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L ••.•• (define READ-NORMALIZE-PRINT 
2 ............ (lmnbda simple [level env stream] 
3 ................. (normal ize (prompt&read level stream) env 
4 ....................... (lambda simple [result] :ContinualionC-REPLY 
5 ............................ (block (promllt&reply result level stream) 
6 ......................................... (read-normalize-print levol env stream)))))) 

7 ..... (define NORMALIZE 
8 ........... (lambda simple [eip onv cant] 
9 ................. (cond «normal exp) (cant explJ 

10 ............................ [(atom exp) (cant (binding exp env))] 
11 ............................ [(rail exp) (normalizo-rail exp env cant)] 
12 ............................ [(pair exp) (reduce (car uxp) (cdr exp) env cant)]))) 

13 ..... (doflne REDUCE 
14 ........... (lambda simple [proe args env cant] 
15 ................. (normalize proe env 
16 ...................... (lambda simple [proel] : Continuation C-PROC! 
17 ............................ (if (reflective procl) 
18 ................................... (+(de-ruflect procl) args env cant) 
19 ................................... (norma llze .rgs env 
20 ......................................... (l.mbda simple [arysl] :ContinuaLionC-ARGS! 
21 .............................................. (if (primitive procl) 
22 ..................................................... (cant t(+proc! • +argsl)) 
23 ..................................................... (normalize (body proc!) 
24 ......................................................................... (bind (pattern proc!) args! (environment proc!)) 
25 ......................................................................... cant))))))))) 

26 ..... (define NORMALIZE-RAIL 
27 ........... (lambda simple [rail env cant] 
28 ................. (if (empty rail) 
29 ........................ (can t (rcons)) 
30 .. , ..................... (normalize (1st rall).anv 
31 ........................ ~ ..... (lambda simple [first!] : ContinuaLion.C-FIRST! 
32 ......... , ........................ (normalizo-rail (rest rail) env 
33 ......................................... (lambda simple [restl] : Continuation C-REST! 
34 .............................................. (cont (prep first! rest! I)))))))) 
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1. Introduction 

The 3-LISP programming language is designed to illustrate both the integration of declarative and 
procedural semantics in a unified calculus, and the provision of reflective capabilities. It is a direct 
descendant of McCarthy's LISP 1.5 [McCarthy 65] and of Sussman and Steele's SCHEME 
[Sussman&/Steele 75, 76a, 76b, 77, 78a, 78b]: many features of those fonnalisms are embodied in 3-
LISP Witllout comment. There are, however, some major differences between 3-LISP and prior LISP 
dialects. More specifically: 

1. Statically Scoped and Higher Order: Like SCHEME and the untyped X-calculus, but 
unlike LISP 1.5, functions of any degree may be lIsed in 3-LISP as arbitrary arguments. 
Free variables are statically (lexically) scoped. Consequently, flat (non meta-structural) 
3-LlSP is on its own a higher-order functional calculus. 

2. Untyped and Unsorted: Though the semantic domain and primitive functions are typed 
(in the computer scientist's sense - what logicians call sorted), user-defined procedures 
need not be typed, and no typing infonnation is explicitly stated. In addition, there arc 
no type restrictions (in the logician's sense). 

3. Meta-Structural: As in all LISPs, quotation is provided primitively, enabling the 
explicit mention of program structures. Because naming and nonnalization are 
orthogonal, quotation is a structural primitive, not a junctiollal primitive (Le., there is 
no primitive QUOTE procedure). Halldles (nonnaHorm designators of internal 
stmctures) are unique and canonical nonnaHonn structure designators. 

4. SelllQlltically RatiOlUllized: Traditional evaluation is rejected .in favor of independent 
notions of simplificatioll and' designation. The 3-LlSP processor is based on a fonn of 
simplification called Ilormalizatioll that takes each structure into a co-designating 
stmcture in nonnal fonn. As a consequence, processing is semantically flat: programs 
may cross the meta-stnJctural hierarchy only with the explicit use of the two level­
crossing primitives (t and +, q. v.): note that reflective procedures are nol level-crossing. 
In addition, the processor is idempolelll (all nOlmal-fonn structures nonnali7.e to 
themselves). W.ith the exception of the one side-effect primitive (REPLACE), the 
declarative (<<1») and procedural (it) semantics can be specified independently. 

5. Category Aligned: There is a one-to-one correspondence acros.1) primitive structural 
categories, declarative semantic categories, and categories of procequral treatment In 
addition, there are corresoonding notational categories, although the standard notation 
(see §3) has some slight additional complexity for user convenience. 

6. Procedures and Functions: The standard (but user-defined) procedure LAMBDA is used 
purely as a naming operator: recursion is treated with the explicit use of circular­
stmcture generating Y-operators. Closures are a distinguished stmctural category, and 
are nonnaHorm function designators. 

7. Procedurally Reflective: 3-LlSP supports. two kinds of procedures: simpieand reflective. 
Reflective procedures are nm not in the object level of a program, but integrated into 
an explicit version of the processur that was running that program. Thus, the 3-LlSP 
virtual 'machine consists of an infinite tower of type~equivalent processors. This 
architecture unities the traditional notions of an explicitly available EVAL and APPLY, 

meta-circular interpreters, and idiosyncratic eXlensions to fc1cilitate debugging. 

1 
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1.a. The 3-LISP Experiment 

Smith's dissertation [Smith 82a] contains a detailed justification of the design principles underlying 
3-LISP. The language described in this manual is fundamentally the same as the original version, 
though it has undergone some evolution (e.g., closures now have their own stmctural category). 
Similarly, the techniques used to implement 3-LISP are basically those discussed in chapter 5 of the 
dissertation, but with numerous refinements in order to achieve reasonable performance. A 
summary paper that appeared in the 1984 ACM Principles of Programming Languages Conference 
Proceedings [Smith 84aJ is included as an appendix. 

3-LISP is an experimental language - an experiment still in its early stages. There are active 
investigations on three fronts: the formal semantics of reflection; the development of a reflective 
language supporting data abstraction; and 3A-LISP, a dialect of 3-USP free of side effects. 

Be that as it may, it was felt that sufficient progress had been made to warrant making available this 
interim reference manual, which describes an implementation, again interim, built on. top of 
INTERLlSP-D and running on Xerox 1100 series machines. The authors welcome any and all 
comments on the manual, on the language, or, more generally, on the concepts of reflection and 
semantic rationalization. 

I.h. Organizution of this Manual 

'1l1e goal of this manual is to provide som~one with enough information to be able to understand 
and use the INTERLISP-D based implementation of 3-L1SP. §2 is with a primer on the 3-LISP 
language and reflective programming. 'Illis is followed in §3 by a detailed summary of the 
stmctural field and standard notation. The standard procedures of 3-L1SI' are documented in §4 
(the 3-L1SP code for all non-primitive standard procedures can be found in Appendix A). §S 
contains instmctions on how to use the INTERLlSP-D based implementation of the system. 

Of special interest to implementcrs, a sketch of how one might go about implementing 3-LlSP is 
presented in Appendix B. 

'Illis manual assumes familiarity with [Smith 84a], which explains the philosophy underlying the 
design of 3-L1SP and introduces the concepts and terminology used to explain the system; this paper 
is reprinted in Appendix C. While in one sense it is tme that 3-L1SP is merely a distillation of 
existing computational practice as adhered to by the LISP community, it is also true that 3-L1SP 
departs rather radically from some of the fundamental notions and tenns (such as evaluation) upon 
which LISP is based. For this reason, Appendix C wilt be worthwhile preparation for even the 
experienced LISP hacker. 

2 
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2. A 3-LISP Primer 

3-USP can claim to be a dialect of LISP only on a generous interpretation. It is unarguably more 
dUfercllt froll/ the origillal LISP 1.5 than is allY uther dialcct that has beell proposed, including, for 
example, SCHEME [Sussman&/Stcele 75, 76a, 76b, 77, 78a, 78b], MOL [Gallcy&Plister 75], NIL 
[White 79], MACLISP [Moon 74], INTERLISP [Teitelman 78], COMMON LISP [Steele et al. 82], and 
T [Rees 82]. 

In spite of this difference, however, it is important to our enterprise to can this language LISP. We 
do not simply propose it asa new variant in a grand tr<ldilion, perhaps beller suited to a certain 
class of problems than those that have gone before. Rather, we claim that the architecture of this 
new dialect. in spite of its difference from that of standard LISPs, is a II/ore accurate recollstruction 
of the ul/derlyillg coherence thai organizes our cOII/II/unal understanding of what LISP is, We arc 
making a claim, in other words - a claim that should ultimately be judged as right or wrong. 
Whether 3-L1SP is. beller than previolls LISPs is, of course, a matter of some interest on its own, but 
it is not the principle motivation behind its development. 

This section is tutorial in nature; §2.a. introduces the basic 3-USP language, leaving details of the 
reflective processor and reflective procedures to §2.b. Details of the structural field,. standard 
notation, and the standard procedures arc covered in subsequent sections. 

2.a. The Basic Language 

Perhaps the best way to begin to understand a new programming language is to watch it in action, 
Better still is seeing it put through its paces and getting a nmning commentary to boot. So, without 
further ado, let's dive right in and play, 

1> 100 
1= 100 

The ground rules for these interactions with the 3-LlSP system arc straight-forward. The system 
usually prompt'i with '1)', Shown in italics following the system prompt is our input just as we 
typed it - in this case '100'. The system's reply to our input is shown on the following line, right 
after the '1::.' marker. In this case, the answer was '100'. The correct way to view the system is that 
it accepts an expression, simplifies it, and then displays the result. Since the expression 100 cannot 
be further simplitied, the system just spit'i it back at us, Both the original input and the result 
designate the abstract number one hundred, 

1> (+ Z 3) 
1= 5 

The expression' (+ 2 3)' is the 3-LlSP way of saying "the value of applying the addition function to 
the numbers two and three," The system answers five because that is exactly what this fancy name­
for-a-numbe( an1()unts to. Again, we arc seeing that a) both the input and the output expression 
designate the same object, and b) the answer is in its simplest possible form. Expressions enclosed 
in '( and ')' are called pairs (occasionally, redexes) and are taken to designate the value of applying 
the function designated by the first sub"expression to the arguments designated by the remaining 
SUb-expressions. Names like '+' are called atoms; what they designate depends on where they arc 
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used. In all of these examples, their meaning is the standard one supplied by the off-the-shelf 3-
LISP system; not surprisingly, '+' designates the function that adds numbers together. 

1> (+ 2 (* 3 (+'4 5») 
1= 29 

There is no limit on how complicated the input expressions can be. The last one can be read "two 
plus three times the sum of four and five," namely twenty nine. 

1> [1 2 3] 
1= [1 2 3] 

Structures notated by expressions enclosed in '[' and 'J' arc called rails, and designate the abstract 
sequence composed of the objects designated by the various sub-expressions in the order given. 
'llllls [1 2 3] designates the abstract sequence of containing, in order. the numbers one. two, and 
three. 

1> [] 
1= [] 

The empty sequence that contains no elements is designated []. 

1> [C· 3 3) (* 4 4) (* 5 5)] 
1= [4 9 16] 

All complex sub-expressions are simplified in the process of deriving the answer. 

1> [1 [2 (+ 1 2)] 4] 
1= [1 [2 3] 4] 

Moreover. rails may appear as sub-expressions inside other rails. making it possible to refer to 
sequences comprised of numbers and other sequences. 

