))
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(define IMPLEMENTATION-OF
(lambda simpie [proc] :
(do [[table table-of-equivalents (rest table)]]
[[(match-closure proc (1st (1st table))) (2nd (1st table))]])))

(set TABLE-OF-EQUIVALENTS
[[tnormalize :normalize] [tnormalize-rail :normalize-rail]
[treduce :reduce] [@sample-c-proc! :c-proc!]
[@sample-c-args! :c-args!] [@sample-c-first! :c-firstl]
[@sample-c-rest! :c-rest!]])

(define MATCH-CLOSURE
(lambda simple [candidate master]
(or (= candidate master)
(and (= (body candidate) (body master))
(= (pattern candidate) (pattern master))
(match-env (environment-designator candidate)
(environment-designator master))))))

(define MATCH-ENV
(lambda simple [candidate master]
(cond [(= master tglobal) $F]

[(= candidate master) $T]

[$T (and (not (empty candidate))
(rail (1st candidate))
(double (1st candidate))
(= (1st {1st candidate)) (1st (1st master)))
(handle (2nd (1st candidate)))
(match-env (rest candidate) (rest master)))])))

SAMPLE CONTINUATION CLOSURES

Samples of cach of the four kinds of standard continuation closures are needed (they arc used with
MAKE-CONTINUATION and in TABLE-OF-EQUIVALENTS). 'This clever way of procuring them will only
work if the implementation language is a full-blown 3-LISP; in any other setting it will be necessary
to apply a somewhat more tedious approach — scc NEW-TOP-LEVEL-CONTINUATION for an cxample.

(define THROW-CONT (lambda reflect [[] env cont] tcont))

(set @SAMPLE-C-PROC! t(catch ((throw-cont))))

(sel @SAMPLL-C-ARGS! t(catch (id* . (throw-cont))))

(set @SAMPLE-C-FIRST! t(catch ['? (throw-cont)]))

(set @SAMPLE-C-REST! (binding 'cont (environment @sample-c-first)))

SHIFT-UP and SHIFT-DOWN

SHIFT-UP pretends that we are now playing reflective processor at one level higher than we were just
a moment ago, and adjusts the continuation stack, @LEVEL-STACK, so that it accuratcly reflects our
new stance. Similarly, suiFT-pown pretends that we are going to play reflective processor at one level
lower than we were a moment ago, and saves the continuation for our former lcvel on the
continuation stack. The continuation stack should contain a continuation for cach of the reflective
_levels; however, we postpone their creation until the implementation first reaches that reflective,
level.” : ' :
(define SHIFT-UP
(lambda simple []
(if (empty @level-stack)
(new-top-level-continuation)
(pop @level-stack))))

(define SHIFT-DOWN (lambda simple [cont] (push cont @level-stack)))
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GENESIS

GENESIS starts things off at level 1 with a continuation stack consisting cntircly of top-level
continuations. Note that the call to READ-NORMALIZE-PRINT will cause the implementation to shift up
to level 2, although the embedded call to norMaLTZE within it will subscquently drop it back down
again.

(define GENESIS
(1ambda simple []
(block (set @level-stack (scons))
(set @next-level 1)
(call read-normalize-print 1 global primary-stream))))

NEW-TOP-LEVEL-CONTINUATION

The tower (hanging garden) we implement is allegedly initialized in the following way. First,
"God" normalizes the form:

(read-normalize-print 00 global primary-stream)

and then types in the following set of incantations (the form rcad in on ecach line gencrates the
"prompt&read” for the next):

00> (read-normalize-print ©0-1 global primary-stream)
3> (read-normalize-print 2 global primary-stream)
2> (read-normalize-print 1 global primary-stream)

'This means that the activity at level 1 is driven by the tail-recursive (underlined) call to NORMALIZE
insidc READ-NORMALIZE-PRINT:

i3:  (define READ-NORMALIZE-PRINT

HEH (lambda simple [level env stream]

HE (normalize (prompt&read level stream) env

HE (1ambda simple [result] ; Continuation C-REPLY
HH (block (prompt&reply result level stream)

N (read-normalize-print level env stream))))))

Top-lcvel continuations, then, arc simply closures created by the normalization of the LamBpa
expression  within  READ-NORMALIZE-PRINT (italicized in the foregoing).

The only use of the global variable @NEXT-LEVEL is to sct up the correct binding for LEVEL inside
cach successive new top level continuation, in order to simulate the infinite number of incantations.
The strictly lincar "hicrarchy” of control lcvels is a partial myth, foisted on the user by this
initialization protocol.

(define NEW-TOP-LEVEL-CONTINUATION
(letseq [[rnp-environment (environment tread-normalize-print)]
[rnp-pattern (pattern tread-normalize-print)]
[rnp-body (body tread-normalize-print)]
[c-reply-pattern (2nd (cdr (3rd (cdr rnp-body))))] ; e, '[result]
[c-reply-body (3rd (cdr (3rd {cdr rnp-body))))]1] ; i.e,'(block .. stream))’
(1ambda simple []
(b1ock (set @next-level (1+ @next-level))
(simpie t(bind rnp-pattern’
t[@next-level ‘global primary- stream]
rnp-environment)
c-reply-pattern
c-reply-body})))))
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NOTES ON 3X3

* This version is presented using DEFINES, but, in fact, if you were to run this you would have to
cstablish all of these procedures definitions in a giant LABELS, since otherwise these definitions
will be visible in the global cnvironment, which would be incorrect. [t is crucial, however, that
the environment we hand out (through READ-NORMALTZE-PRINT) be the rcal global environment,
so that when uscr code reflects, it gets access to the genuine article.

* The implementation assumes that the object level program will be prevented from smashing
those parts of the standard 3-LISP system upon which it depends. For example, the
implementation would dic if the object program smashed st7 since the implementation uses SET
on a rcgular basis (in REGISTER), and cven though it is conccivable that the undcerlying
implementation nced not have protected SeT since it isn't in the kerncl.  Conversely, everything
that is protected in the underlying implementation is, like it or not, protected in the new tower.

* CALL is defined as a macro because it is critical that the argument expression not be processed
when the procedures being catied is cither reflective or primitive and the argument processing
potentially involves a side-cffect or an crror.

* In the reflective processor, the check for reflective closures is performed in C-PROCY, not C-
ARGS!.  As a consequence, any closure that makes it to C-ARGS! as the binding of proc! will
be expanded regardless of its procedure type. In other words, in regular 3-LISP the cxpression
(FOO (REPLACE tFOO +(REFLECTIFY F00))) will treat Foo as if it were a simple closure (which it
was at the time C-PROC! had a look at it). It is for this rcason that MATCH-CLOSURE ignores
procedurc  type.

* The implementations arce correct only relative to the standard reflective processor — : NORMALIZE
docs not engender the behavior of just any old program walking over the body of the closure for
NORMALIZE.

* The viability of the technique of chickening out depends on the fact that primary processor
procedures do nothing irrevocable prior to calling their continuation. When this is not the case,
it is neccessary to do a more vertical shift-up; this involves putting together authentic-looking
environment and continuation structures describing the current state of the computation one
level up and shifting up into :c-proct. Chickening out causes a shift up into the tail-end of :¢-
ARGS! at an carlier instant.

* To make surc that the bindings arc in the right order (c.g., Proc, then ARGS, then env, then
CONT), MAKE-CONTINUATION uscs the samc kernel procedure (sinp) as the reflective processor.

*x The call to BIND in MAKE-CONTINUATION will not fail provided that the primary processor
procedurcs and their implementations have similar patterns.

SOME NASTY TEST CASES

The 3-LISP reflective processer provides a finc-grained description of how 3-LISP programs are
processed.  An implementation of 3-LISP can be considered correct only if carcful attention is: paid
“to the many subtletics entailed by this account. Here are some nasty test cases that illuminate some
of the finer points that arc casily missed. -
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1. Replacing a simple closure with a reflective one.

normalizing the arguments.
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The test for rcflectiveness is done prior to
Henee, changing a simple closure into a reflective one during

argument normalization will not have an immediate cffect.

1> (set foo (lambda simple [x] (+ x 1)))
1= 'foo

1> (set fee (lambda reflect [x] (- x 1)))
1= 'fee

1> (foo 100)

1= 101

1> (foo (block (replace tfoo tfee) 100))
1= 99

1> (foo 100)

{ERROR: Pattern match failure}

2. Using reflective procedures as continuations.,
continuation is bizarre but predictable!

1> (normal1ze '1 global id)

1= '1
1> (normalize '1 globa? quote)
1= "exp

1> (normalize '+ global id)

1= '{simple + closure}

1> (normalize '+ global quote)

1= '(binding exp env)

1> (normalize '(+ 1 2) global id)

1= '3

1> (normalize '(+ 1 2) global quote)
= "+(iproc! . dargs!)

1> (normalize-rail '[] global id)

1= '[]

1> (normalize-rail
1= '(rcons)

1> (normalize-rail '[1] global id)

1= '

1> (normalize-rail '[1] global quote)
1= '(prep First! rest!)

'[] global quote)

3. Smashing a continuation.

1> (let [[dummy-id (lambda simple [x] x)]]
(normalize

1= '"(binding exp env),

1> (let [[dummy-id (lambda simple [x] x)]]
(normalize "(id (replace

1= "''0K

4, Tampering with the environment of a continuation closure.
a standard continuation closure can be changed, making it non-standard,

The effect of using a reflective procedure as a

; From line 9 of reflective processor

; Fromlinc 10

; From line 22

: From linc 29

: From linc 34

An implementation may not trust the procedure type of a
continuation — it can be changed on the fly.

“(id (replace ,ttdummy-id tquote)) global dummy-id))

, ttdummy-id tup)) global dummy-id))

The environment designator within
In the following, a

new binding for NORMALIZE is stuffed into a C-ARGS! closure; this binding wnll be used when it

comes to cxpanding the closure.

1> (define CHANGE-CONT
(lambda reflect [[exp] env cont]
(block

(push ['normalize t(1lambda simple [a e c] (c ta))]

(environment tcont))
(normalize exp env cont).))})
1= 'CHANGE-CONT

1> ((lambda simple x (print "hello primary-stream))

1= "(print 'hello primary-stream)
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5. Sharing of environment tails between C-PROC! and C-ARGS! continuations. A C-ARGS! closure
contains an cnvironment designator whose first tail is the environment designator capturcd by
the corresponding C-PROC! closure.

1> (define SAVE-CONT
(1ambda reflect [[var exp] env cont]
(block (rebind var ttcont env)
(normalize exp env cont))))
1= 'SAVE-CONT

1> ((save-cont x1 -) . (save-cont x2 [1])) s l.e. (- 1)
1= -1

1> x1

1= '{simple C-PROC! closure}

1> x2

1= '{simple C-ARGS! closure}
1> (= (environment-designator x1) (rest (environment-designator x2)))
1= $T ’

6. Fresh top-level continuations.  Each time through READ-NORMALIZE-PRINT a ncw C-REPLY -
continuation closure is crcated.

1> (define SAVE-CONT
(1ambda reflect [[var exp] env cont]
(block (rebind var ttcont env)
(normalize exp env cont))))
1= 'SAVE-CONT
1> (save-cont x1 x1)
1= '{simple C-REPLY closure}
1> (save-cont x2 x2)
1= "{simple C-REPLY closure}
1> (= x1 x2)
1= §F
1> (= (pattern x1) (pattern x2))
1= §T
1> (= (body x1) (body x2))
1= §T )
1> (= (environment-designator x1) (environment-designator x2))
1= §F
1> (= (environment x1) (environment x2))
1= §T

7. Using a primitive as a continuation with a reflective continuation over it. Care must be taken in
such cascs because the primitive may never get invoked.

1> (normalize '(normalize '10 global output) global quote)
= 't(¢proc! . dargs!) ; FFrom line 22 of the reflective processor

8. Rcbinding a kernel procedurc in the global cnvironment. This is almost always fatal.

1> (set normalize 10)
[Thud]

9. Smashing a kernel procedure, its body, or its pattern. - This too is usually fatal,

1> (set x (body tatom))
1= '0K : »
1> x .

1= '(= (type x) 'atom)
1> (rplaca x 'rcons)

[Thud.]

10. Clobbering the global environment. The global environment rail must always be in normal
form; othcrwise, (environment proc!) on line 24 would crror on all standard procedures.

1> (replace (foot tglobal) '[hal])

[Thud]
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11. Circular rails can cause NORMALIZE to hang — even normal-form ones.
1> (set x (rcons '1))
1= '[1] ,
1> (block (replace (foot x) x) 'done) poxo= '[1 11 L]
1= 'DONE
1> (block (normalize x global id) 'done)

[Stuck in NORMAL-RAIL chasing a TAIL.]
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B.3. Some Simple 3x3 Optimizations
COMPILED SIMPLES

The most glaring incfficiency in the code given in scction B.2 is that, except for the seven
primary processor procedures, every 3-LISP procedure is treated by explicitly expanding the closure,
3x3 can be cxtended so as to "compile™ some standard procedures — i.c., treat them in a manner
similar to primitives, the only difference being that weird continuations will not cause feather
dusters to be donned but, instead, will force the closure to be expanded. Some rules apply: most
notably, no compiled procedure may call a non-compiled onc (c.g.. MAP and Y-OPERATOR arc out) on
this simple strategy.

We have to add a test to :€-ARGS! to check for procedures other than primitives for which
we have "compilations” (and check to make sure that running the compiled version is "safe™), and
provide a recognition mechanism.  Since our implementation language is a full 3-LISP, we
automatically have compilations for all simple kerncls:

(define :C-ARGS!
(1ambda simple [args!]
( import [proc! cont]
(cond [(or (primitive proc!)
(and (compiled proc!)
(not (reflective tcont))
{not (primitive tcont))))
(call cont t(dproc! . largs!))]
[(processor-procedure proc!)
(block (shift-down cont)
(register {proc! largsl!)
((implementation-of proc!) . largs!))]
[$T (expand-closure proc! args! cont)]))))

(define COMPILED
(1ambda simptle [proc]
(member proc compiled-procedures)))

(set COMPILED-PROCEDURES
(map up

[** 1+ 1- 1st 2nd 3rd 4th 5th 6th abs append append* atom bind binding
boolean character character-string charat closure concatenate copy-vector
de-reflect double environment even external foot function handle id id®
index internal isomorphic macro macro-expander max member min negative
newline non-negative normal normal-rail not number numeral odd pair pop
positive primitive print prompt&read prompt&reply push rail read rebind
reflect reflect! reflectify reflective remainder rest reverse rplaca
rplacd rplacn rplact sequence simple stream streamer truth-value unit
vector vector-constructor xcons zero]))
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COMPILED KERNEL REFLECTIVES

To handle kernel reflectives (such as IF) once nceds in gencral a) to define implementation
procedures for the main body of the reflective procedure and for cach of the continuations it
constructs (of which 1f has onc), b) to construct a sample closurc for those continuations and for
the de-reflected version of the main procedure, and ¢) to add an appropriate entry to the TABLE-
OF-EQUIVALENTS. It is cssential that the compiled kernel reflective not fall off of its parentheses
(for this rcason, the above technique would not apply to TiROW).

LAMBDA is casy; onc only nced add (again we usc italics to indicate those parts of this
implementation version that differ from the user-visible version):

(define :LAMBDA
(1ambda simple [{kind pattern body] env cont]
(call reduce kind t[tenv paltern body] env cont)))

and add onec morc cntry to the table of cquivalents:

(set TABLE-OF-EQUIVALENTS [[tnormalize :normalize]
[tnormalize-rail :normalize-rail]
[treduce :reduce]
[@sample-c-proc! :c-proc!]
[@sample-c-args! :c-args!]
[@sample-c-first! :c-first!]
[@sample-c-rest! :c-rest!]
[(de-reflect tlambda) :lambdall)

To deal with 1F, we would add (with the same usc of italics):

(define :IF
(lambda simple [args env cont]
(if (rail args)
(call normalize (1st args) env
(make-continuation @sample-c-~if))
(call reduce tef args env cont))))

(define :C-IF
(tambda simple [premise!l]
(import [args env cont]
(call normalize (if {premise! (2nd args) (3rd args)) env cont))))

(set @SAMPLE-C-IF t(catch (if (throw-cont) 7 ?)))
and append the following two cntrics to the table of cquivalents:

[(de-reflect tif) :if]

[@sample-c-if :c-if]
As a final cxample, consider compiling READ-NORMALIZE-PRINT.  First, define the standard
implementation version:

(define :READ-NORMALIZE-PRINT

(lambda simple [level env stream]

(call normalize (prompt&read level stream) env
(make-continuation @sample-c-reply))))
- (define :C-REPLY ' : o
(1ambda simple [result]
(import [level env stream]
(block (prompt&reply result level stream)
(call read-normalize-print Tevel env stream)))))

(set @SAMPLE-C-REPLY
(block (set @next-Tevel 1)
t(new-top-level-continuation)))

Then add to the table of cquivalents the cnurics:
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[tread-normalize-print :read-normalize-print]
[@sample-c-reply :c-reply]

AND, OR, COND, BLOCK, and so on arc all similar.

To illustrate the compilation of macros, we will show how to compile DEFINE, assuming the
following definition:

L (define DEFINE

N (lambda macro [label body]
HE “(block (set ,label (y-operator (lambda simple [,label] ,body)))
HHH ,tlabel)))

Note that this definition does not make accessible, to any instance of it, a rail that is sharcd by all
definitions (i.e., it scts up no "own variables). If it did, we would have to extract a handle to that
very rail; as it is, we can construct a fresh version:
(define :DEFINE
(tambda simple [[1abel body] env cont]
(call normalize "(block (set ,label (y-operator (lambda simple [,label] ,body)))
,t1abel)

env
cont)))

And the standard addition to the table of cquivalents:
[(de-reflect tdefine) :define]
Note that this compiles only the first stage of the macro cxpansion,

CONTROL FLOW

The code presented in section B.2. is inecfficient in a particular way: caLL, which can be
called with any kind of procedurc (simple or reflective, primary processor or user) is sometimes
uscd in a place where the argument is known to be a specific onc of the three named processor
procedures (NORMALIZE, REDUCE, Of NORMALIZE-RAIL). In such a circumstance thc code, as written,
will go through a whole set of unnccessary checks to make sure that it isn't primitive or reflective,
look up the implementation version, and then register the state and call that implementation
version. At the point of call, however, we know perfectly well what that implementation procedure
will be (specifically, for NORMALIZE it iS :NORMALIZE, for REDUCE it iS :REDUCE, and for NORMALIZE-RAIL
it is :NorMALIZE-RAIL). It is possible, therefore, to simplify the caLL sequence considerably in these
specific cases. A simple way to do so is to define three procedures (CALL-NORMALIZE, CALL-REDUCE,
and CALL-NORMALIZE-RAIL) which merely do thc nccessary state registration and call the
implementing . versions  dircctly:

(define CALL-NORMALIZE

(lambda simple args
(block (register normalize args) (:normalize . args))))

(define CALL-REDUCE
(lambda simple args ] ‘ ‘ _
(block (register reduce args) (:reduce . args))))

(define CALL-NORMALIZE-RAIL
(lambda simple args :
(block (register normalize-rail args) (:normalize-rail . args))))

]

Then, cach place in the code there is an expression of the form ‘(CALL NORMALIZE ... )’, it can be
replaced with ‘(CALL-NORMALIZE ... ). Rather than rewrite the wholc B.2. processor, we give just
those procedures that change under this revision, with the altered fragments of the code underlined.

Additionally, we usc cALL-SIMPLE in place of caLL in c-proc! for reflectives, since DE-REFLECT will
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always return a non-primitive simple. Also, we call EXPAND-CLOSURE On READ-NORMALIZE-PRINT in
GENESIS, since we know that READ-NORMALIZE-PRINT is not a processor procedure or compiled
(although it can be compiled, in which case it should rcad (CALL-READ-NORMALIZE-PRINT .. )):

(define :NORMALIZE
(lambda simple [exp env cont]
(cond [(normal exp) (call cont exp)]
[(atom exp) (call cont (binding exp env))]
[(rail exp) (call-normalize-rail exp env cont)]
[(pair exp) (call-reduce (car exp) (cdr exp) env cont)])))

(define :REDUCE
lambda simple [proc args env cont
9
call-normalize proc env
(call-normalize p
(make-continuation @sample-c-proc!))))

(define :C-PROC!
(lambda simple [proc!]
(import [args env cont]
(if (reflective procl)
(call-simple J(de-reflect proc!) [args env cont])
{(call-normalize args env
(make-continuation @sample-~c-args!))))))

(define :NORMALIZE-RAIL
(lambda simple [rail env cont]
(if (empty rail)
(call cont (rcons))
(call-normalize (1st rail) env
(make-continuation @sample-c-firstl)))))

(define :C-FIRST!
(lambda simple [first!]
(import [rail env]
(call-normalize-rail (rest rail) env
(make-continuation @sample-c-rast!)))))

(def ine EXPAND-CLOSURE
(t1ambda simple [proc!-args! cont]
(call-normalize (body proc!)
(bind (pattern proc!) args! (environment procl))

cont)))

(define GENESIS
(1ambda simple []
{(block (set @level-stack (scons))
(set @next-level 1)
(expand-closure tread-normalize-print
+[1 global primary-stream]

(shift-up)))))
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Reflection and Semantics in Lisp

Brian Cantwell Smith

XEROX Palo Alto Research Center
3333 Coyote Hill Road. Palo Alto. CA 94204; and
Center for the Study of Language and Information
Stanford University, Stanford., CA 04305

1. Introduction

TPor three reasons, Lisp’s s2lf-referential properiies have not
led to a general understanding of what it is for a cumputational
syslem Lo reason, in substaatial ways, about ils own operations
and structures. First, there is more to reasoning Lthan reference;
one also needs a theory, in terms of which Lo make sense of the
refecenced domain. A computer syslem able to reason about
itsell — what I will eall a reflective system — will therefore
need an account of itself embedded within it. Second, there
must he a systematic relationship between that embedded
accuunt and the system it describes. Without such a connection,
the account would be useless — as disconnected as the words of
a hapless drunk who carries on about the evils of inebriation,
without realising that his story applies to himself. Traditional
embeddings of Lisp in Lisp are inndequate in just this way; they
provide no means for the implicit state of the Lisp process to he
reflected, moment by moment, in the explicit terms of the
embedled account. Third, a reflective system must be given an
appropriate vantage point at which to stand, far enough away to
have itself in focus, and yet close enough to sce the important
details,

This paper presents a general architecture, called
procedural reflection, to support self-directed recsoning in a
serial programining language. The architecture, illustrated in a
revamped dialect called 3-Lisp, solves all three problems with a
single mechanism. The basic idea is to define an infinite tower
of procedural self-models, very much like metacireular
interpreters [Steele and Sussman 1978b], except connected to
each other in a simple but critical way. In such an archilecture,
any aspect of a process’s state that can be described in terms of
the theory can be rendered explicit, in program accessible
structures. Furthermore, as we will see, this apparently infinite
architecture can be (initely implemented. .

The avchitecture ullows the user to define complex
pragramming constructs (such as escape operalors, deviant
variable-passing protocols, and debugging primitives), by writing
direct analogues of those metalinguistic semantical expressions
that would normally he used to describe them. As is always
true in semantics, the metatheoretic descriptions must he
phrased in terms of some particular set of concepts; in this case
I have used a theory of Lisp based nn environments and
continuations. A J3-Lisp program, therefore, at any point during
a computation, can obtain representations of the environment

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and;or specific permission.

® 1983 ACM 0-89791-125-3/84/001/0023 $00.75
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and continuation characterising the state of the computation at
that point. Thus, such constructs as THROW and Ccatcil, which
must otherwise be provided primitively, can in 3-Lisp be easily
defined as user procedures (and defined, Turthermore, in code
that is o!most isomorphic to the A-calculus eyuations one
normally writes, in the metalarguage, to describe them). And
all this can be done without writing the entire program in a
continuation-passing styvle, of the sort illustrated in [Stevle
1976]. The point is nol to decide at the outset what should and
what should not be explicit (in Steele’s example, continuations
must be passed around explicitly from the beginning). Rather,
the reflective architecture provides a method of making sowe
aspects of the computation explicit, right in the midst of a
computation, even if they were implicit a moment earlier. It
provides a mechanism, in other words, of reaching up and
"pulling information out of the sky"” iwhen unexpected
circumstances warrant it, without having to wurry about it
otherwise.

The overall claim is that reflection is simple to build on a
semantically sound base, where ‘semantically sound’ means
mere than that the semantics be carefully formulated. Rather, 1
assume throughout' that computational structures have a
semantic significance that transcends their behavioural import
-— or, to put this another way, that computaziv.;:al structures are
about something, over and abuve the effects they have on the
systems they inhabit. Lisp’s NIL, for example, not enly
evaluates to itself forever, but also (and somewhat
independently) stands for Falschood. A reconstruction of Lisp
semantics, therefore, must deal explicitly with both declarative
and procedural aspects of the overall significance of
computational structures. Thig distinction is different from
(though 1 will contrast it with) the distinction betwecen
operational and denolational semantics. It is a reconstruction
his been developed within a view that programming languages
are properly to be understood in the same theoretical terins used
w analyse nol only other computer languages, but even natural
languages.

This approach forces us to distinguish between a structure’s
value and what it returns, and to discriminate entities, like
numerals and numbers, that are isomorphic but not identical
(both instances of the general intellectual hygiene of avoiding
use/mention errors). Lisp’s basic notion of evaiuation, 1 will
argue, is confused in this regard, and should be replaced with
independent notions of designation and simpiification. The
result is illustrated in a semantically rationaiised dialect, called
2-Lisp, based on a simplifying (designation-preserving) term-
reducing processor. The point of defining 2-Lisp is that the
reflective 3-Lisp can be very simply defined on top of it. whereas
defining a rcflective version of a non-rationziised dialect would
he more complicated and more difficult o understand.

The strategy of presenting a general! nrchitecture by
developing a concrete instance of it was sciected on the grounds
that a genuine theory of reflection (perhaps analogous to the
theory of recursion) would be difficult to motivate or defend
without taking this first, more pragmatic, step. [n section 10,



however. we will sketch a general "recipe” for adding reflective
capabilities to anyv serial language: 3-Lisp is the result of
applying this conversion process to the non-retlective 2-Lisp.

It is sometimes said chat there are only a few constructs
from which languages are assembled. including for example
predicates, terms. functions, composition, recursion, abstraction,
a branching selector, and quantification. Though different from
these notions (and not definable in terms of them), reflection is
perhaps best viewed as a proposed addition to that family.
Given this view, it is helpful to understand reflection by
comparing it, in particular, with recursion — a construct with
which it shares many features. Specifically, recursion can seem
viciously circular to the uninitiated, and can lead to confused
impleinentations if poorly understood. The mathematical theory
of recursion, however, underwrites our ability to use recursion
in programming languages without doubting its fundamental
soundness (in fact, for many programmers, without
understanding much about the formal theory at all). Retlective
systems, similarly, initially seem viciously circular (or at least
infinite), and are difficult to implement without an adequate
understanding. The intent of this paper, however, is to argue
that reflection is as well-tained a concept as recursion, and
potentially as efficient to use. The long-range goal is not to
force programmers to understand the intricacies of designing a
reflective dialect, but rather to enable them to uge reflection and
recursion with equal ubandon.