1> (1ST [1 2 3]) 
1= 1 
1> (REST [1 2 3]) 
1= [2 3] 
1> (PREP (+ 99 1) [1 Z 3]) 
1= [100 1 2 3] 
1> (LENGTH [1 2 3]) 
1= 3 

The standard operations on sequences are: 1ST - for the first component of a (non-empty) 
sequence; REST - for the sequence consisting of every clement but the first; PREP - for the 
sequence consisting of the tirst argument prepended to the second argument; LENGTH - for the 
number of clements in the sequence; and plenty more (all explained in §4). 

1> (- 2 2) 
1= $T 
I)' (ra 2 (+ 1 Z» 
1= SF 
1> (ra $T $F) 
1= SF 

4 
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The booleans $T and $F are the standard designators of Truth and Falsity. respectively. 

1> (IF $T (+ 2 2) (- 2 2)) 
1= 4 
1> (IF $F (+ 2 2) (- 2 2)) 
1= 0 
1> (IF « -100 0) -1 1) 
1= -1 
1> (IF (ZERO 0) (= 1 2) 13) 
1= $F 

Redexes that designate truth values play an important role in IF expressions, which arc used to 
choose between their last two arguments bascd on the truth of thc first argumcnt. Also important, 
and unlike the other standard procedurcs we have disclissed so filr, Ir docs not process all of its 
arguments - the argument that is not selccted is ignored completely. In contrast, most standard 
procedures always begin by processing all of their arguments (Le., for thc most part, 3-LlSP is an 
applicative-order language); we call such proccdures simple. Thus IF is simply not simple. 
(Allhough we will sce laler lhat If is not rcally a magic kcyword, no real harm will come from 
thinking of it lhat way). 

1> + 
1= {simple + closure} 
1> 1ST 
1= {Simple 1ST closure} 
1> IF 
1= {reflective IF closure} 

To summarize what we have seen so filr: numemls, like '10', arc used·to designate numbers; the two 
booleans $T and $F arc used to designate truth values: atoms, like 'PREP', arc used as variables that 
u1ke their mcaning from thc context in which they arc used (so far, this has becn the standard 
global context): rails arc uscd to designate abstract sequcnces: and pairs dcsignate the value of 
applying a function to some arguments. Also, there arc as-yct-uncxplained strllctures called closures 
that appcar to serve as function designators. As it turns out, these arc the basic building blocks on 
which the 3-L1SP tower is erccted. 

The standard 3-L1SP system comes with over 140 standard procedures (sec §4) and an abstraction 
filcility that allows existing procedures to be combined to form new ones. 

I) (LAMBDA SIMPLE [X1 (* x X» 
1= {closure} 
I) ((LAMBDA SIMPLE [X1 (* X X» 10) 
1= 100 
I), ((LAMBDA SIMPLE [X] (. X X» (+ 3 3» 
1= 36 
I) ((LAMBDA SIMPLE [A B C] (= (. C C) (+ (* B B) (* A A»» 3 4 5) 
1= $T 

LAMBDA expressions have three parts: a procedure type (normally's IMPLE; later we shall sec others);, a 
list of pa'rmneler names (lTJorc gcnerally, a parameter pattcrn): and a body. In the usual case of 
SIMPLE lambda exprcssion, the new function designated by the LAMBDA redex can be computed by 
processing the body of the c·xpression in the context in which the parameters arc bound to the 
(alrcady simplified) arguments. Variables not mentioned in the parameter patlern take their values 
from the context surrounding the LAMBDA redex (Le., 3-USP's functional abstraction mechanism is 
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staticalty, lexically, scoped like PASCAL, SCHEME, and the x-calculus, but unlike APL and standard 
LISPs). 

1> ((LAMBDA SIMPLE [F1 (F 10 
1= 20 
1> ((LAMBDA SIMPLE [F1 (F 10 
1= 100 
I) ((LAMBDA SIMPLE [F1 (F 10 
1= ST 
I) (OEFINE CONSTANT 

(LAMBDA SIMPLE [M1 

10» +) 

10» *) 

10)) <0) 

(LAMBDA SIMPLE [JUNK1 M») 
1= 'CONSTANT 
I) (CONSTANT 10) 
1= {closure} 
I) ((CONSTANT 10) 1) 
1= 10 
I) ((CONSTANT 10) 100) 
1= 10 
I) ((LAMBDA SIMPLE [F1 (F F» (LAMBDA SIMPLE [F1 (F F») 
IN. B.: We 're still wailingjiJr lite sySlem's ruling olllhis ollel] 

Moreover. functions are tirst-c1ass citizens. along with numbers. truth values. and sequences. They 
can be passed as arguments to. and returned as the result of. other functions (i.e .• 3-USP is a highcr­

. order functional calculus). 

I) ((LAMBDA SIMPLE [A B C1 (+ A (* B C») 1 2 3) 
1= 7 
I) ((LAMBDA SIMPLE [A 8 C1 (+ A (* 8 C») . [1 2 31) 
1= 7 

Although it is usually not convenient to be so picky. it is tme that every procedure takes but a 
single argument. which is. in turn, usually a sequence. The notation for pairs that we have been 
writing all along is just short for the "dot" notation illustrated above. . 

I) ((LAMBDA SIMPLE X X) 10) 
1= 10 
I) ((LAM8DA SIMPLE X X) 1 2 3) 
1= [1 2 3] 
I) (SET W [4 5 61) 
1= 'OK 
1> ((LAMBDA SIMPLE X X) ~) 

1= [4 5 6] 
1> ((LAMBDA SIMPLE X X) W) 
1= [[4 5 6]] 
I) ((LAMBDA SIMPLE [X Y Z1 [X Y Z1) . W) 
1= [4 5 6] 

When the parameter pattern is simply a variable .(as opposed to a rail), the single true argument is 
bound to the par<\meter variable without dc-struCturing. On the other hand (the more typical case), . 
variables in the parameter list arc paired up with corresponding components of the argument 
sequence. 

6 
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1> «LAMBDA SIMPLE [[A ,B1 [C D]] [(+ A C) (+ B D)1) [1 21 [3 41) 
1= [4 6] 

And, naturally, parameter patterns can get as fancy as necessary. 

1> (DEFINE DOUBLE 
(LAMBDA SIMPLE [X1 (+ x X»)) 

1= 'DOUBLE 
1> (DOUBLE 2) 
1= 4 
1> (DOUBLE (DOUBLE 4» 
1= 16 
1> (SET X 10) 
1= 'OK 
1> X 
1= 10 
1> (SET X (+ X 10)) 
1= 'OK 
1> (+ X 5) 
1= 25 

DEFINE is used to associate a name with a newly-composed function. M()re generally, SET is used to 
(re-)establish the value of a variable as an arbitrary object, not necessarily a function. 'Neither SET 

nor DEFINE is simple; both have a noticeable and lasting effect on the designation of the specified 
variable (they have what we call an ellvironment side-effect). 

1> (INPUT PRIMARY-STREAM) ! 
1= ox 
1> (INPUT PRIMARY-STREAM) ! 
1= O( 
1> (OUTPUT U7 PRIMARY-STREAM) 
7 
1= 'OK 
1> (IF (a (INPUT PRIMARY~STREAM) U7) 

(OUTPUT UY PRIMARY-STREAM) 
(OUTPUT UN PRIMARY-STREAM)) 1 

Y 
1= 'OK 

Ignoring the single quote mark for the time being, we see that there are standard procedures that 
have a different form of side-effect, called external world side-effects. INPUT causes a single 
character to be read from the specified input stream (PRIMARY-STREAM); OUTPUT causes a single 
character to be printed on the specified output strream. The objects written 'ux' are called c/Jarals 
(for lack of a better name) and are taken as designating individual characters. 

1> (BLOCK 

Yes 
1= 'OK 

(OUTPUT UY PRIMARY-STREAM) 
(OUTPUT Ue PRIMARY-STREAM) 
(OUTPUT #s PRIMARY-STREAM» 

Another non-simple standard procedurc, BLOCK, is used to process several expressions in sequcnce -
a feature that is handy when side-effectc:; of one kind or another arc being employed (and utterly 
useless if they're not). 

7 
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1> (DEFINE LOOP 
(LAMBDA SIMPLE [N] 

(IF (= N 0) 

'DONE 

1= 'lOOP 
1> (LOOP 10) 
1= 'DONE 

(LOOP (1- N»») 

I) (LOOP 1000000) 
1= 'DONE 

The point of the above is that the space required to carry out (lOOP N) is independent of N. This 
important property of how 3-LlSP (and SCHEME) is implemenled allows for a nexible style of 
funclion decomposition reminiscent or the usc of GO 1"0 statemenlS in many procedural languages. 

1) (DEFINE ITERATIVE-FACTORIAL 
(LAMBDA SIMPLE [N] 

(LABELS [[ 
LOOP (LAMBDA SIMPLE [I R] 

(IF (= I 0) 
R 
(LOOP (1- I) (- I R»»]] 

(LOOP N 1)))) 
1= 'ITERATIVE-FACTORIAL 
I) (ITERATIVE-FACTORIAL 1) 

1= 1 , 
I) (ITERATIVE-FACTORIAL 4) 
1= 24 

ITERATIVE-FACTORIAL is an excellent example of how to write LISP PROGS and GOS in a purely 
functional style and get exactly the same space and' time performance. 

I) (DEFINE FACTORIAL 
(LAMBDA SIMPLE [N] 

(IF (- N 0) 
1 
(- N (FACTORIAL (1- N»»» 

1= 'FACTORIAL 
I) (FACTORIAL 1) 
1= 1 
I) (FACTORIAL 4) 
1= 24 

The "recursive" definition of rACTORIAl - a required part of every language's reference manual -
completes our cursory look at the basic 3-LlSP language. 

2.b. Introduction to the 3-LlSP Reflective Processor 

As discllssed in §2.a.' the reflective processor program is a program. written in 3-LlSP, 'that shows 
how one, goes about processing 3-USP programs. The first gap ti) bridge on the road to writing 
such a program is to sellle on an internal representation for 3-LlSP programs. We need the ability 
not only to use 3-LlSP expressions but also to /IIl'l/liVI/ them. To this end. we introdllce a new type 
of structure, called handles. to designate other internal structures. For example. whereas the 
expression (+ 2 2). when written in a 3-USP program, designates the number four. the expression 
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, (+ 2 2) designates that 3-LlSP program fragment. Similarly,' + designates the atom +, which in 
turn designates the addition function; '2 designates the numeral 2, which designates the abstract 
number two. 

1> (+ 2 2) 
1= 4 
1> '(+ 2 2) 
1= '(+ 2 2) 
1> (TYPE (+ 2 2» 
1= 'NUMBER 
1> (TYPE '(+ 2 2» 
1= 'PAIR 
1> (TYPE +) 
1= ' FUNCTION 
1> (TYPE '+) 
1= 'ATOM 

Indeed. for each of the types of abstract objects that can be designated by a 3-L1SP expression. there 
is a corresponding internal structural type that designates it (see §3.a. for further details). 

1> (TYPE 1) 1> (TYPE '1) 
1= 'NUMBER 1= 'NUMERAL 
1> (TYPE $T) 1> (TYPE '$T) 
1= 'TRurll-VALUE 1= 'BOOLEAN 
1> (TYPE [1 2 31) 1> (TYPE '[1 2 31) 
1= 'SEQUENCE 1= 'RAIL 

Pairs can be dissected with the CAR and CDR primitives. The PCONS primitive is used to build pairs. 

1> (CAR '.(+ 2 2» 
1= '+ 
1> (CDR '(+ 2 2» 
1= '[2 2] 
1> (peONS ,+ '[2 21) 
1= '(+ 2 2) 

RCONS is used to create rails (sequence designators). LENGTH, 1ST. REST, PREP. etc., work on 
arguments that designate rails as well as sequences. Sequences and rails are known collectively as 
vectors. 