2, Motivating Intuitions

Before taking up technical details. it will help to lay out
some motivations and assumptions. First, by ‘reflection’ in its
most general sense. I mean the ability of an agent to reason not
only introspectively, about its self and internal thought
processes, but nlso externally, about its hehaviour and situation
in the world. Ordinary reasoning is external in a simple sense;
the  point of reflection is to give an agent a more sophisticated
stance f{rom which to consider its own presence in that
embedding world. ‘There is a growing consensus! that reflective-
abilities underlie much of the plasticity with which we deal with
the world, both in language (such as when one says Did you
understand what [ meant?’) and in thought {such as when one
wonders how to deliver bud news compassionately). Common
sense suggests that reflection enables us to master new skills,
cope with incomplete knowledge, define terms, cxamine

. assumptions. review and distill our experiences, learn from
unexpected situations, plan, check for consistency, and recover
from mistakes.

In spite of working with reflection in {ormal languages,
most of the driving 1atuitions ahout reflection are grounded in
human rationality and language. Steps towards reflection,
however, can also bhe found in much of current computational
practice.  Debuyging svstems, trace packages, dynamic code
uptimizers, run-time  compilers, macros, metacircular
interpreters. error haundlers, type declarations, escape operators,
comments, and a variety of other programming constructs
mvolve, in one way or anuther, structures that refer to or deal
with uother purts of a computational system. These pructices
sumrest, as a firse step towards a more general theory, defining
a limitwed and rather introspective notion of ‘procedural
retlection”: sell-referential behaviour in procedural lunguages, in
which  expressions are primarily used instructionally, to
engender behaviour, rather thaa assertionally, to make claims.
[t is the hope chat the lessons learned in this smaller task will
_serve well in-the larger account, ’

- Wa mentivned at the outset that the general task. in
defining a reflective system, is Lo ¢mbed a theory of the system
in the system, so as to suppurt <mouth shifting hetween
reusoning directly about the world and reusening about that
reasoning.  Because we are talking uf reasuning. not merely of
language, we ndded ua additional requirement on this embedded
theory, beyond its Leing descriptive and true: it must alse be
what we will cull cansally connected, so that accounts of vbjects
and events are tied directy to those objects and events. The
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Figure 1: A Serial Model of Computation
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causal relationship, firthermore, must go both ways: from eveng
to description, and from description back to event. (It is as if we
wers creating a magic kingdom, where from a cake you could
automatically get a recipe, and from a recipe you could
automatically get a cake.) In mathematical cases of self.
reference, including both self-referential statements, and modsls
of syntax and proof theory, there is of course no causation at all,
since -there is no temporality or behaviour (mathematica]
systems don't run). Causation, however, is certainly part of any
reflective agent. Suppose, for example, that vou capsize whila
canceing through difficult rapids, and swim to the shore to
figure out what you did wrong. You need a description of what
you were doing at the moment the mishap occurred: merely
having a name for yourself, or even a general description of
yourself, would be useless. Also, your thinking must be able to
have some effect; no good will come ‘from your merely
contemplating 4 wonderful theory of an improved you. As well
as stepping back and being able to think about your behaviour,
in other words, you must also be able to take a revised theory
and "dive back in under it", adjusting your behaviour so as to
satisfy the new account. And finally, we mentioned that when
you take the step backwards, to reflect, you need a place to
stand with just the right combination of connection and
detachment,

Computational reflective systems, similarly, must provide
both directions of causal connection, and an appropriate vantage
point. Consider, for example, a debugging system that accesses
stack frames and other implementation-dependent
representations of processor state, in order to give Lhe user an
account of what a program is up to in the midst of a
computation. First, stack-frames and implementation codes are
really just descriptions, in a rather inelegunt language, of the
state of the process they descrihe. Like any description, they
make explicit some of what was implicit in the process itself
(this is one reason thev are useful in debugging). Furthermore,
because of the nature of implementation. they are always
available. and always true. They have these properties because
they pluy a causal role in.the very existence of the process they
implement: they therefore automatically solve the “event-to-
deseription” direction of causal connnction. Second. debugging
systems must solve the “description to reality” problem, by
providing a way of making revised descriptions of the process
true of that process. They carefully provide facilities for
altering the underiying state, based on the user's description of
what that state should be. Without this direction of causal
connection. the debugging system. like an abstract model. could
have no effect on the process it was wxamining. And finally,
programmers who write debugging systems wrestle with the
problem of providing a proper vantage point. [n this case,
practice hus been particularly atheoretical; it is ‘typical to
arrange, very cautiously, for the dehugger to tiptoe around its

‘own stack frames. in order to avoird variahle clashes and other

unwanted interactions.

As we will see in developing 3-Lisp, all of these concerns
can be dealt with in a reflective language in ways that arc both
simple and implementation-independent. The procedural code in
the metacircular processor serves as the “theory” discussed
above: the cnusal connection is provided by a mechanism
whuereby procedures at one levei in the retlective tower are run
in the process one level above (a cleun way. essentially, of
enabling a program to define subroutines to be run in its awn
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implemeutation). In one sense it is all straightforward; the
subtlety of 3-Lisp has to du not so much with the power of such
a mechanism. which is evident, but with how such power can be
finitely provided — a question we will examine in scction 9.

Some final assumptions. [ assume u simple serial model of
computation, illustrated in Figure 1, in which a computational
process as a whole is divided into an internal assemblage of
program and data structures collectively called the structural
field. coupled with an internal process that examines and
manipulates these structures. In computer science this inner
process {or ‘homunculus’) is typically called the interpreter; in
order to avoid confusion with semantic notions of interpretation,
I will call it the processor. While models of reflection for
concurrent systems could undoubtedly be formulated, I claim
here only that our particular architecture is general for caleuli
of this serial (i.e., single processor) sort.

I will use the term ‘structure’ for elements of the structural
field, all of which are inside the machine, never for abstract
mathematical or other “external” entities like numbers,
functions, or radios. (Although this terminology may be
confusing for semanticists who think of a structure as a model, [
want to avoid calling them expressions. since the latter term
connotes linguistic or notational entities. The aim is for a
concept covering both data structures and internal
representations of programs, with which tn categorize what we
would in ordinary English call the structure of the overall
process or agent.) Consequently, I call metastructural any
structure  that designates another structure, reserving
metasyniuctic for expressions designating linguistic entities or
nxpressions.” Given our interest in internal self-reference, it is

clear that hoth structural {leld and processor, as well as”

numbers and functions and the like, will be part of the semantic
domain. Note that metastructural caleuli must Le distinguished
froin those that are higher-order, in which terms and arguments
may designale functions of any degree (2-Lisp and 3-Lisp will
have both properties).?

3. A Framework for Computational Semantics

We turn, then, to questions of semantics. In the simplest
case, semantics is taken to iuvolve a mapping, pussibly
contextually relutivized, (rom a syntactic to semantic domain, as
shuwn in Figure 2. The mapping () is called an interpretation
funetion (Lo be distinguished, as noted above, {rom the standard
eosuputer seience notion of an interpreter). [t is usually specified
inductively, with respect to the compositional structure of the
elements of the syntactic domain, which is typically a set of
syntactic or linguistic sorts of entities. The semantic domain
may he of any type whatsoever, including @ domain of
hehaviour; in rellective systems it will often include the
syntactic domain as a proper part. We will use a variety of
dilTerent terms for different kinds of semantic relationship; in
the general case, we will call s a symbol or sign, and say that s
signifies d, or conversely that d is the significance or
wterpretation of s,

In a computational setting, there are several semantic
relationships — not different ways of characterizing the same
relationship  (as operational and denotational semantical
aceounts are sometimes taken to be), for example. but genuinely
distinet relationships. These different relationships make for a
move complex semantic [ramework, as do ambiguities in the use
of words like ‘program’. [n many settings, such as in purely
extensinnal functional programming languages. such distinctions
are inconsequentil. But when we turn to veflection, self-
reference. and metastructural processors. these otherwise minor
disunctions play a much more important role. Also, since the
semantical theovy we adopt will be at least partially embedded
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within 3-Lisp. the analysis will affect the formal design. Our
approach. therefore. will be start with basic and simple
intuitions. and to identify a liner-zrained set of distinctions than
arve usually emploved. We will consider very bricily the issue of
how current programmung language semantics would be
reconstructed in these terms. but the complexities involved in
answering that question adeguately would take us beyond the
scope of the present paper:

At the outset. we distinguish three things: a) the objects
and events in the world in which a computational process is
embedded, including both real-world objects like cars and caviar,
and set-theoretic abstractions like numbers and functions (i.e.,
we adopt a kind of pan-platonic idealism about mathematies): b)
the internal elements, structures, or processes inside the
computer, inclading data structures. program representations,
execution sequences and so forth (these are all formal objects, in
the sense that computation is formal symbol manipulation); and
¢) notational or communicational expressions, in some externally
observable and consensually established medium of interaction,
cuch as strings of characters, streams of words, or sequences of
display images on a computer terminal. The last set are the
consitituents of the communication one has with the
computational process; the middle are the ingredients of the
process with which one interacts, and the first (at least
presumptively) are the elements of the world about which that
communication is held. In the human case, the three domains
correspond to world, mind, and language. .

It is a truism that the third domain of objects —
communication elements — are semantic. We claim, howaever,
that the middle set are semantic as well (i.e., that structures are
bearers of meaning, information, or whatever). Distinguishing
between the semantics of communicative expressions und the
semantics of internal structures will be one of main features of
the framework we adopt. It .should be noted. however, that in
spite of our endorsing the reality of internal structures, and the
reality of the embedding world. it is nonetheless true that the
only things that actvally happen with computers (at least the
only thing we will consider, since we will ignore sensors and
manipulators) are communicative interactions. If, for example, T
ask my Lisp machine to calculate the square root of 2. what I do
is to type some cxpression like (SQRT 2.0) at it, and then receive
back some other expression, probably quite like 1.414, by way of
response. The interaction is carried out entirely in terms of
expressions; no structures, numbers, or functions are part of the
interactional event. The participation or relevance of any of
these more abstract objects, therefore, must be inferred from,
and mediated through. the communicative act.

We will begin to analyse this complex of relationships
using the terminoclogy suggested in Figure 3. By 0, very simply,
we refer to the relationship between external notational
expressions and internal structures; by ¥ to the processes and
behaviours those structural lield elements engender (thus v is
inherently temporal), and by % to the entities in the world that
they designate. The relations » and v are named, for mnemonic
convenience, by analogy with philosophy and psychology,
respectively, since a study of % is a study of the relationship
hetween structures and the world, whereas a study of ¥ is a
study of the relationships among symbols, all of which, in
contrast, are “within the head” (of person or machine).

Computation is inherently temporal; our semantic analysis,
therefore, will huve to deul explicitly with relationships across
the passage of time. [n Figure 4, therefore, we have unfolded
the diagram of Figure 3 across a unit of time, so ds to get at a
full configuration of these relationships. The expressions n,.and
ny are intended to be linguistic or communicative entities, as
described above; s; and sy are internal structures over which
the internal processing is defined. The relationship 0, which we
will call internalisution, relates these two kinds of object, as
appropriate {or the device or process in queustion {we will say, in
addition, that ny notates s(). For example. in first-order logic n,
and ny would he expressions, perhaps written with letters and
spaces and ‘3’ signs; sy and sq, . the extent they can cven be
said to exist, would be somethin, like abstract derivation tree




Figure 3: Semantic Relationships in a Computational Process

types of the corresponding first-order formulae. In Lisp, as we
will see, ny and no would be the input and output expressions,
written with letters and parentheses, or perhaps with boxes and
arrows; s; and s; would be the cons-cells in the s-expression
heap. .
In contrast. dy and ds are elements or fragments of the
embedding world, and & is the relationship that internal
structures bear to them. b, in other words. is the interpretation
function that makes explicit what we will call the designation of
internal structures (not the designation of linguistic terms,
which would be described by we0). The relationship between my
mental token for T, S. Eliot, for example. and the poet himself,
would be formulated as part of », whereas the relationship
hetween the public name “T. S. Eliot’ and the poet would be
expressed as #(O(~T.S.ELIOT)) » TSELIOT. Similarly, ¢ would
relate an internal "numeral” structure {(say. the numeral 3) to
the corresponding number. As mentioned at the outset, our
focus un % is evidence of nur permeating semantical assumption
that all structures have designations - or, to put it -another
way. that the structures are all symbols.*

The ¥ relation, in contrast to O and :, always (and
necessarily, because it dosent have access tn anything else)

_relutes some internal structures to others, or at least to

hehaviours over them. To the extent that it would make sense
to wlk of a ¥ in logic. it would approximately he the (ormally
computed derivability relationship (i.e. =) in a natural
deduction or resolution schemes, ¥ would be a subset of the
derivability relationship, picking out the particular inference
procedures those regimens adopt. In u computational setting,
however, ¥ would be the function computed by the processor
(i.e.. ¥ is evaluation in Lisp).

The relationships ©. ¥. and » have dilferent relative
importances in different linguistic disciplines, and different
relationships amoug them have been given different names. For
example. O is usually ignored in logic, and there is little
tendency to view the study of ¥, called proof theory, as
semantical. although it is always related to semantics, as in
proving soundness and completeness (which. incidentally, can be
expressed as the equation wis|,s9) 5 [ dy G do |, if one takes ¥
o he a relation, and % to he an inverse satisfaction relationship
hetween sentences und possible worlds that satisfy them). In
addition, there arc a variety of "independence” claims that have
arisen in different fields. That ¥ does not uniquely determine &,
for example. is the “psychology narrowly construed” and
concomitant methodological solipsism of Putnam, Fodor, and
others (Fodor 19804. That O is usually specifiable
compositionally and independently of % or + is essentially a
statement uof the autonomy thesis for lunguage. Similarly, when

.0 cannot be specified: indepently of ¥, computer science will say

that a programming linguage “cannot be parsed except at
runtime” (Teco and the first versions of Smalltalk were of this
character).

A thorough analysis of these semantic relationships,
however, and of the relationships among them, is the subject of
a different puper. For present purposes we need not take a
stand on which of O, %, or % has a prior claim on being
semantics, but we do need a little terminology to make sense of
it all. For discussion, we will refer to the "®" of a structure as
its declarative import, and to its "¥" as i procedural
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Figure 4: A Framework for Computational Semantics

consequence. It i3 also convenient to identify some of the
situations when two of the six entities (ny, ng, 8y, sq, dy, and
do) are identical. In particular, we will say that s, is seif.
referential if d, = sy, that ¥ de-references sy if 30 = dy, and that
¥ is designation-preserving (at s1) when dy = da (as it always ig,
for example. in the A-calculus, where ¢¥ — a- and g-reduction —
do not alter the interpretation in Lhe standard model).

It is natural to ask what a program is, what programming
language semantics gives an account of. and how (this is a
related question) ® and ¥ relate in the programming language
case. An adequate answer to this, however, introduces a maze
of complexity that will be considered in future work. To
appreciate some of the dilficulties, note that there are two
different ways in which we can conceive of a program,
suggesting different semantical analyses. On the one hand, a
program can be viewed as a linguistic object that describes or
signifies a computational process consisting of the data
structures and activities -that result from (or arise during) its
execution. In this sense a program is primarily a
communicative object. not se much playing a role within a
computational process as existing outside the process and
representing it. Putting aside for a moment the question of
whom it is meant to communicate to. we would simply say that
a program is in the domain of 0, and, roughly, that 0 of such
an cxpression would be the computation described. The same
characterization would of cnurse apply to a specification; indeed,
the only salient difference might be that a specification would
avoid using non-effective concepts in describing behaviour. One
would expect specifications to be stated in a declarative
language (in the sense defined in footnote 4), since specifications
aren’t themselves to be executed or run, even though they speak
about behaviours or computations. Thus, for program or
specification b deseribing computational process ¢, we would
have (for the relevant language) something like ®(O(b)) = ¢. If
b were a program, there would be an additional constraint that
the program somehow play a causal role in engendering the
computational process ¢ that it is taken to describe.

There is. however, an alternative conception, that places
the program inside the machine as a causal participant in the
behaviour that results. This view is closer to the one implicitly
adopted in Figure i, and 1t is closer (we claim) to the way in
which a Lisp program must be semantically analysed. especially
if we are to understand Lisp's emergent reflective properties. In
some ways this different view has a von Neuman character, in
the sense of equating progrum and data. On this view, the more
appropriate equation would seem to be ¥(O(b)) = ¢, since one
would expect the processing of the program to yield the

_.appropriate behaviour. One would seem to have to reconcile .

this equation with that in the previous paragraph; something it
is not clear it is possible to do.

But this will require further work. What we can say here
14 that programming language semantics seems to focus on
what, in our terminology, would be an amalgam of ¥ and .
For our purposes we need only note that we will have to keep ¥
and b strictly separate, while recognising (because of the context
relativity und nonlocal effects) that the two parts cannot be told
independently. Formally, one needs to specify a general
significance function ¥, that recursively specifies ¥ and %
together. In particular, given any structure sy, and uny state of
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the processor and the rest of the field (encoded. sav, in an
environment, continuation, und perhaps a store). ¥ will specify
the structure. contiguration. and state that would result (ie., it
will specity the use of 51). and also the relationship to the world
that s, signifies. For example. given a Lisp structure of the
form (+"1 (PRCG (SETQ A 2) A))., ¥ would specify that the whole
structure designated the number three, that it would return the
aumeral 3. and that the machine would be left in a state in
which the binding of the variable A was changed to the numeral
2.

Befure leaving semantics completely, it is instructive to
apply our various distinctions to traditional Lisp. We said
above that all interaction with computational processes is
mediated by communication: this can be stated in this
terminology by noting that © and o' (we will call the latter
externalisation) are a part of any interaction. Thus Lisp’s "read-
eval-print” loop is mirrored in our analysis as an iterated
version of 0lowe@ (i.e., if ny is an expression you type at Lisp,
then ng is @'l(¥(o(n;)))). The Lisp structural field, as it
happens, has an extremely simple compositional structure, based
on a binary directed graph of atomic elements called cons-cells,
extended with atoms, numerals, and so forth. The linguistic or
communicative expressions that we use to represent Lisp
programs — the formal language objects that we edit with our
editors and print in books and on terminal screens -— is a
separate lexical (or sometimes graphical) object, with its own
syntax (of parentheses and identifiers in the lexical case; of
boxes and arrows in the graphical).

There is in Lisp a relatively close correspondence between
expressions and structures; it is one-to-one in the graphical case,
but the standard lexical notation is both ambiguous (because of
shared tuils) and incomplete (hecause of its inability to
represent cyclical structures). The correspondence need not
have been as close as it is; the process of converting from
external syntax or notation to internal structure could involve
arbitrary amounts of computation, as evidenced by read macros
and other syntactic or notational devices. But the important
point is that it is structural ficld clements, not notations, over
which most Lisp operations are defined. If you type
(RPLACA *(A . B) 'C). for example, the processor will change the
CAR of a field structure; it will not back up your terminal and
erase the eleventh character of vour inbut exoression.
Similarly, Lisp atoms are ficld elements. not to he confused with
their lexical representations (called P-numes). Again, yuoted
forms like (QUOTE anc) designate structural field elements, not
input strings. The form (QUoTE ..), in other words, is a
structural quotation operator: x'owtwnal quutuuon is- different,
usually notated with string quotes (zance).5

1. Evaluation Considered Harmful

The claim that all three relationships (0, #», and v) figure
crucially in an account of Lisp is not u formal one. [t makes an
empirical claim on the minds of programmers, und cannot be
settled by pointing to any current theories or implementations.
Nonetheless., it is unarguable that Lisp's numerals designate
numbers, and that the atoms 1 and NiL (at least in predicative
contexts) designate truth and fulsity — no one could learn lisp
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without learning this fact. Similarly, (€0 'A '8) designates
falsity. Furthermore, the structure (CAR '(A . B)) designates
the atom a; this is manifested by the fact that people, in
describing Lisp, use expressions such as "if the CAR of the list is
LAMBOA, then it's a procedure”, where the term "the CAR of the
list” is used as an English referring expression, not as a quoted
fragment of Lisp (and English, or natural language generally, is
by definition the locus of what designation is). (QUOTE a), or ’a,
is another way of designating the atom A: that's just what
quotation is. Finally, we can take atoms like CAR and + to
designate the obvious functions.

What, then, is the relationship between the dec!aratxve
import () of Lisp structures and their procedural consequenca
(#)? Inspection of the data given in Figure 5 shows that Lisp
obeys the following constraint (more must be said about ¥ in
those cuses for which (¥(3)) » ®(s), since the identity function
would satisfy this equation):

vs € S[if [w(3)€ S] then [¥(s)* ¥(3) ) )

eise [ D(¥(S)) = d(s)]]
All Lisps, including Scheme (Steele and Sussman 1978a), in
other words, dereference any structure whose designation is
another structure, but will return a co-designating structure for
any whose designation is outside of the machine (Figure 6).
Whereas evaluation is often thought to correspond to the
semantic interpretation function », in other words, and
therefore to have tvpe EXPRESSIONS — VALUES, evaluation in Lisp
is often a designation-preserving operation. In fact no computer
can evaluate a structure like (+ 2 3), il that means returning
the designation. any more than it can evaluate the name
Hesperus or peanut butter.

Obeying equation (1) is highly anomolous. [t means that
even il one knows what Y is. and knows X evaluates to Y, one
still doesn’t know what X designates. [t licences such semantic
anomalies as (+ 1 '2), which will evaluate to 3 in all extant
Lisps. Informally, we will say that Lisp's evaluator crosses
semantical [evels, and therefore obscures the difference between
simplification and designation. Given that processors cannot
always de-reference (since the co-domain is limited to the
structural field), it seems they should always simplify, and
therefore ubey the following constraint (diagrammed in Figure
3

(1)

¥8 € S [d(¥(5)) = H(S) A NORMAL-FORM(¥(S)) ] (2}

The content of this equation clearly depends entirely on the
content of the predicate NORMAL-FORM (if NORMAL -FORM were AX.true
then ¥ could be the identity functivn). [n the A-calculus, the . -

/ normal fonn
s2_ |
&

Figure 7: A Normalisation Protocol
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notion of normal-formedness is defined in terms of the
processing protocols {a- and g-reduction), but we cannot use that
definition here, on threat of circularity. Instead, we say that a
structure is in normal form if and only if it satisfies the
following three independent conditions:

L. It is context-independent, in the sense of having the same
declarative () and procedural (%) import independent of
the context of use;

2. It is side-¢ffect-free, implying that the processing of the
structure will have no cffect on the structural field,
processor state, or external world; and

3. It is stahle, meaning that it must normalise to itself in all
contexts, so that ¥ will he idempotent. '

We would then have to prove, given a language specification,
that equation (2) is satisfied.

Two notes. First, I won't use the terms ‘evaluate’ or
‘value’ for expressions or structures, referring instead to
nurmalisation for ¥, and designation for &. [ will sometimes call
the result of normulising a structure its result or what it
returns. There is also a problem with the terms ‘apply’ and
‘application’; in standard Lisps, apPLY is a f{unction (rom
structures and arguments onto values, but its use, like
‘evaluate’, is rife with use/mention confusions. As illustrated in
Figure 8. we will use ‘apply’ for mathematical function
application — j.e.. to refer to a relationship between a function,
some arguments, and the value of the function applied to those
arguments -~ and the term ‘reduce’ to relate the three
expressions that designate functions, arguments, and values,
respectively.  Note that [ still use the term ‘value' (as for
example in the previous sentence), but only to name that entity
onto which a function maps its arguments.

Second, the idea of a normalising processor depends on the
idea that symbolic structures have a semantic significance prior
to. and independent of, the way in which they are treated by
“the processor. Without this assumption we could not even ask
about the semantic character of the Lisp (or any other)
processor, let alone suggest a cleaner version. Without such an
assumption, more generally, one cannot say that a given
prucessor is rorrect, or coherent, or incoherent: it is merely what
it is. Given one account of what it does (like an
implementation), one can compare that to another account (like
a specification). One can ualso prove that it has certain
properties, such as that it always terminates, or uses resources
in certain ways. One can prove properties of programs 'wrilten
in the language it runs (from a specification of the ALGOL
processor. for example, one might prove that a particular
program sorted its input). However none of these questions deal
with the fundamental question about the semantical nature of
the processor itself. -We are not looking for a way in which to
say that the semantics of (CAR ‘(A . 8)) is A because that is how
the language is defined; rather, we want to say that the
language was defined that way because 4 is what (CAR '(A . 8))
designates. Semantics. in other words, can be a tool with which
to judge systems, not merely a method of describing them.

" expected.

5. 2.Lisp: A Semantically Rationalised Dinlect

Since we have torn apart the notion of evaluation into twaq
constituent notions. we must start at the beginning and builg
Lisp over again. 2-Lisp is a proposed result. Some summary
comments can be made. First, [ have reconstructed what [ caj]
the category structure of Lisp, requiring that the categories intg
which Lisp structures are sorted. for various purposes, line up
(giving the dialect a property called category alignment). More
specifically, Lisp expressions are sorted into categories by
notation, by structure (atoms, cons pairs, numerals), by
procedural treatment (the “dispatch” inside evaL), and by
declarative semantics (the type of object designated).
Traditionally, as illustrated in Figure 9, these categories are not
aligned: lists, a derived structure type, include some of the pairs
and one atom (NIL); the procedural regimen treats some pairs
(those with Lam8DA in the CAR) in one way, most atoms (except T
and NIL) in another, and so forth. In 2-Lisp we require the
notational, structural, procedural, and semantic categories to
correspond one-to-one, as shown in Figure 10 (this is a bit of an
oversimplification. since atoms and pairs - representing
arbitrary variables and arbitrary function application structures
or redexes — can designate entities of any semantic type).

A summary of 2-Lisp is given in Figure 11, but some
comments can be made here. Like most mathematical and
logical languages, 2-Lisp is almost entirely declaratively
extensional. Thus (+ 1 2), which is an abbreviation for
(* . [12]), designates the value of the application of the
function designated hy the atom + to the sequence of numbers
designated by the rail [t 2]. [n other words (+ 1 2) designates
the number three, of which the numeral 3 is the normal-form
designator; (+ 1 2) therefore normalises to the numeral 3, as
2-Lisp is also usually call-by-value (what one can
think of as “procedurully extensional"), in the sense that
procedures by and large normalise their arguments. Thus,
(+ 1 (BLOCK (PRINT “heilo”) 2) will. normalise to 3, printing
‘hallo’ in the process.

Many properties of Lisp that must normally be posited in
an ad hoc way [all out directly Irom our analysis. For esample,
one must normally state explicitly that some atoms, such as T
and NIL and the numerals, are self-evaluating; in 2-Lisp, the fact
that the boolean constants are sell-normalising follows directly
from the fact that they are normal form designators. Similarly,
closures are a natural category, and distinguishable from the
functions they designate (there is ambiguity. in Scheme,. as to
whether the value of + is a function or a closure). Finally,
because of the category alignment, il x designates a sequence of
the first three numbers (i.e., it 1s bound to the rail {2 3}), then
(+ . x) will designate five and normalise to 5; no metatheoretic
machinery is needed for this “uncurrying” operation (in regular
Lisp one must use (apPLY ' 1); in Schenie, (APPLY » X1).

There are numerous properties of -Lisp that we will
ignore in this paper. The dialect is defined (in [Smith $20) to
include side-effects, intensional procedurns (that do aot
normalise their arguments), and a variety of other sometimes-
shunned propertivs, in part tw show that our semantic
reconstruction is compatible with the [ull gumut of features
found in real programming languages. Recursion is hundled
with explicit [ixed-point operators. 2-Lisp is an eminently
usable dialect (it subsumes Scheme but is more powertful, in
part because of the metastructural access to closures), although
it is ruthlessly semantically strict.