1) '[1 (+ 2 2) 31 
1= '[1 (+ 2 2) 3] 
1> (TYPE '[1 (+ 2 2) 31) 
1= 'RAIL 
1> (1ST '[1 (+ 2 2) 31) 
1= ' 1 
1) (REST '[1 (+ 2 2) 31) 
1= '[(+ 2 2) 3] 
1) (PREP '1 ~[(+ 2 2) 31) 
1= '[1 (+ 2 2) 3] 

The internal stmctures used to designate other internal structures are called Ilandles. Handles' too 
have handles. The term meta-structural hierarchy refers to the collection of structures that 
designate other structures. The standard procedures UP and DOWN, which are lIsually abbreviated 
with the prefix characters 't' and '.j.', are used to explore this meta-structural hierarchy. 

9 
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1> (TYPE "(+ Z Z» 
1= 'HANDLE 
1> (TYPE' '+) 
1= 'HANDLE 
1> (TYPE ", t , , , I , f , , • , t 1) 

1= 'HANDLE 
1> (UP 1) 
1= ' 1 
1> (UP (+ Z Z» 
1= ' 4 
1> t1. 
1= ' 1 
1> t(+ Z Z) 
1= '4 
1> (DOWN '1) 
1= 1 
1> (DOWN '[1 Z 3]) 
1= [1 Z 3] 
1> ~'1 
1= 1 
1> ~' [1 Z 3] 
1= [1 Z 3] 
1> ~'A 
(Error: You can't get down from an atom.} 

To insure against forgetting which way is "up", simply remember that going lip adds additional" 's 
to the printed representation of a structure. Also note that in contrast to most LISPs" 's don't "fall 
orr' expressions, so to speak; this property is called semantkal flatness. 

1> t1. 

1" ' 1 
1> ttl 

1= ' , 1 
1) tt1"l 

I'" " '1 

2.b.i. Nonllalizatioll 

Having defined an internal representation for 3-LISP program fragments, let liS now take a closer 
look at exactly what it means to "process" them. Recall that the hasic operating cycle of 3-LISP 
involves reading an expression, simplifying it, and printing .the result. The "meat" of the cycle is 
the middle step that takes an arbitrary expression onto a simpler expression. This simplification 
process is constrained in two ways: a) the "after" expression must be, in some sense, in lowest 
terms, and b) both the "before" and "after" expressions must designate the same ohject. In 3-LISP, 
"lowest terms" is defined as being in normal-jorm. Consequently, the simplification process which 
converts an expression into a normal-t()flTI co-designating expression is called nOl71uzlization. 

We define a structure to be in nontuzlJonn .iff it satisfies .thrce crite~ia: it is cOlltext-indepelldent, .. 
me~ning ·that fts flemantics (both declarative and procedural) are independent of context; it is side~ 
!1If.ct /ree, meaning thilt processing it will engender ilO side-effects; and it is stable meaning that it 
is self-normalizing. Of the nine 3-L1SP stl1lcture types, six-and-a-half arc in normal-form: the 
handles, charats, numerals, booleans. closures. streamers, and sOllie of the rails (those whose 
constituents arc in normal form). The standard procedure NORMAL is charged with the task of testing 

10 



• 

3-LISP PRIMER 

for nOImal-formedness. 

1> (NORMAL 'A) 
1= $F 
1> (NORMAL ' 1) 
1= $1 
1> (NORMAL '(1 . Z)) 
1= $F 
1> (NORMAL '[1 Z 3]) 
1= $I 
1> (NORMAL '[X y Z]) 
1= $F 

2.b.ii. The Reflective Processor 

INTERIM 3-LISP REFERENCE MANUAL 

Our problem, then, is to characterize the normalization procedure; call it NORMALIZE. Recall that 
whereas a reglilar process wilt typically deal with abstractions like numbers. sequences. and 
functions. the reflective processor will traffic in the internal structures that make up programs; i.e., 
pairs, atoms, numerals, rails. etc. In other words. the reflective processor will run one level of 
designation further away from the real world than the program that the reflective processor runs. 
We expect, therefore. that this procedure NORMALIZE will take at least one argument - an argument. 
that designates the internal structure to be normalized, and will return the corresponding normal-
fonn co-designator. Our expectations are illustrated by the following: 

1> 1 1> (NORMALIZE '1) 
1= 1 1= ' 1 
1> $T 1> (NORMALIZE :$T) 
1.= $I 1= '$1 
1> [1 Z 3] 1> (NORMALIZE '[1 Z 3]) 
1= [1 2 3] 1= '[1 2 3] 
1> (+ Z 2) 1> (NORMALIZE '(+ 2 2)) 
1= 4 1= '4 

One minor problem: the meaning of atoms. such as +, is dependent on context •. and we havc' made 
no allowance for anything along thesc lines. We will posit a second argument to NOHMALIZE, an 
ellvirOlllllent, that will encode just such a context. An environment is a sequence of two-tuples of 
atoms and bindings; thus the environment designated by the 3-L1SP structure 
[['A '3] ['UGHFLG '$I] ['PROC "FOO]] contains bindings for three structures (A. UGIIFLG, and PROC, 

bound respectively to the numeral 3. the boolean $T. and the handle 'F 00). Note that all well­
fonned environments contain bindings for only atoms. and all bindings are normal-form structures. 
If an environment contains more than olle binding for the same variable, the leftmost one has 
precedence. GLOBAL is the standard name for the global environment, which contains bindings for 
aIt of the standard procedures such as +, 1ST, and IF. 

1> + 1> (NORMALIZE '+ GLOBAL) 
1= {simple + closure} 1= '{simple + closure} 
1> (+ Z 2,) 1>. (NORMAI.:I ZE. '( + Z· 2) GLOBAL)' 
1= 4 1= '4 

More generally, we can now consider normalizations with respect to environments other than the 
global environment. For example: 
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1> (NORMALIZE '[A B1 [['A '11 ['B '2]]) 
1= '[1 2] 
1> (NORMALIZE '(ADD A B) [['A '11 ['B '21 ['ADD t+1) 
1= '3 
1> (NORMALIZE '100 []) 
1= '100 

But be quite clear on one thing. GLOBAL designates the real global environment. Consequently, any 
changes made to it in the course of normalizing an expression will be "for rcal." 

1> (NORMALIZE '(SET SMILE 1234) GLOBAL) 
1= ' 'OK 
1> SMILE 
1= 1234 
1> (NORMALIZE '(SET + *) GLOBAL) 
1= ' 'OK 
1> (+ 2 5) 
1= 10 

We are making progress. We have identified and made explicit the context, an important aspect of 
any model of the processing of 3-LISP programs. While it would be feasible to base a dialect on a 
reflective processor that only made explicit the environment, the resulting language would be 
limited to "well-behaved" control operators, like IF and LAMBDA; non-local exit operators, like QUIT 

and THROW. that do not exhibit simple flow of control would be beyond the realm of such a dialect. 
To allow maximum flexibility with respect to control flow. it is essential that this control flow 
information be explicitly encoded by stmctures within the reflective processor. The solution 
adopted in 3-LISP is analogous to the approach taken in the den<>t.1tional semantics Iitemture [Stoy 
77, Gordon 79]. In addition to an environment, the reflective processor's state includes a 
continuation. NORMALIZE will take a third argument, called the continuation,· that designates a 
function that should be applied to the result of the normalization. Programs which explicitly 
encode control flow information in a continuation are said to be written in continuation-passing 
style (CPS). The pros and cons of CPS can be seen in the following two procedures: SUMMER sums 
a sequence in a fairly obvious· way; CPS-SUMMER is a CPS version of the same procedure. 

1> (define SUMMER 
(lambda simple [51 

(if (empty 5) 
o 
(+ (1st 5) (summer (rest 5»»» 

1= 'SUMMER 
1> (SUMMER [1 2 31) 
1= 6 

1> (define CPS-SUMMER 
(lambda simple [5 cont1 

(if (empty 5) 
(cont 0) 
(cps-summer (rest 5) 

(lambda Simple [r1 
(cont (+ (ist 5) r»)))))) . 

1= 'CPS-SUMMER 
1.> (CPS-SUMMER [1 2 31 10) 
1= 6 
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The most important difference to note is that the caU to SUMMER inside SUMMER is buried within a + 
redex, whereas the inner can to CPS-SUMMER is not Instead of using the capabilities of the 
underlying processor to remember what's to be done after the inner SUMMER computation is 
complete, CPS-SUMME'R arranges for all information necessary to proceed the computation to be 
packaged as the continuation and explicitly passed along. The result is greater flexibility - at the 
price of degraded perspicuity. For example, if it were suddenly decided that our summing function 
was to return -1 if any of the elements were negative, we could revise CPS-SUMMER without much 
difficulty: 

I) (define CPS-SUMMERz 
(lambda simple [s cont] 

(cond [(empty s) (cont 0)] 
[(negative (1st s» -1] 
[$T (cps-summerz (rest s) 

(lambda simple [r] 
(cont (+ (1st s) r»»]») 

1= 'CPS-SUMMER2 
I) (CPS-SUMMERz [1 2 -3 4 5] 10) 
1= -1 

However, the job of updating SUMMER, white not hard, is not quite as straight-forward. 

I) (define SUMMERz 
(lambda simple [s] 

(cond [(empty s) 0] 
[(negative (1st s» -1] 
[$T (let [[r (summerz (rest s»]] 

(if (negative r) -1 (+ (1st s) r»)]») 
1= 'SUMMER2 
I) (SUMMERz [1 2 -3 4 5]) 
1= -1 

In summary, NORMALIZE will be written in CPS because we want the 3-LlSP reflective processor to 
encode an explicit theory of control rather than simply engendering one. Again, using 10, which 
designates the identity function, as the continuation to extract the answer, we expect NORMALIZE to 
behave as fi)lIows: 

1> (NORMALIZE '[A B] [['A '11 ['B '2]] 10) 
1= '[ 1. 2] 
1> (NORMALIZE '(+ A B) (APPEND [['A '1] ['B '2]] GLOBAL) 10) 
1= '3 
1> (NORMALIZE '100 [1 10) 
1= '100 
1> (NORMALIZE '(OUTPUT /I. PRIMARY-STREAM) GLOBAL ID) 
• 
1= ' 'OK 
1> (NORMALIZE '(SET SMILE $T) GLOBAL 10) 
1= ' 'OK 
1> SMILE 
1= $I 
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2.b.iii. NORMALIZE 

We can now begin to present the actual definition of NORMALIZE. and explain why it docs the right 
thing. Its definition is as follows: 

7 ..... (define NORMALIZE 
8 ........... (lambda simple [exp eny cont] 
9 ................. (cond [(normal exp) (cont exp)] 

10 ............................. [(atom exp) (cont (binding exp eny»] 
11 ............................. [(rail exp) (normalise-rail exp eny cont)] 
12 ............................. [(pair exp) (reduce (car exp) (cdr exp) eny cont)]») 

Within NORMALIZE. EXP designates the expression (an intern"l structure) being normalized: ENV. the 
environment (a sequence); and CONT. the continuation (a function of one argument. also an internal 
structure). NORMALIZE is little more than a dispatch on the type of EXP (the only glitch being that 
normal-form rails arc not a category of their own): normal-form structures (numerals. boo\eans, 
closures. charats. streamers. and some rails) arc self-normalizing and arc therefore pnssed to the 
continuation witlli.lut rurthe:r fuss: atoms (Le., variubles) arc looked up (OINIHNG'S job) in the 
current environment and the resulting binding returned: pairs arc dissected and farmed out to 
REDUCE: and the remaining non-normal-form rails (Ire handed off to NORMALIZE-RAIl. 