6. Scif-Réference in 2.Lisp

We turn now to matters of seif-reference. )

Traditional Lisps provide names (¢vAL and apeLy) for the
primitive processor procedures; the 2-Lisp analogues are
NORMALISE and REDUCE. Ignoring for a inoment context arguments
such as environments and contiruations, (4OAMALISE (v 2 1))
designates the normal-form structure to which (+23)
normalises, and therefore returns the handle 's. Similarly,
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Figure 11: An Querview of 2-Lisp

We begin with the objects. Ignoring input/output
categories such as characters, strings, and streams, there are
seven 2-Lisp structure types. as illustrated in Table 1. The
numerals (notated as usual) and the two buolean constants
(notated '$T' and ‘$f') are unique (i.e., canonical), atomic,
normal-form designators of numbers and truth-values,
respectively. Rails (notated '[A; A, .. A ]") designate sequences;
they resemble standard Lisp lists, but we distinguish them from
pairs in order to avoid category confusion. and give them their
own name, in order to avoid confusion with sequences (or
vectors or tuples), which are normally taken to be platonic
ideals. All atoms are used as variables (i.e., as context-
dependent names); as a consequence, no atom is nermal-form,
and no atom will ever be returned as the resuit of processing a
structure {although a designator of it may be). Pairs
(sometimes also called redexes, and notated "(A; . 4,)') designate
the value of the function designated by the CAR applied to the
arguments designated by the CbR. By taking the notational
form (A, A; .. A,)" to abbreviate ‘(A, . [A; A; .. A,])" instead of
"(Ay . (Ay . ( . (A, . NIL)..))). we preserve the standard look
of Lisp programs, without sacrificing category alignment. (Note.
that in 2-Lisp there is no distinguished atom uiL, and ‘() is a
notational error — curresponding to no structural field element.)
Closures (notated °(CLOSURE: .. }') are normal-form function
designators; but they are not canonical, since it is not generally
decidable whether two structures designate the same function.
Finally, handles are unique normal-form designators of all
structures: they are notated with a leading single quote mark
(thus "'’ notates the handle of the atom notated ‘A’, ‘(A . B}’
notates the handle of the pair notated ‘(A . 8)’, ete). Because
designation and simplification are orthogonal, quotation is a
structural primitive, not a special procedure (although a QuOTE
procedure is easy to define in J-Lisp).

We turn next to the (unctions {and use '=' to mean
‘normalises to’). There are the usual arithmetic primitives (», -,
*, and /). [dentity (signified with ) is computable over the full
semantic domain except functions; thus (* 3 (» 1 2)) =» $7, but
(= + (LAMBDA [Xx] (+ 2 X))) will generate a processing error, even
though it designates truth. The traditionally unmotivated
difference between £g and €QUAL turns out to be an expected
difference in granularity between the identity of mathematical

(ATOM, PAIR. RAIL, JOOLEAN, NUMERAL, CLOSURE, and HANDLE) and 4 for
the extarnal types (NUMBER., TRUTH-VALUE, SEQUENCE, and FUNCTION).
Thus: .

(NUMBER 3) = T
(NUMERAL *3) => ST
(NUMBER *3)  => $F
(FUNCTION ») => ST
(FUNCTION '+) = SF

Procedurally intensional If and CoND are defined as usual: BLocX
{as in Scheme) is like standard Lisp's PROGN., 80DY, PATTERN, and
ENVIRONMENT are the three selector functions on closures.
Finally, functions are usually “"defined" (i.e., convenientiy
designated in a contextually relative way) with structures of the
form (LAMHDA SIMPLE ARGS 800Y) (the keyword SIMPLE will be
explained presently); thus (LAMBDA SIMPLE (X] (+ X X)) returns a
closure that designates a function that doubles numbers;
((LAMBDA SIMPLE [X] (+ X X)) 4) = 8.

2-Lisp is higher order, and therefore lexically scoped, like
the A-calculus and Scheme. However, as mentioned earlier and
illustrated with the handles in the previous paragraph, it is also
metastructural, providing an explicit ability to name internal
structures. ‘I'wo primitive procedures, called uP and opows
(usually notated with the arrows '+ and 'i’) help to mediata this
metastructural hierarchy (there is otherwise no way to add or
remove quotes; *2 will normalise to ‘2 forever, never to 2).
Specifically, +sTauc designates the normal-form designator of the
designation of STAUC, i.e., rSTAUC designates what STAUC
normalises to (therefore +(+ 2 3) =» '5). Thus:

(LAMBOA SIMPLE [X] X) designates a function,

‘(LAMBOA SIMPLE [X] X)designates a pair or redex, and

*(LAMBDA SIMPLE [X] .x) designates a closure.
(Note that '+’ is call-by-value but not declaratively extensional.)
Similarly. :s7RUC designates the designation of the designation
of STAUC, providing the designation of STRYC is in normal-form
(therefore 4+°2 = 2). +rSTRUC is always equivalent to STRUC, in
terms of both designation and result; so is ri$TRUC when it is
defined. Thus il 0ouBLE is bound to (the result of normalising)
(1AMBOA [4] (+ x X)), then (R0DY OOUBLE) generates an error,
since BOOr is axtensional and oouste designates a function, but
(800Y -00uBLE) -will designate the pair (+ x x).

sequences and their syntactic designators; thus:

Z= [Elzzlgl[ltz‘ ;];]) = :: Type Designation  Normal Canonical Notation

E N £ d

(s[123]°Clz23]) = $F Numerals Numbers Yes Yes - digits
{In the last case one structure designates a sequence and one a Boolenn.f‘. Truth-Values Yes Yes — STarsk
rail.) -1ST and ReEST- are the CAR/COR analogues on sequences and Handles' Structures * Yes Yes' — " STRUC
rails; thus, (15T [10 20 30]) => 10; (REST (10 20 30]) =» [20 30]. Closures  Functions Yes No CCONS  (closure}
¢arR and CDR are defined over pairs; thus (Car "(A . 8)) = A Rails Sequences Some No  RCONS  [STAUC.. STRUC]
(because it designates a); and (COR "(+ 1 2)) = (1 2]}. The pair Atoms (®of Binding) No - ACONS  alphamerics
constructor is called PCONS (thus (PCONS ‘A '8) => '(A . 8)}); the Pairs (Value of App.) No - PCONS  (STRUC . STRUC)
corresponding counstructors for atoms, rails, and closures are . .
called acoNs. rcows, and ccons. There are 11 primitive Tuble 1: The 2-LiSP(and 3-LISP) Categories
churactoristic predicates, 7 for the internal structural types
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Figure 12: Meta-Circular Processors

(NORMALISE '(CAR '(A . 8))) = A
(NORMALISE (PCONS '» '[2 3])) => 'SF
(REDUCE '1ST '[10 20 30]) = 10,

More generally, the hasic idea is that ®(NORMALISE) = ¥, to be
contrasted with #(i), which is approximately , except that
because ¢ is a partial function we have b(4 o NORMALISE) = ©.
Given these cquations. the behaviour illustrated in the
foregoing examples is forced by general semantical
considerations.

In any computational formalism able to model its own
syntax and structures.® it is possible to construct what are
commonly known as metacircular interpreters, which we cail
melacircular processors (or {CPs) — “meta” because they
operate on {and therefore terms within them designate) other
formal structures. and "circular” because they do not constitute
a definition of the processor. They are circular for two reasons.
First, they have to be run by that processor in ovder to yield
any sort of behaviour (since they are programs, not processors,
strictlv). Second, the behaviour they would thereby engender
can be known oanly if one knows beforehund what the processor
does.  (Standard techniyues of lixed points, furthermore, are of
no help in discharging this circularity. because this kind of
modelling is a kind of self-mention, whereas recursive
definitions are more self-use.) Nonetheless, such processors are
pedagogically illuminating, and play a critical role in the
development of procedural reflection.

The role of MCPs is illustrated in Figure 12, showing how,
if we ever replace P in Figure 1 with a process that results from
P processing the metacircular processor MCP, it would still
correctly engender the behaviour of any overall program.
‘Tuking processes to be [unctions [rom structures onto behaviour
{whautever behaviour is — functions from initial to final states,
siy), and calling the primitive processor P, we should be able to
prove that PrMCP) = P, where by '==' we mean behaviouraily
equivalent in some appropriate sense. The cquivalence is, of
course, a giobal equivalence; by and large the primitive
processor and the processor resulting from the explicit runnjing
of the MCP cannot he arbitrarily mixed. [f a variable is bound
by the underlving processor P, it will not he able to be looked up
by the metacircular code. for cxample.  Siumilarly, if the
metacircular processor encounters : control-structure primitive,
such as a THROW or u QUIT, it wixl not cause the metacircular
processor itself Lo exit prematurely, or to terminate. The point,
rather, is that if an entire computation is run by the process
that results from the explicit processing of the MCP by P, the

results will be the same (modulo time) as il that entire
computation had been carried out directly by P, MCPs are not
causally connected with the systems they model:

" The reason Lhat we cannot.mix code for the underlying
processor and code for the MCP und the reason that we ignored
context arguments in the definitions above bdth have to do with
the state of the processor P. In very simple systems (unordered
rewrite rule systems, for example, and hardware architectures
that put even the program counter into a memory location), the
processor has no internal state, in the sense that it is in an
identical configuration at every “click point” during the running
of a program (i.e.. all informatien is recorded explicitly in the

structural fleld). But in more vomplex circumstances, there is
always a certain amount of state to the processor that affects its
behaviour with respect to any purticular embedded fragment of
code. In writing an MCP one must demonstrate. more or less
explicitly, how the processor state affects the processing of
object-level structures. By “more or less explicitly” we mean
that the designer of the MCP has options: the state can be
vepresented in explicit structures that are passed around as
arguments within the processor, or it can be absorbed into the
state of the processor running the MCP. (I will say that a
property or feature of an object language is absorbed in a
metalanguage or theory just in case the metatheory uses the
very same property to explain or describe the property of the
object language. Thus conjunction is absorbed in standard
model theories of [irst-order logics, because the semantics of
P A 0 is explained simply by conjoining the explanation of P and
qQ — specifically, in such a formula as: 'P A Q' is true just in
case ‘P’ is true and 'Q is true.)

The state' of a processor for a recursively-embedded
functional language, of which Lisp is an example, is typically
represented in an environment and a continuation, both in
MCPs and in the standard metatheoretic accounts. (Note that
these are notions that arise in the theory of Lisp, not in Lisp
itself: except in sell-referential or self-modelling dialects, user
programs don't traffic in such entities.) Most MCPs make the
environment explicit. The control part of the state, however,
encoded in a continuation, must also be made explicit. in order
to explain non-standard control operations, but in many MCPs
(such us in [McCarthy 1965] and Steele and Sussman's versions
for Scheme {see for example {Sussman und Steele 1978b]), it is
absorbed. Two versions of the 2-Lisp metacircular processor, one
absorbing and one makinyg explicit the continuation structure,
are presented in Figures 13 and 4. Note, however. that in both
cases the underlying agency or unima is not reilied; it remains
entirely absorbed hy the processor of the MCP. We have no
mechanism to designiate a process (as opposed to structures),
und no imnethod of obtaining cuusal access to an independent
locus of active agency (the reason. of course, being that we have
no theory of what a process is).

7. Procedural Reflection and 3-Lisp

Given the metacircular processors defined ahove, 3-Lisp can
be non-effectively defined in a series of steps. First, imagine a
dialect of 2-Lisp, called 2-Lisp/1, where user programs were not
run directly by the primitive processor, but by that processor
running a capy of an MCP. Next, iinagine 2-Lisp/2, in which the
MCP in turn was not run by the primitive processor, but was
run hyv the primitive processor running another copy of the MCP.
[te. 3-Lisp is essentially 2-Lisp/co, except that the MCP is
changed in a critical way in order to provide the proper
cunnection between levels. 2-1.i.p. in other words, is what we
call a reflective tower. defined au an infinite number of copies of
an MCP-like program. run at the "top” by an (infinitely {leet)
processor. The claim that 3-Lisp is well-founded is the claim
that the limit exists, as n-c0, of 2.Lisp/n.

We will look at the revised MCP presently, but some
general properties of this tower architecture can be pointed out
first. A rough ideu of the levels uf processing is given in Figure
15: ut each level the procussor code is processed by an uctive
process that interacts with it (locally and serially, as usual), but
cach processor is in turn compused of a structural field fragment
in turn processed by .a retlective processor on top of it. The
implied infinite regress is not problematic, and the architecture
can be efficiently realised, since only a finite amount of
information is encoded in all but a finite number of the bottom
levels.

There are two ways to think about reflection. On the one
hand, one can think of there being a primitive and noticcable
reflective act. which causes the processor to shift levels rather
markedly (this is the explanation that best coheres with some of
our pre-theoretic intuitions about reflective thinking in the
sense of contemplation). On the other hand. the explanation
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(define READ~NORMALISE-PRINT
(Vamboa simple [env stream]
(block {promptdroply (normalise (prompt&read stroam) anv)
straam)
(read-normalise-print anv stream))))
(dafine NORMALISE
(lambdga simplo [struc anv]
{cond [{normal struc) struc]
[(atom struc) (binding struc anv)]
[(rail struc) (normaiise-rail struc anv))}
[{pair struc) (reduce (carstruc) (cdrstruc) env)])))

(define REDUCE
(lambda simple [proc args env]
(lat [[proc! (normaiise proc eav)]]
{selectg (procadure~type proc!)
[simpie (let [[args! (normalise args env)]]
(if (primitive proc!)
{reduce-primitive-simple
proc! argst anv)
(expand-closure proc! args!)))]
[intensional (if (primitiva proct)
{reduce~primitive-intansional
proc! rargs env)
(expand-closure proc! rargs))]
[macro {normalise (expand-closurs proc! targs)
env))1))))
(dafine NORMALISE-RAIL
(lambda simpla [rail eav]
(if (empry rail)
{rcons)
(prep (normalise (lst rail) env)
(normalise-rail (rest rail) env)))))
(dofl ine EXPAND~CLOSURE
(lambda simpie [proct args!]
(normalise (body proc!)
{(bind (pattern proc!)
args!
{envircnment proct})))

Figure 13: A Non-Cuntinuation-Passing 2-LISP MCP

given in the previous paragraph leads one to think of an infinite _

number of levels of retlective processors, each implementing the
one below.” On such a view it is not coherent cither to ask at
which level the tower is running, or to ask how many retlective
levels are running: in some sense they are all running at once.
[ixuctly the sume situation obtains when you use an editor
implemented in APL. [t is not as if the editor and the APL
interpreter are both running together, either side-by-side or
independently; rather, the oune, being interior to the other,
supplies the anima ur ugency of the- outer one. To put this
another way, when you implement one process in another
nrocess. you might want to say that you have two different
processes. hut you don't have concurrency; it is more a
part/whole kind of relation. [t is just this sense in which the
higher levels in our reflective hierarchy are always running:
‘ench of them is in some sense within the processor at the level
below, so that it can thereby engender it. We will not take a
principled view on which account — a single locus of agency
stepping . between levels, or an infinite hierarchy of
simuitaneous processors — is correct, since they turn out to be
behaviourally equivalent. (The simultanecus infinite tower of
levels is often the hetter way to understand processes, whereas
a shilting-level viewpeint is somuctimes the better way to
understand programs.)