(Aside: It is natural enough to ask whether there could be a different reflective processor for 3-LlSP. 
The answer is both yes and no. If what is meunt is a dinhent retlective processor for the dialect of 
3-LlSP documented in this manual. the answer would have to be no. But "no" in the sense that "a 
six letter word spelled I-a-m-b-d-a" cannot mean any word other than "lambda." 3-L1SP not only 
gives the general shape to the language - it also spells everything out. Moreover. these details are 
not just a part of this reference manual - interesting reading for the human reader. but completely 
hidden from the view of any program (e.g .• in the way the micro-code for your machine is). The 
detnils of how 3-LlSP programs arc processed arc. upon reflection. matters of public record, so to 
speak, and any program can find this out if .it cares to probe in the right places. There are very few 
secrets in a reflective language. On the other hand. it is quite easy to imagine all sorts of 3-LlSP-like 
languages, each with their own reflective processor that dirrers in minor ways (or even major ones) 
for the 3-LlSP reflective processor described in this manual. For example, the 3-L1SP described in 
Smith's thesis is definitely not the same 3-L1SP as we arc talking about here. In summary, for allY 
particular dialect of a reflective language there can be but a single reflective processor; change 
anything whatsoever and you '/I have a slightly different dialect. 

2.b.iv. NORMALIZE-RAIL 

We'll dispense with NORMALIZE-RAIL next. The utter simplicity of NORMALIZE-RAIL is somewhat 
obscured by the CPS protocols. The following non-CPS version should help to make clear what is 
going on: 

(define NORMALIZE-RAIL ; DemoJ.lslration model- nOlfor aClual use. 
"(lambda si~ple [rail eny] 

(if (empty rail) 
(rcons) 
(prep (normalize (1st rail) eny) 

(normalize-rail (rest rail) eny»») 
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Better still: 

(define NORMAL IZE -RAIL ; Demonstration model- not for actllaillse. 
(lambda simple [rail env] 

(map (lambda simple [element] (normalize element env» rail») 

NORMALIZE-RAIL simply constructs a rail whose components arc the normal-form designators 
resulting from thc normalizations of the compencnts of the original rail. Although not explicit in 
the above, the components should be processed in left-to-right order. l.ines 26-34 of the rellcctive 
processor spell out the details of Ule actual version of NOIlMALIZE-RAIL: 

26 ..... (define NOIlMALIZE-RAIL 
27 ........... (lambda simple [rail env cont] 
28 ................. (if (empty rail) 
29 .......................... (cont (rcons» 
30 .......................... (normal ize (1st rail) env 
31 ............................... ( lamb d a simp 1 e [f irs t I ] Continuation C-FIRST! 
32 ....................................... (normal ize-rail (rest rail) env 
33 ............................................. (lambda simple [restl] Continuation C-REST! 
34 ................................................... (cont (prep rirstl restl »»»») 

The two standard continuations (actually, continuation fillllilies), called C-FIRST! and C-REST!,. 
correspond to intermediate steps in the normalization of a non-empty rail. C-FIRST! accepts the 
nqrmalizcd lirst clement in a rail fragment. and initiates the normalization of the rest of the rail. c­
REST! accepts the normalized tail of a rail fragment, and is responsible for appending it to the front 
of the normalized first clement. 

2.b. v. REDUCE 

We are now ready to tackle REDUCE. whose responsibility is to normalize pairs. As might be 
expected. REDUCE is the soul of the reflective processor - all sorts of interesting things go on with 
its confines. 

13 ..... (defi ne REDUCE 
)4 ........... (lambda s'imple [proc args env cont] 
15 ................. (normalize proc env 
16 ........................ (lambda simple [procl] ContillllationC-PROC! 
17 .............................. (if (reflective procl) 
18 ...................................... (-I-(de-reflect procl) args env cont) 
19 ...................................... (normalize args env 
20 ............................................. (lambda simple [argsl] ContinuationC-ARGS! 
21 .................................................... (if (primitive proc!) 
22 ............................................................... (cont t(-I-proc! . -I-argsl» 
23 .............................................................. (normalize (body procl) 
24 ...................................................................................... (bind (pattern proc!) args! (environment procl» 
25 ...................................................................................... cont»»»») 

'Illere are basicatly three different ways of processing pairs: one way. for non-primitive .simple 
proced~lres (Iines.23-25), onC for the' primiii'ves (line 22), and one for what are calted reflective 
procedures (litle 18). We can isolate and study each of these cases one at a time. and free from the 
obscurity introduced by CPS. The first case is essentially: 
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(define REDUCE-NON-PRIMITIVE-SIMPLES : DemonsLration model- not for actual use. 
(lambda simple [proc args env] 

(let [[proc! (normalise proc env)] 
[args! (normalise args env)]] 

(normalize (body proc!) 
(bind (pattern proc!) args! (environment proc!»»» 

Here we see that both Ille procedure, PIlOC, and the arguments, ARGS, are nonnalized in the current 
environment. Since we are perfmming a reduction, PROC! must designate a normal-fonn function 
design<.ltor~ namely a closure. (Later we will see just how LAMBDA constructs closures are 
constl1lcted.) Closures contain environments designators, patterns, and bodies, which may be 
accessed with the selector functions ENVIRONMENT, PATTERN, and BODY, respectively. The result of the 
reduction is, then, just the result of ('xpanding the closur(, (Le., nonnalizing Ille body of the closure 
in the environment produced by augmenting Ille environment captured in Ille closure with new 
varinble binding obtained by matching the closure's parameter pattern against the nonnalized 
argument structure). This is the prescription to be followed for simple 3-L1SP procedures. 

The second case, the one useful only for primitive procedures, is as follows: 

(def i ne REDUCE -Pil IMlT IVE -S IMPLES : Demonstration model- not for actual use. 
(lambda simple [proc args env] 

(let [[proc! (normalise proc env)] 
[args! (normalise args env)]] 

1'(+proc! . +args!»» 

Here we sec a much less elucidating explanation of how a reduction is done. In effect. it says 
"normalize PIlOC and ARGS, then just shift levcJs and go ahead and do it!". It turns out that Illis 
game lIIust be pl<tyed for Ille primitives because there isn't a more-detailed explanation of how a 
primitive is carried out (at least, not Ii'om within 3-L1SP: if you are unconvinced, try writing a 
definition tor the standard procedure CAR using only Ille 3-L1SP standard procedures). 

Combining these two cases, we come up with a (non-CPS) version of REDUCE that will handle all 
reductions involving simple procedures: 

(define IlEDUC[-S IMPLES : Demonstration ll1odcl- not for actual usc. 
(lambda simple [proc args env] 

(let [[proc! (normalize proc env)] 
[args! (normalize args env)]] 

(if (primitive proc!) 
f(+proc! . +argsl) 
(normalize (body proc!) 

(b~nd (pattern proc!) args! (environment proc!»»») 

Its CPS counterpart is as follows: 

(define REDUCE -SIMPLES : Demonstration model- not for actual use. 
(lambda simple [proc args env cont] 

(normalize proc env 
(lambda simple [proc!] 

(norma1ize.args env. 
(lambda simple [args!] 

(if (primitive proc!) 
(cont 1'(+proc! . +args!» 
(normalise (body proc!) 

(bind (pattern proc!) args! (environment procl» 
cont»»»» 
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This brings us to the treatment of reflective procedures, which up to this point have not been 
explained for reasons that wilt soon become apparent. In stmk contrast to simple procedures, which 
are run by the refleclive processor, a reflective procedure is one that is run 01 Ihe sallie /el'e/ as the 
rej7ectil'e processur. Reflective procedures are always passed exactly three arguments: an un­
normalized argument stmcture, the current environment, and the current continuation. "reflective 
procedure is completely responsible for the remainder of the reduction process li)r that redex. Ilere 
is a overly-simplified version of REDUCE that illustrates how reflective procedures are handled: 

(define nmUC[ -RE FLECTIVF.S : Demonstration model- not for llclualuse. 
(lambda simple [proc args env cant] 

(normaliLe proc env 
(lambda simple [p~oc!] 

('(de-reflect proc!) args env cant»») 

Here we see that the structure that PROC! designates is converted (in an as yet unexplained manner) 
to a procedure lhat is then just called from the reflective processor with the entire state of the 
computation (Le., the environment and continuation). What you arc seeing here is one of the 
essential aspects of reflection: a piece of object-level (user) code is run as part of the reflective 
processor lhal is at that very instant running his progmm. (This is the hook to end all hooks!) 'In a 
moment we will demonstrate the elegant power of reflective procedures; for the time being, let's 
complete our presentation of RElJUCL In 3-L1SP. all closures have a procedure-type field tJlat 
indicates whether it is a simple or a reflective procedure: the utility procedure REfLECTIVE is used to 
recognize reflective closures: DE -1l[rL ECl converls a reflective closure illlo a simple one. Integrating 
the last two CPS versions of II[[)UC[ nets liS the version that is actually used in the current 3-LlSP 
reflective processor (again): 

I3 ..... (define REDUCE 
14 ........... (lambda simple [proc args env cant] 
15 ................. (normal ize proc env 
16 ........................ (I ambda s imp Ie [p roc I] Continuation C-PROC! 
17 .............................. (if (reflective procl) 
18 ...................................... U(de-reflect proc!) args env cant) 
19 ...................................... (nol'malize args env 
20 ............................................. (lambda simple [argsl] COlltimwlionC'-ARGS! 
21 .................................................... (if (primitive proc!) 
22 ..................................... : ........................ (cant t('procl . 'argsl» 
23 .............................................................. (normal ize (body procl) 
24 ...................................................................................... (bind (pattern proc!) args! (environment proc!» 
25 ...................................................................................... cant»»»») 

Two more standard continuations (again, continuation families), called C-PROC! and C-ARGS!, 
correspond to intermediate steps in the normalization of a pair. C-PROC! accepts the normalized 
procedure and either passed the buck to a reflective procedure. or initiates the normalization of 
argument structure. C-A RGS! accepts the normalized argument structure and is responsible for 
selecting the appropriate treatment for the simple closure, based on whether or not it is recognized 
as one of tJle primitive closures. . 
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2.b. vi. READ-NORMALIZE-PRINT 

There is one other part of the 3-L1SP system to be explained: READ-NORMALIZE-PRINT, 3-LlSP's top-
level driver loop. 111is is the behavior one might expect from it: 

1> (READ-NORMALIZE-PRINT 99 GLOBAL PRIMARY-STREAM) 
99> (+ 2 2) 
99= 4 
99> 

In other words, READ-NORMALIZE-PRINT is responsible for cycling through the issuing of a prompt, 
the reading of the user's input expression, the normalizing of it, and the subsequent displaying of 
the result. I-Jere is how tt is defined: 

1 ..... (define READ-NORMALIZE-PRINT 
2 ........... (lambda simple [level env stream] 
3 ................. (normalize (prompt&read level stream) env 
4 ........................ (lambda simple [result] ; ContinuationC-REPLY 
5 .............................. ~ (block (prompt&reply result level stream) 
6 ............................................. (read-normalize-prillt level env stream»»» 