3-Lisp, us we said, is an infinite reflective tower based on

2-Lisp. The code at each level is like the continuation-passing 2-,

Lisp MCP. of Figure 4, but extended to provide a mechanism
"whereby the user’s program can gain access to [{ully articulated
descriptions of that program's operutions and structures (thus
extended, and located in a reflective tower, we call this code the
J-Lisp reflective processor). One gains this access by using what
are called reflective procedures - procedures that, when
invoked, are run not at the level at which the invocation
occurred, but one level higher, at the level of the reflective
processor running the program, given as arguments those
itructures being pnssed around in the reflective processor.

{define READ-HORMALISE-PRINT
(Tambda simple [env stream]
(normalise (promptdread stream) anv
(lambda simple [result]
(block (prompt&reply result stream)
(read-normalise-print anv stream})))))
(daf ine NORMALISE
(lambda simple [strec env cont]
(cond [{normal struc) (cont stre) ]
[(atom stre) (cont (binding stre anv))]
[{rai} strc) (normalise-rail stryc snv cont)]
[(pair strc) (reduce (car strc) (cdr strc) anvcont)])))
(define REDUCE
(lambda simple [proc args env cont]
{normalise proc env
(lambda simple (proc!]
(selectq (procedure-type proct)
(simple
(normalise args eav
(lambda simple [args!]
(if (primitive proct)
(reduco~primitive-simple
proc! args! env cont)
(expand-closure proc! args! cont))))]
{intensional
(if (primitive proc!)
(reduce-primitive-intensional
proc! rargs anv cont)
(expand-closure proc! rargs cont))]
[macro {expand-closure proc! rargs
(lambga simple [result)
(normalise result env cont)))]))))))
(dafine NORMALISE-RAIL
(lambda simple [ratl env cont]
(if (empty rail)
(cont (rcons))
(normalise (lst rail) env
(lambda simple [first!]
(normalise-rail (rest rail) env
(lambda simple [rest!]
(cont (prep first! rest!)))))))))
(dafine EXPAND-CLOSURE
(lambda simple [proc! args! cont}
(narmalise {body prog!)
(bind (patterns proc!) args! (env proecl!))
cont)))

Figure 14: A Continuation-Passing 2-LISP MCP

Reflective procedures are essentially analogues of subroutines to
be run "in the implementation”, except that they are in the
same dialect as that being implemented. and can use all the
power of the implemented language in carrying out their
function (e.g., reflective procedures can themselves use reflective
pracedures, without limit). There is not a tower of different
languages ~ there is a single dialect (3-Lisp) all the way up.

. //1// /

/]
7777

Level | Codg

Figure 15: The 3-LISP Reflective Tower
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Rather. there is a tower of processors. necessary because there
is different processor state at each reflective level.

Some simple examples will illustrate. Rerlective
procedures are “detined” (in the sense we described earlier)
using the form (LAMBODA REFLECT ARGS 300Y), where ARGS —~—
typically the rail [ARGS Ewv CONT] — is a pattern that should
match a 3-element designator of, respectively, the argument
structure at the point of call, the environment, and the
continuation. Some simple examples are given in the
"Programming in 3-Lisp” overview in Figure 16, including a
working definition of Scheme's caATCH. Though simple, these
definitions would he impossible in a traditional language, since
they make crucial access to the full processor state at point of
call. Note also that although THROW and CATCH deal explicitly
with continuations. the code that uses them need know nothing
about such subtleties. More complex routines, such as utilities
to abort or redefine calls already in process, are almost ag
simple. In addition, the reflection mechanism is so powerful
that many traditional primitives can be defined: LaMBOA, [F, and
QueTE are all non-primitive (user) definitions in J-Lisp, again
illustrated in the insert. There is also a simplistic break
package, to illustrate the use of the reflective machinery for
debugging purposes. It is noteworthy that no retlective

procedures need be primitive: even LAMBOA can be built up from

scratch.
The importance of these examples comes from the fact that
they are causally connectud in the right way, and will therefore

run in the system in which they defined. rather than being
models of another system. And, since reflective procedures are
fully integrated intn the system design (their names are not
treated as special keywords), they cun be passed around in the
normal higher-order way. There is also a sense in which 3-Lisp
is simpler than 2-Lisp. as well as being more powerful; there
are fewer primitives. and 3-Lisp provides much more compact
ways of dealing ‘with a variety of intensional issues (like
macros).

8. The 3-Lisp Reflective Processor

3-Lisp can be understood only with a close inspection of the
3-Lisp reflective processor (Figure 17), the promised modification
of the continuation-passing 2-Lisp metacircular processor
mentioned above.  HORMALISE (line 7) takes an structure,
environment, and continuation, returning the structure
unchanged (i.e.. sending it to the continuation) if it is in normal
form, looking up the binding if it is an atom, normalising the
elements if it is a rail (HORMALISE-RAIL is 3-Lisp's tail-recursive
continuation-passing analogue of Lisp 1.5's evLIS). and otherwise
reducing the CAR (procedure) with the CDR (arguments). REDUCE
(line 13) first normalises the procedure, with a continuation (c-
PROC!) that checks to see whether it is reflective (by convention,
we use exclamation point suffixes on atom names used as
variables to designate normal form structures). If it is not
refllective, C.PROC' normalises - the arguments, with a
continuation that either expunds the closure (lines 23~25) if the

Figure 16: Programming in3-Lisp:

For illustration, we will look at a handful of simple 3-Lisp
programs. The first merely calls the continuation with the
numeral 3; thus it is scmantically identical to the simple
numeral:
(define THREE .
(Tambda reflect [[] anv cont]
(cont '3))) -
Thus (three) = 3; (+ 11 (three)) = 14. The next example is an
intensional predicate, true if and only if its argument (which
must be a variable) is bound in the current context:
{def ine B0UND
(lambda reflect [[var] env cont]
(1f (bound-in-env var anv)
(cont °'ST)
{cont 'SF)}))
or equivalently
(define DOUND
- {lambda reflact [[var] anv cont)
(cont r(bound-in-snv var snv))))
Thus (LEF [[X 3]] (BOUMD %)) = $T, whereas (0OUND X) => $F in
the global context. The following quits the computation, by
discarding the continuation and simply “returning”:
(daf ina QUIT
(lambda reflect [[] env cont]
"QUIT!))
There are a variety of ways to implement a THAOW/CATCH pair;
the following defines the version used in Scheme:
(define SCHEME-CATCH
(lambda reflect [[tag hody] catch-anv catcn-cont]
(normal isa body
(bina tag
r(lampda reflect ([answer] throw-env throw-cont]
{(normalise answar throw-gnv cateh-cont))
catch-anv)
. ) catchzcont)))
For example:
(et [[x 1]] .
(+ 2 (schame-catch punt
(* 3 (74 (1f (s 2 1)
(punt 15)
(- = 1))
would designate seventeen and return the numeral 17.
In addition. the reflection mechamsm s so powerful that
many traditional primitives can be defined: LAtAOA, 17, and QUOTE

are all non-primitive (user) definitions in 3-Lisp, with the
following definitionas:
{define LAMBOA .
(lamnhda reflect {[kind pattern body) env cont]
(cont (ccons kind tonv pattern body))))
(define IF
(lambda reflect [[promise then elsce] env coat]
{normaiise premise eav
(lambda simple [premizel]
(normalise (of lpremise! then alse) env cont)))))
{define QUOTE

{Yambda reflact [[arg] env cont] (cont rarg)))

Some comments. First, the definition of waeos just given is of
course circular; a non-circular but effective version is given in
Smith and des Riviéres [1984]; the one given in the text, if
executed in 3-Lisp, would leave the definition unchanged, except
that it is an innocent lie; in real 3-Lisp kind is a procedure that
is called with the arguments and environment, allowing the
definition of (lamoda macro ... ), ete. CCONS is a closure
constructor that uses SIMPLE and REFLECT to tag the closures for
recognition by the reflective processor described in section 6. €F
is an extensional conditional. that normalises all of its
arguments: the definition af (¥ defines the standard intensional
version that normalises only one of the second two, depending
on the result of normalising the first. Finally, the definition of
quote will vield (QuoTE A) = ‘a.

Finally, we have a trivial break package, with exv and
CONT bound in the break environment for the user to see, and
AFTURN bound to a procedure that will normalise its argument
and pass that out as the result of the call to 8reéax:

(def tne BREAK
(lambda reflect [[arg] env cont]
(plopx (print arg yri@ary-strcnm)
‘(read-normaiise-priat ">>*
(bind® ["env ranv]
("cont rcont] .
{"return r(lambda raflect [[aZ] e2 c2}
(normalise a2 e2 cont))]
anv)
primary-straamj)))
[f viewed as models of control constructs in a language being
impletnented, these detinitions will look innocuous; what is
important to remember is that they work in the very language
in which they are defined.
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(define READ-NORMALISE-PRINT
(Yambda simpla [env stream]
(block (promptdreply (normaliss (prompt&read stream) unv)
stream)
{read-normalise-print onv stream))}))
(dafine NORMALISE
{lambda simpla [struc aeuv]
(cond [(normal struc) struc}
{(atom struc) (binding struc anv)]
{(rail struc) (normalise-rail struc anv)]
[(pair struc) (reduce (carstruc) (cdrstruc) env)])))
(dafine REOUCE
(lambda simpla [proc args env]
(lat [[proc! (normaliss proc env)]]
(selectg (procedure-typae proc!)
[simple (let [[args! (normalise args env)]]
(if (primitive proct)
(reduce-primitive~simple
proc! argsi aenv)
(expand-closure proc! argst)))]
[{intensional (if (primitiva proc!)
(reduce-primitive- intansional
proc! targs env)
(expand-closure proc! targs))]
{macro (normalise (expand-closure proc! rargs)
env))1))))
(define NORMALISE-RAIL
(lambda simple {rail env]
(if (empty rail)
" (recons)
(prep (normalise (1lst rail) eav)
(normalise-rail (rest rail) env)))))
(def ine EXPANO-CLOSURE
(Yambda simple [proc! argst]
(normalisa (body proc!)
(bind (pattern proc!)
args!
(environment proct))))

Figure 13: A Non-Continuation-Passing 2-LISP MCP

given in the previous paragraph leads one to think of an infinite _

number of levels of reflective processors, each implementing the
one below.” On such a view it is not coherent cither to ask at
which level the tower is running, or to ask how many retlective
levels are running: in some sense they are all running at once,
Exuctly the same situation obtains when you use an editor
implemented in APL. It is not as il the editor and the APL
interpreter are both running together, either side-hy-side or
independently; rather, the one, being interior to the other,
supplies the anima or agency of the outer one. To put this
unother way, when you implement one process in ancther
process. you might want to say that you have two different
processes. hut you don't have concurrency; it is more a
part/whole kind of relation. [t is just this sense in which the
higher levels in our reflective hierarchy are always running:
each of them is in some sense within the processor at the level
below, so that it can thereby engender it. We will not take a
principled view on which account — a single locus of agency
. stepping  belween levels, or an infinite hierarchy of
simultaneous processors —— is correct, since they turn out to be
behaviourally equivalent. {The simultaneous infinite tower of
levels is often the hetter way to understand processes, whereas
a shilting-level viewpoint is somwctimes the better way to
understand programs.)

3-Lisp, as we said, i an infinite reflective tower based on
2-Lisp. The code at each level is like the continuation-passing 2-
Lisp -MCP. of Figure 14, but extended to provide a mechanism
whereby the user’s program can gain uccess to fully articulated
descriptions of that program's operutions and structures (thus
extended, and lecated in u reflective tower, we call this code the
3-Lisp reflective processor). One gains this access by using what
are called reflective procedures — procedures that, when
invoked, are run not at the level at which the invocation
occurred, hut one level higher, at the level of the reflective
processor running the program, given as arguments those
structures being passed around in the reflective processor.

{defling READ-HORMALISE-PRINT
(lambda simple [env stroam}
(normalise {prompt&read stream) anv
(lambda simple [result]
(block (promptireply result straam)
(read-normalise-print env stream))})))
(define NORMALISE
{lambda simple [str¢ env cont}
(cond [(normal struc) (cont strc)}
[(atom strc) (cont (binding stre anv))]
[(rai) strc) (normalise-rail struc anv cont)]
[(pair stre) (reduce (carstre) (cdrstrc) envcont)])))
(define REDUCE
(lambda simple [proc args env cont]
(normalise proc env
(lambda simple [proc!]
(salectq (procaodure-type proci)
{simple
(normalise args env
(lambda simple [args!]
(if (primitive proc!)
{reduce-primitive-simple
proc! args! anv cont)
(expand-closure proc! args! cont))))]
{intensional
(if (primitive proc!)
(reduce~primitive-intensional
proc! rargs anv cont)
(expand-closure proc! targs cont))]
[macro {expand-closure proc! rargs
(lambga simple [result]
(normalise result env cont)))71))))))
{(def ine NORMALISE-RAIL
(lambda simplie [rail env cont]
(if (empty rail)
{cont {rcons))
(normalise (1st rail) aenv
(lambda simpla [first!])
(normalise-rail (rest rail) onv
(Tambda simple [rast!]
- (cont (prep first! rest!})))})))))
(dafine EXPAND~CLOSURE
(lambda simple [proc! args! cont]
(normalise (body proc!)
(bing (pattern proc!) args! (env proct))
cont)))

Figure 14: A Continuation-Passing 2-LISP MCP

Reflective procedures are essentially analogues of subroutines to
be run "in the implementation”, except that they are in the
same dialect as that being implemented, and can use all the
power of the implemented language in carrying out their
function (e.g., reflective procedures can themselves use reflective
procedures, without limit). There is not a tower of different

languages — there is_a single dialect (3-Lisp) all the way up.

/
7771

Level 1 Cod

Figure 15: The 3-L1SP Reflective Tower
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Rather. there is a tower of processors, necessary because there
is different processor state at each reflective level.

Some simple examples will illustrate. Reflective
procedures are “delined” (in the sense we described earlier)
using the form (LAMBOA REFLECT AAGS B800Y), where ARGS —
typically the rail [ARGS ENV CONT] — is a pattern that should
match a 3-element designator of, respectively, the argument
structure at the point of call, the environment, and the
continuation. Some simple examples are given in the
"Programming in 3-Lisp” overview in Figure 16, including a
working definition of Scheme's carcH. Though simple, these
definitions would he impossible in a traditional language, since
they make crucial access to the full processor state at point of
call. Note also that although Tthrow and catcn deal explicitly
with continuations, the code that uses them need know nothing
abhout such subtleties. More complex routines, such as utilities
to abort or redefine calls already in process, ure almost as
simple. In addition, the reflection mechanism is so powerful
that many traditional primitives can be defined: LaM80A, IF, and
QuOTE are all non-primitive (user) definitions in 3-Lisp, again
illustrated in the insert. There is also a simplistic break
puckage, to illustrate the use of the reflective machinery for
debugging purposes. It is noteworthy that no retlective
procedures need be primitive; even LAMBOA can be built up from
scratch.

The importance of these examples comes from the fact that
they are causally connected in the right way, and will therefore

run in the system in which they detined. rather than being
models of another system. And, since reflective procedures are
fully integrated into the system design (their names are not
treated as special keywords), they can be passed around in the
normal higher-order way. There is also a sense in which 3-Lisp
is simpier than 2-Lisp. as well as being more powerful: there
are fewer primitives, and 3-Lisp provides much more compact
ways of dealing "with a variety of intensional issues (like
macros).

8. The 3-Lisp Reflective Processor

3-Lisp can be understood only with a close inspection of the
3-Lisp reflective procgssor (Figure 17), the promised modification
of the continuation-passing 2-Lisp metacircular processor
mentioned above.  wORMALISE (line 7) takes an structure,
environment, and continuation, returning the structure
unchanged (i.e., sending it to the continuation) if it is in normal
form, looking up the binding if it is an atom, normalising the
elements if it is a rail (NORMALISE-RAIL is 3-Lisp's tail-recursive
continuation-passing analogue of Lisp 1.5's evt15). and otherwise
reducing the CAR (procedure) with the COR (arguments). REOUCE
(line 13) first normalises the procedure, with a continuation (C-
PROC!) that checks to see whether it is reflective (by convention,
we use exclamation point suffixes on atom names used as
variables to designate normal form structures). If it is not
reflective, C.PROC! normalises the arguments, with a
continuation that either expands the closure (lines 23 —25) if the

Figure 16: Programming in 3-Lisp:

For illustration, we will look at a handful of simple 3-Lisp
progrums. The first merely calls the continuation with the
numeral 3; thus it is semantically identical to the simple
numeral:

(define THREE
(tambda reflect [[] env cont]

{(cont '2}))) -

Thus (thres) = 3; (+ 11 (three)) => 14. The next example is an
intensional predicate, true if and only if its argument (which
must be a variable) is hound in the current context:
(def ina BOUND
(lambda reflect [[var] env cont]
(i (bound-in-env var anv)
{(cont *'ST)
{cont 'S$F))))
or equivalently
(define DOUND
(lambda raflact [[var] anv cont)
(cont r(baund-in-anv var env})))
Thus (LEF [{x 3]] (BOUND X)) = ST, whuereas (BOUND X) = $F in
the global context. The following quits the computation, by
discarding the continuativn and simply “returning™:
{defino QUIT
(lambda raflect [[] env cont]
QUIT!))
There are a variety of ways to implement a THROW/CATCH pair;
the following defines the version used in Scheme:
(dafine SCHEME~CATCH
(lambda refluct [[tag hody] catch-anv caten-cont]
(formalise body
(bina tag
*{lamdda reflect ([answer] throw-env throw-cont]
(normalisc answer throw-anv catch-cont))
catch-anv)
. . catch-cont)))
For example:
(Tet [[x 1]]
{+ 2 {schame-catch gunt
(* 3 (/7 % (if (= x 1)
(punt 15)
(- = NP
would designate seventeen and return the numeral 17.
[n addition. the reflection mechanism 1s so powerful that
many traditional primitives can be defined: Lata0A, 7, and QuoTE

are all non-primitive (user) definitions in 3-Lisp, with the
following definitions:
(def ine LAHBDA
(lamhda reflect {[kind pattern body] env cont]
(cont (ccons kind ranv pattern body))))
(define IF
(lambda reflaect [[promise then slca] anv cont]
(normalise premise anv
{lambda simple [promize!]
{(normalise (of lpremise! then alse) env cont)))))
{define QUOTE

(Yambda reflect [[arg] env cont] (cont rarg)))

Sume comments. First, the definition of umeoa just given is of
course circular; a non-circular but effective version is given in
Smith and des Riviéres [1984]; the one given in the text, if
executed in 3-Lisp, would leave the definition unchanged, except
that it is an innocent lie; in real 3-Lisp kind is a procedure that
is called with the arguments and environment, allowing the
definition of (lamoda macro ), ete. CCONS is a closure
constructor that uses SIMPLE and REFLECT tn tag the closures for
recognition by the reflective processor described in section 6. &F
is an extensional conditional, that normalises all of its -
arguments; the definition af [f defines the standard intensional
version that normalises only one of the second two, depending
on the result of normalising the first. inally, the definition of
quote will vield (QUOTE A) == ‘A,

Finally, we have a trivial break package, with €% and
CONT bound in the break environment for the user to see, and
AFTURN bound to a procedure that will normalise its argument
and pass that out as the result of the call to BREAK:

(dafine BREAK
(lambda reflect [[arg] env cont]
(dloex (print arg grimary-stream)
’ (read-normalise-priat’ *>>*
(bind® [‘env renv]
['cont rcont]
[("return r(lamoda roflact [[a2] e2 c2]
(normalise a2 e2 cont))]
anv}
primary-stream))))
If viewed as models of control constructs in a language being
implemented, these definitions will look innocuous: what is
important to remember is that they work in the very language
in which they are defined.
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(read-normalisa-print level eanv stream))))))

[(rail struc) (normalise-rail struc env cont)]
STR— ((pair struc) (reduce (car struc) (cdr struc) env cont)1}))

{cont *{lproc! . largs!))
(normalise (body proc!)

(cont (praep first! rast!))})))))))

| (define READ~NORMALISE-PRINT
2 (lambda simple [lave)l env st,Araam]
3 (normalise (prompt&read levael stream) anv
4 « (lambda simpls {result])
3. (block (prompt&reply rasult leval stream)
[+]
T (dafine NORMALISE
8 .. (lambda simple [struc eav cont]
9 (cond [(normai struc) (cont struc)]
10 {{atom struc) (cont (binding struc env)))
it
12
13 (define REDUCE
4 . (lambda simple [proc args anv cont] -
15 (normalise proc env .
18 (tambda simple [proct]
17 sssesmssnsnnsnnenss {10 (raflective proct)
18 {(da-raflact
19 (normalisa args env
20 (lambda simple [args!]
21 {if {primitive proc!)
22
3
24
25
26 ... (define NORMALISE-RAIL
27 ... {lambda simple [rail env cont]
28 (if (empty rail)
29 {(cont {rcons))
30 (normalise (1st rail) env
31 . (lambda simple (rirst!]
32 . cesee {NOFMalisa-rail (rest rail) env
33 (1ambda simple [rest!]
34
Figure 17: The 3-Lisp Reflective Processor:

:Conunuauen C-REPLY

: Continuation C-PROC!
args env_cont

; Continuation C-ARGS!

(bind (pattarn proc!) args! (anvironment proc!))
cont})})i)))

: Conunuation C-FIRST!

: Conunuation C-REST!

v

procedure is nun-primitive, or else directly executing it if it is
primitive (line 22).

Consider (REDUCE '+ '[X 3] ENV 1D), for example, where X is
hound to the numeral 2 and « to the primitive addition closure
in env. At the point of line 22, proc! will designute that
primitive closure, and ARGS! will designate the normal-form rail
{2 3]. Since addition is primitive, we must simply do the
addition. (PrOC! . ARGS!) won't work, because PROC! and ARGS!
are at the wronyg level; they designate structures, not functions
or arguments. So, for a brief moment, we de-reference them
(with &), do the addition. and then regain our meta-structural
viewpoint with the +® [f the procedure is reflective, however, it
is (as shown in line 18 of Figure 17) called directly, not
processed, und given the obvious three arguments (ARGS, ENV,
and CONT) that are being passed around. The i(DE-REFLECT
PROC!) is merely a mechanism to purifly the reflective procedure
so that it doesn't retlect again, and to de-reference it to be at
the right level (we want to use, not mention, the procedure that
is designated by rroct). Note that line 18 is the only place that
reflective procedures can ever be called: this is why they must
alwuys be prepared to acvept uxactly those three arguments.

Line 18 is the essence of J-Lisp: it alone engenders the {ull
retlective tower, for it says thuat some parts of the object
language — the code processed by this program -~ are called
directly in this program. [t is as il an object level fragment
were included directly in the meta language. which raises the
yuestinn of who 1s processing the meta language. The J-Lisp
claim is that an exactly equivalent reflective processor can be
processing this code, without vicious threat of inflinite ascent.

.. A reflective procedures in sum, arrives in the mddle of the
proeessor context. [t is handed enviroument and continuation
structure that designate the processing of the code helow it, but
it is run in a different context, with 1its own (implicit)
environinent and coatinuation, which in turn is represented in
structures passed arvund by the processor one level above it.
Thus it is given causal access to the state of the process that
wis in progress (answering one of our imitial requirements), and
.t can of course cause anv effect it wants. since 1t has complete
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aceess to all future processing of that code. Furthermore, it has
a safe place to stand, where it will not conflict with the code
being run below it.

These various protocols illustrate a general point. As
mentioned at the outset, part of designing an adequate
reflective architecture involves a trade-off between being so
connected that one steps all over onesell (as in traditional
implementations of debugging utilities). and so disconnected (as
with metacircular processors) that one has no effective access to
what is going on. The 3-Lisp tower, we are suggesting, provides
just the right balance between these two extremes, solving the
problem of vantage point as well as of causal connection.

The 3-Lisp veflective processor unifies three traditionally
indepenrlent capabilities in Lisp: the explicit availability of gvaL
und appLy, the ability to support metacircular processors, and
explicit nperations (like Maclisp's RETFUN and Intevlisp's FreETURN)
for debieging purposes. It is striking that the latter facilitiey
are required in traditional dialects, in spite of the presence of
the former. especially since they depend crucially on
implementation details, violating porrability and other natural
aesthetics.  In 3-Lisp, in contrast, all informalion about the
state of the processor is fully avuilable within the language.

9. The Threat of Infinity, and a Finite Implementation

The :‘xrgumem as to why 3-Lisp is finite is complex in

detail. but simple in outline and in substance. Busically, one’

shows Lhut the reflective processor is fully tail-recursive, in two
senses: a) it runs programs tail-recursively, in that it does not
buiid up records of state for programs across procedure calls

. lonly on argument passing), and b) it itself . is fully tail.

recursive. in the sense that all recursive calls within it (except
for unimportant subroutines) occur in tuil-recursive position.
The reflective processor, can be executed by a-simple (inite state
machine. In particular. it can run uself without using any state
at ail. Once the !imiting behaviour of un infinite tower of
coptes of this processor is determined, therefore, that entire
chain of processors can he simulated by another state machine,
of complexity oniy moderately greater than that of the reflective
arocessor itself. ([t is an interesung open research question




whether that "implementing” processor can be algorithmically
derived from the reflective processor code.) A full copy of such
an implementing processor — about 30 lines of 2-Lisp — is
provided in {Smith and des Riviéres 1984} a more substantive
fii_scusgsion of tractability will appear in |Smith forthcoming].

10. Conclusions and Morals

Fundamentally, the use of Lisp as a language in which to
explore semantics and reflection is of no great consequence; the
ideas should hold in any similar circumstance. We chose Lisp
because it is familiar, because it has rudimentary self-
referential capabilities, and because there is a standard
procedural  self-theory (continuation-passing metacircular
“interpreters”).  Work has begun, however, on designing
reflective dialects of a side-effect-free Lisp and of Prolog, and on
studying a reflective version of the A-calculus (the last being an
obvious candidate for a mathematical study of reflection).

" Furthermore, the technique we used in defining 3-Lisp can
be peneralised rather directly to these other languages. In
order to construct a reflective dialect one needs a) to formulate
a theory of the language analogous to the metacircular
processor descriptions we have examined, b) to embed thig
theory within the language. and ¢) to connect the theory with
the underlying language in a causally connected way, as we did
in line 18 of the reflective processor, by providing reflective
procedures invocable in the .object language but run in the
processor. It remains, of course, to implement the resulting
infinite tower; a discussion of general techniques is presented in
{desRiviéres, forthcoming].