Which brings us to the important question of just how is the system initialized. Recall that in a, 
reflective model, object-level programs are run by the reflective processor one level up: in turn, this 
rellective processor is run by another instance of the rellective processor one level above it: and so 
on, ad infillitum. In 3-LlSP, each reflective level of the processor is assumed to start off running 
READ-NORMALIZE-PRINT. The way this is inUlgined to work is as follows: the very top processor level 
(infinitely high up) is invoked by someone (say, God, or some functional equivulcnt) normalizing 
the expression '(READ-NORMALIZE-PRINT 00 GLOIJAL PlUMMY-STREAM)'.' When it reads an expression, 
it is given an input string requesting that a new top-level, numbered one lower, should be stmted 
up: and so forth, until finally the second reflective level is given '(READ-NORMALIZE­

PRINT 1 GLOBAL PRIMARY-STREAM)'. This types out '1>' on the console, and awaits your input. I.e., 
if it hadn't scrolled off your screen, you'd, have seen the genesis transcript that goes as follows: 

god> (READ-NORMALIZE-PRINT 00 GLOBAL PRIMARY-STREAM) 
00> (READ-NORMALIZE-PRINT 00-1 GLOBAL PRIMARY-STREAM) 
oo-I>(READ-NORMALIZE-PRINT 00-2 GLOBAL PRIMARY-STREAM) 

3> (READ-NORMALISE-PRINT 2 GLOBAL PRIMARY-STREAM) 
2> (READ-NORMALISE-PRINT 1 GLOBAL PRIMARY-STREAM) 
------- You camea/ong here ------

The initialization sequence is another essential part of a reflective system, since it determines the 
initial state (Le., envi.ronment and continuation) at each reflective level. One lIsual\y becomes aware 
of these matters when one starts writing reflective procedures that break the computational chain, 

. letter, so to speak, by ileglecti~g to' call their contillurition' (ft is for exactly this eventuality that each 
reflective 'level identities itself with its own distinctive prompt). 
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I) (define FORGETFUL 
(1ambda ref1ect [[] env cont] 

'SIGHt» 
1= 'FORGETFUL 
1> (FORGETFUL) 
2= 'SIGH! 
2) (FORGETFUL) 
3= 'SIGH! 

This completes the description of the core of the retlective processor, READ-NORMALIZE-PR[NT (with 
its continuation, C-REPLY) and the so-called "magnificent seven" mutually-recursive primary 
processor procedures (ppp's): three named procedures (NORMALIZE, REDUCE, and NORMALIZE-RAIL) and 
four standard continuations' (C-PROC!, C-ARGS!, C-FIRST!. and C-REST!). 

2.b. vii. Reflective Procedures 

/\s promised earlier, we arc now in a position to show how retlective procedures can be put to usc. 
Just remember tJ1at when a retlective procedure is called. the body of it gets rlln at the level of the 
retlective processor one level up. 1\ reflective procedure can calise the processing in progress to 
proceed with a particular result simply by calling ilie continuation with the desired structure. The 
following silly example illustrates a retlective procedure appropriately called THREE that behaves 
exactly like the constant function of no argument<; that always has the value three. 

1> (define THREE 
(1ambda ref1ect [[] env cont] 

(cont '3»)) 
1= 'THREE 
1> (THREE). 
1= 3 " 
1> (+ 100 (THREE» 
1= 103 
I) (+ (THREE) (THREE» 
1= 6 

On the other hand. " retlective procedure may request that an expression be normalized by 
explicitly calling NORMALIZE (or REDUCE. if appropriate), as the following version of ID (the identity 
function) demonstrates: 

I) (define NEW-ID 
(1ambda ref1ect [[exp] env cont] 

(norma1ize exp env cont») 
1= 'NEW-IO 
I) (NEW-ID (+ Z Z» 
1= 4 
I) (+ 100 (NEW-ID (+ Z Z») 
1= 104 

Before moving on to some justifiable uses of retlective procedures, we just can't resist the urge to 
write the old hackneyed factorial proGedure as a ·lambda·retlect: 
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1) (define REFLECTIVE-FACTORIAL 
(lambda reflect [[exp] env cont] 

(normalize exp env 
(lambda Simple [expl] 

(if (= expl '0) 
(cont '1) 
(cont t(· 'expl (reflective-factorial (1- 'expl»))))) 

1= 'REFLECTIVE-FACTORIAL 
1) (REFLECTIVE-FACTORIAL (+ 2 2» 
1= 24 
I) (+ 100 (REFLECTIVE-FACTORIAL 5» 
1= 220 

Okay! Okay! We'll confine our attention to situations where reflective procedures arc really 
necessary. Simple procedures turn out to he inadequate for defining control operators for a number 
of reasons. Examples where reflective procedures arc needed: IF, where some of the arguments 
may not be 'normalized: LAMBDA and SET, where explicit access to the current environment is 
requinxl: and CATCI!, where explicit access to the current continuation is required. We will consider 
each of these, in turn, beginning with IF. (Note that the actual- i.e .• Appendix A- detinitions of 
these cOlltrol operators differ in several rather uninteresting ways from the ones we will present 
here.) 

1) (define NEW-IF 
(lambda reflect [[premise consequent antecedent] env cant] 

(normalize premise env 
(lambda simple [premisel] 

(if 'premisel 
(normalize consequent env cont) 
(normalize antecedent env cont»»» 

1= 'NEW-IF 
I) (NEW-IF ('" 2 2) (+ 2 2) (error» 
1= 4 

We see that NEW- IF normalizes either its second or its the third argument expression depending on 
whether the !irst expression normalized to '$T or '$F, respectively. Moreover. all nommlizations arc 
done in the current environment. Notice that the above detinition of NEW- IF makes lise of IF -

which seems like a cheap trick. TI~e following definition of N[W[R- IF nwkcs use of the primitive 
(and therefore simple) procedure EF in conjunction with an idiomatic usc of LAMBDA known as x­
deferral. 

I) (define NEWER-IF 
(lambda reflect [[premise consequent antecedent] env cont] 

(normalize premise env 
(lambda simple [premisel1 

«ef 'premisel 
(lambda simple [] (normalize consequent env cont» 
(lambda simple [] (normalize antecedent env cont»»»» 

1= 'NEWER-IF 
1) (NEWER-IF ('" Z 2) (+ Z 2) (error» 
1= 4 

Next we look at SET (Note: That's 3-Lls'p's assignment st(ltement~ known in most otilerLlSP dialectS 
as S·ETQ.). Besides the 'desire to avoid normalizing the first argument of a SET redex (the variable), 
explicit access to the current environment will be required to complete the processing. (REBIND docs 
the actual work of modifying the environment designator.) 
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1) (define NEW-SET 
(7ambda ref7ect [[var exp1 env cont1 

(norma7ize exp env 

1= 'NEW-SET 

(7ambda simple [expl1 
(block 

(rebind var expl env) 
(cont "ok)))))) 

1) (NEW-SET BLEBBIE (+ 100 100» 
1= 'OK 
1> BLEBBIE 
1= 200 

We will now show how LAMBDA can be defined in stages. beginning with a stripped-down version 
LAMBDA-SIMPLE: 

1) (define LAMBDA-SIMPLE 
(lambda reflect [[pattern body] env cont1 

(cont (ccons 'simple tenv pattern body»» 
1= 'LAMBDA-SIMPLE 
1) (LAMBDA-SIMPLE [X1 (- X X» 
1= {closure} 
1) ((LAMBDA-SIMPLE [X1 (- X X» 10) 
1= 100 
1> (TYPE (LAMBDA-SIMPLE [X1 (- X X))) 
1= 'FUNCTION 

LAMBDA-SIMPLE simply constructs a new closure containing an indication that it is a simple closure. 
the current environment (or rather. designator thereof). and the pattern and body structures exactly 
as they appeared in the LAMlJOA-SIMPLE redex. LAMBDA-REFLECT differs from LAMBDA-SIMPLE only in 
the choice of atom used in the procedure-type field of the closure. 

1) (define LAMBDA-REFLECT 
(lambda reflect [[pattern body1 env cont1 

(cont (ccons 'reflect tenv pattern body»» 
1= 'LAMBDA-REFLECT 
1) ((LAMBDA-REFLECT [ARGS ENV CONT1 (CONT "?» (error» 
1= '7 

In the interest of being able to define not only simple and reflective procedures, we can devise a 
general X-abstraction operator that takes. as its first argument, an expression designating a function 
to be used to do the work. This function applied to three arguments - the designator of the 
current environment, the pattern structure, and the body structure - designates a new function. 

1) (define NEW-LAMBDA 
(lambda reflect [[kind pattern body1 env cont1 

(reduce kind t[tenv pattern body1 env cont») 
1= 'NEW-LAMBDA 

1) (define NEW-SIMPLE 
(lambda simple [def-env pattern body1 

~(ccons 'simple def-env pattern body») 
1=. 'NEW-SIMPLE· 

1) (define NEW-REFLECT 
. (7ambda simple [def-env pattern body1 

~(ccons 'reflect def-env pattern body»)) 
1= 'NEW-REFLECT 
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1) (NEW-LAMBDA NEW-SIMPLE [X] (* X X» 
1= {closure} 
1) ((NEW-LAMBDA NEW-SIMPLE [X] (* X X» 10) 
1= 100 
1> (TYPE (NEW-LAMBDA NEW-REFLECT [ARGS ENV CONT] (CONT "7))) 
1= 'FUNCTION . 

With this general abstraction mechanism in place. it is a simple thing to define macros. These are 
procedures that are reduced by first constructing a different structure out of the argument 
expressions. and then normalizing this structure in place of the original redex. The body of the 
macro procedure describes how to do the expansion; i.e .. it maps structures into other structures. 
For example. we can define a macro procedure BUMP so that any redex of the form (BUMP VAR) will 
be converted into one of .the rorm (SET VAR (1+ VAR». 

1) (define NEW-MACRO 
(1ambda simple [def-env pattern body] 

(1et [[expander (SIMPLE def-env pattern bady)]] 
(1ambda reflect [args env cant] 

(norma1ize (expander. args) env cant»») 
1= 'NEW-MACRO_ 

1> (define BUMP 
(1ambda NEW-MA~RO [var] 

(xcons 'set var (xcons '1+ var»» 
1= 'BUMP 
I) (SET BUMPUS 1) 
1= 'OK 
1) (BUMP BUMPUS) 
1= 'OK 
1> BUMPUS 
1= 2 

The back-quote feature (sec §3.b.) is very useful when it comes to defining the bodies of macro 
procedures. For example. LET is defined as a macro utilizing back-quote. based on the following 
transformation: 

expands to 
«LAMBDA SIMPLE [VJ Vz ... Vn] BODY) EJ Ez ... En) 

I) (define NEW-LET 
(1ambda new-macro [1ist body] 

'((lambda simple ,(map 1st 1ist) ,body) . ,(map 2nd list)))) 
1= 'NEW-LET 
I) (NEW-LET [[X 1]] (+ X 2» 
1= 3 

I\s a final example of the power of reflective procedures, we shall define SCHEME's CATCII operator: 

1) (define SCHEME-CATCH 
(1ambda reflect [[catch-tag catch-body] catch-env catch-cont] 

(normalize catch-body 
(bind catch-tag 

t(lambda reflect [[throw-exp] throw-env throw-cant] 
(norma1ize throw-exp throw-en v catch-cant» 

catch-env) 
catch-cant») 

1= 'SCUEME-CATCII 

22 



~T---

r 

z 

3-LlSP PRIMER INTERIM 3-LlSP REFERENCE MANUAL· 

1> (+ 2 (+ 5 10» 
1= 17 
1> (+ 2 (SCHEME-CATCH ESCAPE (+ 5 10») 
1= 17 
1) (+ 2 (SCHEME~CATCH ESCAPE (ESCAPE (+ 5 10)))) 
1= 12 
1> (+ 2 (SCHEME-CATCH ESCAPE (+ 5 (ESCAPE 10)) 
1= 12 
1> (+ 2 (SCHEME-CATCH ESCAPE 

(BLOCK (ESCAPE 10) 
(PRINT 'GOTCHA PRIMARY-STREAM)))) 

1= 12 

2.b. viii. Reflective Protocols 

Unless you have a particular reason to do otherwise, the following protocols concerning reflective 
programming should be kept in mind: 

* CPS procedures (this includes reflecive procedures) should always call continuations and 
other CPS procedures from a tail-recursive position. That way, the explict continuation will 
always reflect the remainder of the computation. 

* CPS procedures should either call their continuation or pass it along to another CPS 
procedure. 

* Continuations should be called with a single stnlcture-designating argument 

2.b.ix. A Note on Recursion alld the Y-Operator 

Closures created via the standard procedure DEFINE capture the current environment augmented by 
the binding of the procedure variable to the designator of the closure. This circularity is created via 
Y-OPERATOR, a variation on Church's paradoxical combinator. (For further explanation, see 4.c.8. of 
Smith's thesis.) 
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3. 3-LISP Structures and Notation 

3-L1SP is based on a serial model of computation. consisting of a topology or graph of stmctures 
collectively called a structural /ield. examined and manipulated hy a single active processor. This 
section describes the elements of 3-L1SP's structural field, and the notation used to display them. 

3.a. Structural Field 

Objects in the structural field are called internal structures or, when it is not confusing, just 
structures: mathcmatical entities like numbers and scquenccs are called exlemal structures or 
abstractions (but never just structures). The world consists of entities of all sorts, including both 
internal and external structures, and undoubtedly many other things as well. 

There arc exactly nine ~ (kinds, categories) of internal stmctures that populate the stmctural 
field. This immutable property of each structure may be interrogated with the standard procedure 
TYPE. The standard procedure = can be used to tcst to see if they are one and the same structure. 

Type Designation Normal Constructor Standard No/alioll 

Numcrals Numbers Yes a sequence of digits 
Booleans Truth-Valucs Yes $T or$F 
Charats Characters Yes Hcllamcter 
Streamcrs Streams Yes {streamer} 
Closures Functions Ycs CCONS {closure} 
Atoms (Designation of Binding) No ACONS a sequence of alphallumerics 
Pairs (Value of Application) No PCONS (EXP. EXP) 

Rails Scquences Some RCONS [EXP EXP ••• EXP] 

Handles Intcrnal Structures Yes 'EXP 

Recall that a structurc is said to be in /lorlllal form if it cannot be further simplified by the 
processor. A normaHi.)rm structurc Sf is callollical if all co-designating structures. S], normalize to 
~h Note that six- and- a- half of thc categories arc normal-form stmcturcs, and that all five of the 
non-constructiblc (Le., permancnt) structure typcs arc canonical. 

Each of thesc nine structurc types can be bricfly described: 

Numerals: There arc an infinite number of 3-L1SP integer numerals, set in one-to-one 
correspondence to the abstract external numbers (ultimately we intend to support full 
rational or repcating fraction arithmetic, but at thc moment only integers arc defined). 
All numerals arc canonical nonnal-fi>rm designators of numbers. 

Booleans: There are just two boolean structures, notated as '$T' and '$F', that arc constants 
(rigid designators) of Truth and Falsity, respectively. These normal-fQllTI structures may 

.. bc viewed as the canonical tme and false' statements. '. . 

CI,arats: We do not claim to know what characters are, but charats are their normal-form 
dcsignators. More precisely, a charat is an atomic structurc associated one-to-one with 
character types (in thc linguist's sense): there is only onc charat fbr the charactcr '+', 
allhough lhere, of coursc, may be an arbitrary number of tokens (occurrences) of that 
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character. 

Streamers: Streams are intended to serve as the interface with the outside world (Le., to 
function essentially as communication channels); as a consequence, we say virtually 
nothing about them. other than that they are legimitate arguments for INPUT and OUTPUT. 
Streamers are their normal-form designators. Note that no field relationships are 
defined over streamers. Streamers will probably play a role in implementations and 
embeddings of 3-L1SP, but at present the language puts no specific constraints on the 
way in which this role is played. 

Closures: Closures are normal-fonn function designators: because we have no adequate 
theory of procedural intension, they retain all the relevant contextual information from 
the point of function definition (expression and enclosing environment). Although 
closures, being tirst-class structures. can be inspected and compared, closure identity is 
far more fine grained than function identity. 

Atoms: As in standard LISPs. atoms are atomic structures used as variables (schematic 
names). Atoms are associated with identifiers (lexical spellings) only through the READ 
and PRINT functions. 

Pairs: Pairs are exactly as in LISP 1.5: they are ordered pairs, consisting of a CAR and a 
CDR (which may in turn be any structure in the field). Unlike standard LISPs, however, 
3-LlSP pairs are used for only one purpose: to encode function applications (a pair 'is 
therefore sometimes called a redex, for 'reducible expression'). 

Rails: Rails. derivative from standard LlSP's list." are used to designate abstract sequences. 
Like the lists of LISP 1.5, isomorphic rails may be distinct. Those rails whose elements 
are normal-form are. by definition. themselves in 1l00mal-form: thus the rail [1 2] is in 
normal-form, whereas the rail [1 (+ 1 1) ] is not. 

Handles: Handles are unique normal-fonn designators of other internals structures - they 
are the 3-L1SP field's form of canonical quotation. Thus for the atom X there is a single 
handle, written . x. All 3-LlSP structures have handles (including handles themselves; 
thus the handle of the handle of the atom x is •• x). 

The nine first-order locality relationships defined over internal stmctures are summarized in 
following table: 

Nallle Type Total - Accessible +- Stalldard Procedure 

CAR Pairs - Structures Yes Yes \ No CAR 
CDR Pairs - Structures Yes Yes No CDR 
FIRST Rails - Structures No Yes No 1ST 
REST Rails - Rails No Yes No REST 
PROC-TYPE Closures - Atoms Yes Yes No PROCEDURE-TYPE 

the 

ENV Closures - Rails Yes Yes No ENVIRONMENT-DESIGNATOR 
PATIERN Closures - Structures Yes Yes No PATTERN 
BODY Closures ~ Stmctures Yes Yes No BODY 
REF I-Iandles -+ Stnlctures' Yes Yes Yes DOWN (.j.) . 
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All of these relations are, in fact, total fi.lI1ctions, with the exception of FIRST and REST, which are 
only partial, being undefined together on empty rails. REF is one-to-one and onto; therefore REF- t 

is a total function on structures, called HANDLE, and is a subset of the function that is designated 
by the standard procedure UP (t ). 

Some structures - all numerals. charats. booleans, streamers. and their handles - arc permanent 
members of any structural field configuration. Others - pairs. rails. atoms. and closures - can be 
brought into existence and connected to existing structures through the activation of one of the 
primitive constructors. For example. the standard procedures ctllled PCONS creates a new pair and 
establishes a CAR and CDR relationship between this pair and the two structures passed to PCONS as 
arguments. 

A structure X is accessihle from structure )' if X can be reached from Y through a series of CAR, 
CDR, FIRST. etc., connections. In addition, the handles of all structures are accessible from their 
referents. When a so-called 'new' structure is generated (by IICONS. PII[P, SCaNS. ACONS. CCONS. or 
PCONS) it is guaranteed to be otherwise inaccessible, meaning that it cannot be accessed from any 
other accessible structure. A rail is considered to be complete(v illaccessihle if it and all of its tails 
(i.e., rails reachable via one or more REST transitions) are inaccessible. Thus nCONS returns an 
otherwise completely inaccessible rail, whereas PREP returns an inaccessible, but not completely 
inaccessible rail. 

Once created. a structure will remain a part of the structural field permanently. unkss it is smashed 
by REPLACE, the primitive structural jield .'litle-effect procedure. Replacing structure St by .)'2 has 
the effect of permanently altering the topology of the structural 11cld such that all structures that 
were mapped to ,)'/ via one of the nine locality functions become mapped to .)'2. I\s a result, Sf 
and all its handles suddenly become completely inaccessible. Both S I and .)'2 must be of the same 
type, and that type must be one of the non-canonical ones: rail. pair, closure, or atom. 

3.b. Standard Notation 

The 3-L1SP internalization function (the notational interpretation function 0 that maps notations into 
internal stnlctures) is !lot, strictly speaking. a primitive part of the language definition, since it is not 
used in internal processing (Le., discarding it will not topple the tower). There is, however, what is 
called a stalldard notation that is lIsed in all documentation (including this reference guide), and 
which is provided with a 3-L1SP system upon initialization. (A user may. however, completely 
replace it with his/her own version, if desired). This section explains that notation. 

The lexical notation is designed to satisfy three goals: 

1. In so far as possible, to resemble standard LISP notational practice; 
2. To maintain category alignment with the field (one lexical type per structural type); 
3. To be convenient. ' 

The goal of category alignment is met by having the standard notation for each type be identifiable 
in the first character (except for "notationa\.escapes," described below), as indicated in the· following 
chart: . 

Type 

Numeral 
Atom 

l,eadillg Character Rxamples 

digit 0, I, -24, +100, 007 

letter A, REDUCE, CAR, ATOM 
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Boolean 
Pair 
Rail 
Handle 
Charat 
OLher 

S 

( 

[ 

II 

(. 

ST, SF 

(A . B), (PLUS 2 3) 
[1 2 3], [] 
, A, '( + 2 3), " [ ] 

HA, III 

{closure}, {streamer} 

Examples: '(A. 1)' notates a pair whose CAR is the atom notated 'A' and whose CDR is the 
numeral notated '1': '[ f notates an empty rail; '[ 1 2 3 4 5 6 f notates a rail whose FI RST and 
REST would be notated'!' and '[2 3 4 5 61', respectively; "100' notates the handle for the 
numeral '100'. 

Some subtleties complicate this clean correspondence. Specifically: 

1. Numerals can have a leading '+' or '-' (Le., '-24'). 

2. An alOm label may begin with a digit (or sign) providing it contains at least one non­
digit (Le., '6N237E', '-x' and '1+' are valid atom labels). Any atom label that also satisfies 
the niles for numeral tokens will be taken to be the latter. ror example, '1-' and '+' 
notate atoms, whereas '+ l' notates a numeral. 

3. Left brace (' () is used as a gel/cral notational escape, not only for closures and 
streamers, but also for unlabelled atoms, errors, and other notational commentary. This 
notation is currently employed only on OUlpul. 

4. Case is ignored in atom labels (converted to upper case on input). For example, 
'Zaphod" 'ZAPIIOO" 'zaphod" and 'ZaPhOd' all notate the same atom. 