It is partly a consequence of using Lisp that we have used
non-data-abstracted representations of  functions and
environments; this lacilitates side-effects to processor structures
without introducing unfamiliar machinery. [t is clear that
environments could be readily abstracted, although it would
remain open to decide what modifving operations would be
supported (changing bindings is one, but one might wish to
excise bindings completely, splice new ones in, ete.). In
standard A-calculus-based metatheory there are no side effeets
{and no notion of processing); environment designators must
therefore be passed around ("threaded”) in order to model
environment side effects. It should be simple to define a side-
offect-free version of 3J-Lisp with an environment-threading
retlective processor. and then to define SErQ and other such
routines as reflective procedures. Similarly, we assume in 3-
Lisp that the main structural field is simply visible from all
code: one could define an alternalive dialect in which the field,
tvo, was threaded through the processor as an explicit
argument, as in standard netatheory..

The representation of procedures as closures is troublesome
findeed, closures are failures, in the sense that they encode far
more information than would be required to identify a function
in intension: the problem being that we don't yet know what a
function in intension might he.). 3-Lisp unarguably provides far
too fine-grained (i.e.. metastructural) access to function
designators, including continuations, and the like. Given an
abstruct notion of procedure, 1t would be natural to define a
reflective  dialect that used abstract structures to encode
procedures, and then to define rellective access in such terms.
We did not follow this direction here only to avoid taking on

another very difficult problem, but we will move in this
direction in future work.

These considerations all illustrate a general point: in
designing u rellective processor, one can choose to hring into
view more or less of the state of the underlying process. It is
all a question of what you want to make explicit, and what you
want to absorb. 3-Lisp, as currently defined, reifies the
environment and continuation, making explicit -what was
implicit one level below. It ubsorbs the structural field (and
partly absorbs the global environment); as mentioned earlier, it
completely absorbs the animating agency of the whole
computation. [f one defines a retlective processor based on a
metacircular processor that alse ahsorbs the representation of
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control (i.e., like the MCP in Figure 13, which uses the control
structure of the processor to encode the control structure of tha
code being processed), then reflective procedures could not atfect
the control structure. In any real application. it would need tg
be determined just what parts of the underlying dialeet required
reification. One could perhaps provide a dialect in which a
reflective procedure could specify, with respect to a very genera]
theory, what aspects it wanted to get explicit access to. Then
operations, for example, that needed only environment access,
like Bounp, could avoid having to traffic in continuations.

A final point. [ have talked throughout about semantics,
but have presented no mathematical semantical accounts of any
of these dialects. To do so for 2-Lisp is relatively
straightforward (see Smith [forthcoming]), but I have not yot
worked out the appropriate semantical equations to describe 3-
Lisp. It would be simple to model such equations on the
implementation mentioned in section 9, but to do so would be a
failure: rather, one should instead take the definition of 3-Lisp
in terms of the infinite virtual tower (i.e., take the limit of 2-
Lisp/n), and then prove that the implementation strategies of
section 9 are correct. This awaits further work. In addition, I
want to explore what it would be to deal explicitly, in the
semantical account. with the anima or agency, and with the
questions of causal connection, that are so crucial to the success
of any reflective architecture. These various tasks will require
an even more radical reformulation of semantics than has been
considered here.
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Nates

l. See (Doyle 1980) [Weyrauch 1980, [Genessreth and. Lenst 1980} and
(Batali 1983).

2 in the dialects we consider, the metastructural capability must be provided
by primitive quotation mechanisms, as opposed (o merely by being able to
model or designate syntax - somuathing virtually any caleulus can do.
using Godel numbering, for exumple -~ for reasons of causal connection.

3. Most programmsng languages, such as Fortran and Algol 60, are neither
higher-order nor metastructurol: the A-calculus 1s the first but not the
sacond. whereas Lisp 1.5 i1s the second but not the first (dvnamic scoping is
a4 contextual protocol that, coupled with the meta-structural facilities,
parually allows Lisp 1.5 to compensate for the fact that it is only [irst.
order). AL least some incarnations of Schemo, on the other hand. are both
(although Scheme's metastructural powers are limited). As we will see, 2.
Lisp and J-Lisp are very definiely both metastructural and higher-order.

t. For what we might call declarative languages, there is a natural account of
the relationsiip between linguisuc expressions and in-the-world designations
that need not make crucial reference to 1ssues of processing (to which wa
will turn 1n a moment). [t 15 for such languages. in particulur, that the
composition 20, wnich we mwnt call ", would be formulated. And this,
for chvious reasons, is what s tymeally studied 1n mathematical model
theory and logic, since those fields do not deal in any crucial way with the
active use of the languages they study. Thus, for example. ®' in logic
would he the :nterpretation funcuon of standard model theory. In what we
witl call computational languages. on the other hand, questions of
procesming do arise.

. The string (Quott asc)’ notates a structure that designates another

structure that in turn could be notated with the string ‘wc'. The stnng.

‘as¢+’, on the other hand, notates a structure that designates the string

‘e’ directly. )

Virtuaily any language. of course, has the requisite power to do this kind

of modelling. In a langusage with meta-structural abilities, the metas

ctreular procems;')r can represent programs (or the MCP as themselves —
this » always done 1 Lisp MCPs — bul we need not define that o be an
vwsentiul property.  The term ‘metacircular processor’ (s by no means
strictly defined. and there are vanous constramnts that one might or might
not put on it. My reneral approach has heen to view as metacircular any
non-caunally connected model of a calculus within isell: thus the J.Lisp
rellective processar 1s aof meta-circular, hecause i1t does have the requisite

|
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;
‘
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causal connections. and therefore an essenuial part of the 3-Lisp
arthitecture.

7. Curiously, there are alse intuitions about contemplative thinking, where
one is both detached and vet directly present. that (it more with this view.
. One way to understand this is to realize that the reflective processor simply
asks its processor to do any primitives that it encounters. le., it passes
responsibility up tw the processor running it.  In other words, each time
one level uses a primitive, its processor runs around setling everything up,
{inally reaching the point at which it must simply do the primitive action,
whereupon it asks its own processor for help. DBut of course the processor
running that processor will also come racing towards the edge of the same
cliff, and will similarly duck responsibility, handing the primitive up yet
another level. In fact every primilive ever exccuted is handed all the way
o the top of the tower. There is a magic moment, when the thing actually
happens., and then the answer (ilters all the wny back down to the level
that started the whole procedure. !t is as if the deus ex machina, living at
the top of the lower, sends a lightning bolt down to some level or other,
once wvery intervening level gets appropriately lined up (rather like the
sun, at the stonehenge and pyramids, reaching down through a long tunnel
AL just one particutar moment during the yenr). Except, of course, that
nothing ever happens, ullimately, except primitives. 'In other words the
enabling agency, which must low dowa {rom the top of the tower, consists
of an mlimitelv dense series of these lightning bolts, with something like
10% of the ones that reach cach level bLeing ullowed through to the level

helow. Al infinitely fast.

w
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IS : 59, 80
1S 59, 80
(= Ey E; ... Ey) 45, 80
(+ Ny Ny . Ny) 46, 80
(- N; N .. M) 46, 80
* NN, . Ny 46, 81

(®* Ny N) 48,77
(/7 Ny M) 46, 80
(< Ny N, . Np) ' 47, 81
(<= Ny N, ... Ng) 47,81
(> Ny Ny .. Ny) 47,81
(O= Ny Ny ... Ny) 47,81
(1+ N) 47,71
(1= N) : 47,71
(1ST VEC) . 39,75
(2ND VEC) 39,75
(3RD VEC) . 39,75
(4TH VEC) : 39,75
(6TH VEC) 39,75
(6TH VEC) 39,75
(ABS N) ' 47,77
(ACONS) 43, 80
(AND E, E, ... E}) 57,719
(AND~HELPER ARGS ENV CONT) ' - 66,79
(APPEND V, V,) 40,76
(APPEND® V, V, ... V,) 41,76
(ATOM E) 44,78
(BIND PATTERN ARGS ENV) 52,72
(BINDING VAR ENV) 52,72
(BLOCK C, C;, ... C}) 54,74
(BLOCK~HELPER CLAUSES ENV CONT) 66, 74
(BODY CLOSURE) : 43, 80
(BOOLEAN E) : 44,78
(CAR PAIR) 36, 80
(CATCH C) 54,75
(CCONS KIND DEF-ENV PATTERN BODY) 42, 80
(CDR PAIR) . 36, 80
(CHARACTER E) - L = T 44,78
(CHARACTER-STRING E) 45,78
(CHARAT E) 44,78
(CLOSURE E) ) 44,78
(CONCATENATE Ry R;) 40,76
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(COND [Py C;F ... [P CI) 54,74
(COND-HELPER ARGS ENV CONT) 66, 74
(COPY-VECTOR VEC) 40,76
(DE-REFLECT CLOSURE) 43,72
(DEFINE LABEL FUN) 49,73
(DELAY C) 55,75

(DO [[VAR, INIT; NEXT,] .. [VAR, INIT, NEXT,1]
[[EXIT-TEST, RETURN,] .. [EXIT-TEST; RETURN;]]

BODY) 56,74
(DOUBLE VEC) 38,75
(DOWN S) : 59, 80
(EDIT PROCNAME ) 60, 80
(EDITDEF PROCNAME) 60, 81
(EF PREM C; C;) 54,80
(EMPTY VEC) 38. 80
(ENVIRONMENT CLOSURE) 42,78
(ENVIRONMENT-DESIGNATOR CLOSURE) 42,80
(EVEN N) 47,77
(EXTERNAL E) 45,78
(EXTERNALIZE S) 62,79
(FOOT VEC) 38,75
(FORCE C) 55,75
(FUNCTION E) 44,78
GLOBAL 65
(HANDLE E) . 44,78
(10 E) ‘ 63,78
(ID® E; E, ... Ey) ' 63,78
(IF PREM C, C;) 54,74
(INDEX ELEMENT VECTOR) 41,76
(INPUT STREAM) 61, 81
(INTERNAL E) 45,78
(INTERNALIZE STRING) 62,79
(ISOMORPHIC E, E,) 45,76
(LAMBDA TYPE PAT BODY) ; 50,72
(LENGTH VEC) 37,80
(LET [[P, E;] .. [P« E4]] BODY) 52,73
(LETREC [[V, E,] .. [Vx Ex1] BODY) ' 53,73
(LETSEQ [[P, E,1 .. [P« EL]] BODY) 53,73
(LOAD FILENAME) : 60, 80
(LOADFILE FILENAME) 60, 81
(MACRO DEF-ENV PAT BODY) . 51,73
(MACRO~EXPANDER FUN) 063,78

. (MAP FUN Vy V, .. Vi) ' ' 40,76
(MAX N, Ny ... Ny) ' ' - 47,77
(MEMBER E VEC). 39,75
(MIN Ny N, .. Np) : 47,71
(NEGATIVE N) 48,78
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(NEWLINE STREAM) 61,79
(NON-NEGATIVE N) 48,78
(MORMAL S) 65,72
(NORMAL~-RAIL RAIL) ‘ 65,72
(NORMALIZE EXP ENV CONT) Cover, 64,71
{NORMALIZE-RAIL RAIL ENV CONT) Cover, 64,71
{NOT E) 57,79
(NTH N VEC) ' 37,80
(NUMBER E) 44,78
(NUMERAL E) v 44,78
(0DD N) 47,77
(OR E; E, ... Ey) 57,79
(OR-HELPER ARGS ENV CONT) 66,79
(OUTPUT S STREAM) 61,81
(PAIR E) 44,78
(PATTERN CLOSURE) 43, 80
(PCONS S, S,) 36, 80
(POP STACK) 42,77
(POSITIVE N) 48,78
(PREP E VEC) . 37,80
(PRIMITIVE CLOSURE) 65,72
PRIMITIVE-CLOSURES 65,72
(PRINT S STREAM) 62,79
(PRINT-STRING STRING STREAM) 62,79

( PROCEDURE-TYPE CLOSURE) 42,80
(PROMPT&READ N STREAM) 61, 80
{PROMPT&REPLY ANSWER N STREAM) 61, 80
PRIMARY-STREAM 61
(PUSH ELEMENT STACK) ) 41, 77
(QUOTE EXP) ' ‘ 63,78
(RAIL E) 44,78
(RCONS S; S; ... Sy) 36, 80
(READ STREAM) 62,79
(READ-NORMALIZE-PRINT LEVEL ENV STREAM) Cover, 64,71
(REBIND VAR BIND ENV) 5L73
(REDUCE PROC ARGS ENV CONT) Cover, 64,71
(REFERENT EXP ENV) 59,78
(REFLECT DEF-ENV PAT BODY) 50,72
(REFLECT! DEF-ENV PAT BODY) 50,73
(REFLECTIFY FUN) 43,73
(REFLECTIVE CLOSURE) 43,72
(REMAINDER N, N;) 4 . . . : 46,77
(REPLACE S; S;) ' ' » 57,80
(REST VEC) 39,75
(REVERSE VELC) 41,77
(RPLACA PAIR NEW-CAR) 58,79
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(RPLACD PAIR NEW-CDR) 58,79
(RPLACN N RAIL NEW-ELEMENT) 58,78
(RPLACT N RAIL NEW-TAIL) 58,78
(SCONS E, E, ... E,) 37, 80
(SELECT INDEX [M; C,] ... [My C,1) 56, 74
(SELECTQ INDEX [M; C,1 ... [M¢ Ci1) 56,75
(SEQUENCE E) 44,78
(SET VAR BINDING) 51,73
(SETREF VAR BINDING) - 52,73
(SIMPLE DEF-ENV PAT BODY) ‘ 50, 72
(STREAM E) ‘ ~ 44,78
(STREAMER E) v 44,78
(TAIL N VEC) e : 38, 80
( THROW C) ) 55,75
(TRUTH-VALUE E) 44,78
(TYPE A) 44, 80
(UNIT VEC) 38,75
(UP S) 59, 80
(VECTOR E) 44,78
(VECTOR-CONSTRUCTOR TEMPLATE) 39,76
(VERSION) 60, 80
(XCONS S; S; ... Sy) , 36,76
(Y-OPERATOR FUN) 49,73
(Y*-OPERATOR F, F, .. Fy) : 49,73
(ZERO N) - 48,78
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