5. Some lexical abbreviations (notational sugar) are supported: 

'(exp, eXP2 ... eXPk)' abbreviales '(exp,. [eXP2 ... eXPk]) , 

"'charz charz ... chark '" abbreviales 

'texp' abbreviates 

'~exp" abbreviates 

"[Hcharz tlcharz ... HcharkJ' 

"(UP exp)' 

"(OOWN up)' 

The following grammar presents the essence of the standard 3-USP notatiori, for those who like 
such things: 

I~xtcndcd IINF Grammar for 3·USP St~md~lfd Not:ttion 

1. Expression "- Regular I Abbreviation I Escape ,,-

2. Regular "- Numerall Boolean I Charat I Atom I Pair I Rail I Handle ,,-

Numenl1 "- [Sign-character] Digit-character+ ,,-

Boolean "- '$T' 1'$( I'$t' I'Sf' ,,-

Charat "- 'u' Any-character .. -
Atom "- Atom-charactcr+ .. -
Pair. "- '(' Expression ~ . ' Expression ')' .,-
itail "- 'C Expression· 'J' ,.-
Handle "- ',' Expression .. -

3. Abbreviation "- Up I Down I Extended-pair I String I Back-Quote I Comma .,-
Up "- 't' Expression .,-
Down "- '~' Expression .. -
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Extended-pair 
String 
Back-Quote 
Comma 

4. Escape 

5. Sign-character 
I )igi t-character 
Any-character 
A tom-character 
String-character 
Nonllal-character 
Special 

6. Token-sequence 
Separator 
Comment 

"­.. -
'::= 
"­.. -
"­.. -
"­.. -
"­.. -
"­.. -
"­.. -
"­.. -
"­.. -

"­.. -

"­.. -

INTERIM H.ISP REFERENCE MANUAL 

'( Expression+ ')' 
' .. ' (String-character 1 ' .. ' 'n')· 'n' 
o.' Expression 
, " Expression 

'{Unspecified injurmatioll '}' 

, 'I' , + -

'0" '1' "2" '3' I '4' I '5' I '6' 1 '7' "s" 'g' 

All)' character ill the chamcter set 
AllY cha/"(/cterl'xcept Splice. Hlld-offille. '$', '0', 'n', ';', or ,'>iJeciai 
Any character except'n' 
AllY cllallle/er except Hllti-offille 

'(' I') , , '[' , 'J' , 't' ,',J.' , ' • ' " • ' I' {', '}' "" "" 
(Separator· Token Separator·)· 
Space-character I End-or-Iine-character' Comment 
'; , Normal-character· End-of-Iinc-character 

In the standard nolLltion, structures are notated with sequences of lexical to/wns, e~lch of which is 
composed of a sequence of one or more characters chosen from a collection of characters called the 
character set. Although the exact composition of the character sct is unimportant, we assume·that it 
includes all of the ASCII charncters. 

Sequences of characters are broken down into tokens in the conventional way, with the rule that 
there must always be at least one token separator between adjacent non-special tokens. For 
example, the character stream '(foo [1 $T tox "100])' consists of the ten tokens: 'C, 'roo', 'C, '1', 
'$T", '1", '/Ix', ·"100' "J', and ")'. 

Special tokens do not notate structures by themselves; rather, they are used to punctuate the 
notation for composite structures. 

For convenience, the following table lists all "special" (Le., non alpha-numeric) characters that arc 
used for some special purpose, Note that the standard notation uses one charilcter (down-arrow: 
',J. ') that is not part of the standard ASCII character set, but we reserve ASCII backslash ('\ ') so that 
it can be used in its stead. We assume, in other words, that the 3-LJSP standard notation is indeed 
based on the standard ASCII sequence, but simply choose to prillt backslash as a down-arrow. 

Code, Character. alld Use 

( starts pairs 
) ends pairs 

separates CAR and CDR 
[ starts rails 

. ] ends rails 
handles 

o charats· 
$ booleans ($T and $F) 

starts and ends strings 

Code. Character. alld Use 

t - abbreviation for UP 

,J. abbreviation for DOWN (same as '\ ') 
back-quote 
normalized expression within back-quote 
starts comments (to CRLF) 
starts negative numerals 

+ - starts some positive numerals 
{ starts notational escapes 
} ends notational escapes 

In addition to the foregoing notational protocols embodied in the internalizer and externalizer, we 
adopt a set of additional notational ('umell/ioIlS on identifiers. The 3-USP system pays no attention 
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to these, but all of the code presented in this manual honors them, and they are recommended for 
users, as well. Specifically: 

1. A suffix exclamation point is used on variables (atoms) that are intended always to 
designate a normal-form structure. For example: 

(NORMALIZE (REST EXP) ENV (LAMBDA SIMPLE [REST!] (CONY (PREP FIRST! REST!»». 

2. A su ffix asterisk is lIsed on variants of procedures that take an indefinite number of 
arguments. where the standard version accepts only a fixed number (for example: 10* is 
a multi-argument version of 10). 

A general comment: The internalizalion function described above is not onto; in other words, there 
arc structures that arc not the result of internnlizing any lexical expression. for two reasons. First. 
upon internalization. all pairs and rails notated arc created from previously-inaccessible cells. 
Hence. any structure with a shnred sub-structure will have no lexical counterpart. Second, closures 
and un-named atoms (those created by ACONS) have no stnndard lexical counterparL'i. The standard 
version of PRINT, approximately the inverse of READ. currently makes no attempt to deal in a 
sophisticated way with either of these problems. In parlicular, no attempt is made to show shared 
substructure, and un-notatable structures - closures. nameless atollls. and circular structures - are 
marked with a standard lexical escape: a note enclosed in braces (e.g., '{~loSUre}" '{streamer}'. 

etc.). 

The back-quote feature, borrowed from MACLISP [Moon 741. is useful when dctining macros, since 
it allows one to conveniently notate expression~ for constructing structures that resemble the lexicnl 
expression" notated. For example ... (A . B)' is notationally equivalent to '( PCONS 'A 'B)', which 
notates a structure that normalizes to a structure that would be notated "( A " B)'o The comma 
notntion, meaningful only within the scope of a back-quote, gives one a filI-in-the-blanks-like 
capability; for example, the notation ,. (A . ,X>, is shorthand for' (PCONS 'A X) " which notates a 
structure that would normalize to a structure that would be notated '(A. IIEllO)' in an 
environment where x was bound to 'HElLO. The following examples may help to makc the 
workings of this feature clear (assume that B is bound to '2 and C to "3): 

Notation abbreviates alld lIormalizes to 

'1 '1 '1 

'(A. 8) (PCONS 'A 'B) '(A . 8) 
'[A 8] (RCONS 'A 'B) '[A B] 
'[A ,8 C] (RCONS 'A 0 'c) '[A 2 C] 
'[[A B][,C 0]] (RCONS '[A B] (RCONS C '0» '[[A B][' 3 0]] 
"[A ,8 "C] (PCONS ('RCONS '['A B ,C]» '(RCONS ['A 8 '3]) (Le., '[A ,B 3]) 

To express the workings of this mechanism precisely requires a little care, since both notation and 
designation must bc spoken of explicitly. It can be summarized as follows: 

Back-Quote Prillciple: II lexical expression E/ preceded by a back-quote will lIotate a 
structure 5/ thaI desigllates a structure 52 that would be lIotated by E/, with the exception 
that those fragmellts of 52 that would be 1I0iaied byportiolls of E/ that are preceded" by a 
COnll11a lVill. ill jilcl, be designated by tile struclures Ihat those portio liS lIutale, rather 
thall flolaled by them directly. 

An intensional note: the back-quote expander will not use a token tail of a rail if any part of that 
rail has a comma'cd expression within it. Specifically, we have: 

30 



STRUCruRES & NOTATION 

1> (DEFINE TEST 
(LAMBDA SIMPLE [A] 

'[ ,A 2 3])) 
=) TEST 
I) (LET [[X (TEST '1)] 

[Y (TEST '2)]] 

INTERIM 3-L1SP REFERENCE MANUAL 

(= (REST X) (REST V))) 
=) $F 

since '[,A 2 3] abbreviates (!lCONS A '2 '3). not (PREP A '[2 3]). 

See the Appendix A definitions of DEFINE. LET. LETSEQ. and other macros for further examples. 
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4. Standard Procedures 

There are approximately 150 stalldard procedures in 3-LlSP: procedures that arc described in this 
reference guide, used withoul COl11lllelH in ulility packages, and so forth (we also expect to 'compile' 
these procedures into the standard implementation). A 3-L1SP programmer should consider these to 
be the base set, on top of which to define other functionality as desired. Within the set of standard 
procedures, however. are two important sub-c1l1sses: primitive procedures that provide access to the 
structural field and to the external world (e.g., 110): and kemel procedures that are essential to the 
workings of the system. These two sets are neither mutually exclusive nor exhaustive: many of the 
primitives are kernel procedures as well ([Mil fV, for example). but there arc some non-kernc1 
primitives (LENGTH, +, ACONS, REPLACE, etc.). In addition, it is clear that many kernel procedures are 
not primitive (LAMBDA, BIND lNG, NORMALl St, and NORMAL, to name a few). Finally, there are 
approximately 90 other standard procedures (MAX, LABELS, 00, etc.) that are neither primitive nor 
kernel. 

4.3. Primitive Procedures 

There are 34 primit;"e procedures (listed below) that have no definition within 3-L1SP, and tHat are 
reduced with arguments in "unit time," in the sense that from no level of reflective access is there 
any visible grain to their operation. All the 3-L1SP primitives are simple: there are no primitive 
reflectives. To a certain extent the particular set is arbitrary, and it is certainly not minimal: SCONS, 

for example, could be defined in terms of RCONS. UP, and DOWN; LENGTH could be defined in terms of 
EMPTY and +; etc. ' 

Category 
Typing: 

Identity: 
Stmctural: 

Modifier: 
Control: 
Semantics: 
Arithmetic: 
110: 
System: 

Standard Name 
TYPE 

PROCEDURE - TYPE 

PCONS. CAll, COR 

CCONS,PATTER~OODY 

Functionality 
defined on 15 types (9 internal, 6 external) 
to distinguish simple and reflective closures 
detined on 14 types (all except functions) 
to construct and examine pairs 
to construct and 

[NVIRONMENT-DESIGNATOR examine closures 
ACONS to construct atoms 
RCONS, SCONS, PREP to construct and examine 
LENGTlI, NTII, TAIL, EMPTY rails and sequences 
REPLACE to modify mutable stmctures 
EF an extensional if-then-else conditional 
UP, DOWN to mediate between sign & signified 
+, -, ., /, <, >,<=,>= as one would expect 
INPUT, OUTPUT primitive operations on streams 
LOADF rLE, EOITDEF system support 

'4.b. Kernel Procedures 

The kemel procedures are those that are lIsed crucially ill tile 3-USP reflective processor (Le., they are 
used by the rellective processor to process the reflective processor). As a consequence, smashing 
one of these closures, or redefining the binding of its standard name in the global environment 
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(more accurately: in any environment captured inside any of the kernel closures), will cause the 
tower to fall. Thus, for all practical purposes, the kernel procedures arc as 'wired-in' to 3-LJSP as 
arc the primitives, even though in a strict sense they have visible definitions, and are 
compositionally executed by the processor (by expanding closures). Note that there arc reflective 
kernel procedures as well as simple ones. It turns out that the kernel procedures are exactly the 
acquaintances of NORMALIZE, although this needn't have been so (they could have been a subset, 
since there might have been code in the reflective processor that, although used when processing 
some forms of user code, didn't happen to be used to process the processor itselt). 

Kernel Primitives 

CAR, CDR, RCONS, SCONS, PREP, NT II, TAIL, EMPTY, CCONS, PROCEDURE-TYPE, ENVIRONMENT­

DESIGNATOR, PATTERN, BODY, TYPE, =, EF, UP, DOWN 

Kernel NOli-primitives 

UNIT, DOUBLE, REST, 1ST, 2ND, MEMBER, VECTOR-CONSTRUCTOR, MAP, ENVIRONMENT, REFLECTIVE, 

DE-REFLECT, ATOM, PAIR, RAIL, HANDLE, EXTERNAL, LAMBDA, SIMPLE, OINDING, BIND, LET, IF, 

COND, COND-IIELPER, AND, AND-HELPER, NORMALISE, REDUCE, NORMALISE-RAIL, NORMAL, NORMAL­

RAIL, PRIMITIVE 

4.c. Standard Procedure Guide 

The remainder of this section is taken up with descriptions of each of the standard procedures. The 
3-L1SP code for the standard procedures can be found in Appendix A. Notes on the format of 
these descriptions: 

1. Each procedure is illustrated with non-objectified argument'), but many can be used in 
other ways (for example: (PCONS . (REST ['A '0 'C]» :::::> '(B. C}). 

2. For each procedure, we give the declarative import. In many cases that is the only 
seman tical information provided, since if the designation has a canonical normal-form 
designator, what is returned can be detennined from this designation in conjunction 
with the normal-form theorem. For example, since (+ 2 3) designates the number 5, it 
will return the numeral 5: since (= 'A 'B) designates falsity. it will return the boolean 
SF. If, however. the normal-form designator is not canonical, or if there arc side 
effects, the relevant parts of the procedural significance are described. as well. 

3. Typing infonnation is typically given only in terms of what we call the functions "<fI­

type." Thus, for example, the division function I would be said to have 'I.-type of 
[ NUMBERS X NUMBERS J ... NUMBERS. In some cases, the typing restrictions specified in 
this section arc stricter than one would expect given the Appendix A detinitions. 

4. Underlined arguments in the title tine of a procedure description indicate those 
positions that arc normalized tail recursively with respect to the procedure call (e.g., the 
2nd and 3rd arguments to IF). 

5. Several one-word attributes are associated with each procedure that can provide a quick 
reference for determining the nature of ,the procedure. The following, keywords are 
used: 

Cons This procedure may create new structures that will be 
accessible from the result: e.g., APPEND. 

Smash Internal structures accessible from the argument designators 
may be smashed (with REPLACE); e.g., REOIND. 
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Env 

Smnsh-env 

I/O 

CPS 

Some of the arguments to this procedure may be normalized in 
some environment other that the current one; however, these 
environment manipulations are accomplished through non-
destructive means; e.g., LET. 

This procedure may destructively change the current 
environment; e.g., SET. 

This procedure may side effect the outside world by doing 
110; e.g., OUTPUT. 

This procedure is written in the continuation-passing style -
instead of returning, the result is explicitly passed to the 
continuation (usually as the last argument); e.g., NORMALIZE. 

Abnormal Some of the arguments may not always be normalized; e.g., 
IF. 

6. Still other keywords are lIsed to indicate the nature of the procedure's status within the 
im plementation: 

Primitive 

Kernel 

This procedure is one of the 30 or so primitives that have only 
viciously circular definitions within the 3-LISP system. All 
non-primitives have complete and accurate descriptions in 
terms of the primitives. 

This procedure is an essential part of 3-LlSP because it is used 
regularly by the reflective processors at all levels. 

7. The symbol '::;.' (used in examples) means "nOlmalizes to." 

8. Some comments in regard to examples involving 110: all input expressions are printed 
in italics following the level 1 processor's '1>' prompt and output expressions appear 
unitalicized following the '1=' prompt 

I) 'HELLO 
1= 'HELLO 

Input destined for an explicit calt to READ (or INPUT, etc.) are underlined as well as 
itnlicized. 

I) (READ PRIMARY-STREAM) HELLO 
1= 'HELLO 

Output produced by an explicit calt to PRINT (or OUTPUT, etc.) is printed in bold. 

1> (PRINT 'HELLO PRIMARY-STREAM) HELLO 
1= 'OK 

Note that in the interest of readability several liberties have been taken with the 
formatting of output expressions - actual results may vary. 

9. To facilitate the writing of macros and other reflective procedures, the argument-to­
parameter pattern matcher (BIND) will convert a rail-designating argument into a 
sequence of designators. For example. '[ 1 2 3] wilt be converted to [' 1 '2 '3] in 
order to fit the pattern [A B c]. This is consistent with the polYl11orphism.of 1ST.and 
REST', . etc. .:.- (1ST '[ 1 2 3]) and. (1ST [. 1 '2 • 3]) both normalize to • 1. 

10. All standard procedures return a result. However. the ones that arc used solely to 
accomplish a side-effect (e.g., REPLACE, SET. and OUTPUT) usually return a gratuitous 'OK. 
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4.c.1. PAIRS 

(PCONS S1 S2) 
Designates an otherwise inaccessible pair whose CAR is the internal stl1lcture designated by 
S 1 and whose CDR is tJle internal structure designated by S2' 

<1>- Type: [ STRUCTURES X STRUCTURES ] ~ PAIRS Pruperties: Primitive: cons. 
HXlllllp/es: (PCONS' A '6) =>' (A • 6) 

(PCONS '+ '[ 2 3]) => ' (+ 2 3) 
(PCONS 2 3) => {ERROR: Structure expected.} 

(CAR PAIR) 
Designates the internal structure 
(Il-Type: [ PAIRS] --+ STRUCTURES 

that is the CAR of tJle pair designated by PAIR. 

Hxalllples: (CAR' (A • 6» => 
(CAR '( 1 . $T» => 
(CAR '( + 2 3» => 
(CAR '+» => 

(CDR PAIR) 

'A 
, 1 
'+ 
(ERROR: Pair expected.) 

Properties: Primitive: kernel. 

Designates the internal structure that is the CDR of the pair designated by PAIR. 

til-Type: [ PAIRS] --+ STRUCTURES Properties: Primitive: kernel. 
Hxalllp/es: (COR' (A • B» => 

(CDR' (1 . $T» => 
(CDR '( + 2 3» => 
(CDR '( ACONS » => 
(COli '1» => 

(XCONS S1 S2 ... Sk) 

'6 
'ST 
'[2 3] 
'[] 
{ERROR: Pair expected.}_ 

Designates an otherwise inaccessible pair whose CAR is the internal structure designated by 
S1 and whose CDR is an otherwise comblctely inaccessible rail whose elements are the 
internal structures designaled by S2 thrOligh Sk (K ~ 1). 
(II-Type: [ STRUCTURES X {STRUCTURES}- 1 --+ PAIRS 
f:xamp/es: (XCONS' + '2 '3) =>' (+ 2 3) 

(XCONS 'ACONS) =>' (AeONS) 
(XeONS 1 2 3) => {ERROR: Structure expected.} 

4.c.2. RAILS nnd SEQUENCES 

(RCONS S1 ... Sk) 

Properties: Cons .. 

Designates an otherwise completely inaccessible rail of length k whose clements are the 
internal structures designated by s, through Sk (k ~ 0). 
(II-Type: [ {STRUCTURES}- ] --+ RAILS Properties: Primitive: kernel: cons. 
/:)(£1l11ples: (RCONS '1 '2 ~ 3 ) =>' [1 2 3] 

(lleONS 'A (PCONS '6 'C» => '[A (B . C)] 
(ReONS) => . '[] 
(=(RCONS) (RCONS» => . SF 
(= .t.(IICONS) .t.(IICONS» => $I 
(RCONS 1 2 3) => (ERROR: Structure expected.) 
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(SCONS El ••• E/<) 
Designates the sequence of length k of objects (internal or external) designated by E I through 
Ek (k ;?: 0): returns an otherwise completely inaccessible normaHorm designator (rail) of that 
sequence. Note that sequence identity is as in mathematics: two sequences are the same if, 
and only if, they consist of the same clements in the same order. 
'I.-7)'pe: [ (OBJECTS)- ] -> SEQUENCES Properties: Primitive: kernel: cons. 
HXlllllples: (SCONS 1 2 3) ~ [1 2 3] 

(SCONS '1 '2 '3) ~ [ '1 '2 '3] 
{SCONS 'A (+ 2 2)) ~ [ 'A 4] 
['A (+ 2 2)] ~ ['A 4] 
(SCONS) ~ [] 

(= (SCONS) (SCONS» ~ ST 
(= t ( SCONS) t (SCONS) ) ~ SF 
{ l U [[ x [1 2]] J {= x (SCONS . X») ~ $I 

{LET [[X [1 2]]] (= tX t{SCONS . X») ~ SF 

(PREP E VEe) 
Designates a vector (of the same type as designated by VEC) whose first clement is the object 
designated by E. and whose first tail is the vector designated by VEC. When VEC designates a 
sequence. (PREP E VEC) returns an otherwise inaccessible rail whose first tail is the same rail 
as that to which VEC normalizes (Le., it returns an inaccessible but not completely inaccessible 
rail). When VEC designates a rail, (PREP E VEC) returns the handle of an otherwise 
inaccessible rail whose first tail is the rail which VEC designates. Note that 'PREP' - short for 
'prepend' - is pronounccd in a way that connotes alligators. 
<\.- Types: [ OBJECTS X SEQUENCES ] -> SEQUENCES Properties: Primitive: kernel: cons. 

[ STRUCTURES X RAILS ] -+ RAILS 

HXlllllples: (PREP 10 [20 30]) ~ [10 20 30] 

(LENGTH VEe) 

(PREP 'A '[13 C]) ~ '[A B C] 
(PREP liS "pain") ~ "Spain" 
(PREP [ST] [SF]) ~ [[ST] SF] 
(PREP 10 '[20 30]) ~ (ERROR: Structure expected.) 
(PREP '10 [20 30]) ~ ['10 20 30] 
(PREP 1 2) ~ (ERROR: Vector expected.) 

in the rail or sequence designated by VEC. Designates the number of e1cments 
<1'- Type: [ (RAILS U SEQUENCES) ] -+ 

Rxamples: (LENGTII '[A 13 C]) 

NUMBERS Properties: Primitive. 

(NTH N VEe) 

(LENGTII (SCONS)) 

(LENGTII "Five") 
(LENGTII 3) 

~ 

~ 

~ 

~ 

3 
0 
4 
(ERROR: Vector expected.) 

When N designates the number k. (NTII N VEC) designates the k'th element of the rail or 
sequence designated by VEC. Vector elemenLs are numbered starting at 1. not 0; theretore k 
may range from 1 to the length of the designation of VEC. 

<1'- Types: [ NUMBERS X RAILS ] -+ STRUCTURES Properties: Primitive; kernel. 
[ NUMBERS X SEQUENCES ] -+ OBJECTS 

HXGlIlples: {NTH 1 [(+ 5 5) 20 30]) ~ 
( NT II 2 [' 10 '2 O· '30]) ~ . 
(NTH 3 '[10 20 30]) ~ 

(~HII 4 "Eight") ~ 

(NTH 2 [10]) ~ 

(NTII '2 [10 20 301) ~ 

(NTH 1 10) ~ 
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(TAIL N VEe) 
Designates the N'th tail of the rail or sequence designated by VEe (where N may range from 0 
to the length of vEe). In general, the k'lh tail of a vector of length K is that vector consisting 
of the (k+l)'th through K'th clement: thus the O'th tail of A is identically A. If (TAIL N VEe) 
designates a sequence, it will return the N'th tail of the rail to which VEe normalizes. 
III-Types: [ NUMBERS X RAILS] - RAILS Properties: Primitive; kernel. 

[ NUMBERS X SEQUENCES ] - SEQUENCES 

Examples: (TAIL 2 [10 20 30 40]) 

(EMPTY VEe) 

(TAIL 1 (COR '(RCONS 'A 'n 'C») 
(LET [[X '[A 0]]] (= X (TAIL 0 X») => 
(LETSEQ [[X [2 3]] 

[Y (PREP 1 X)]] 
(= tX t(TAIL 1 Y») 

(TAIL 1 [1]) 
(TAIL 4 "Kangaroo") 
(TAIL 3 [1 2]) 
(TAIL $F [1 2]) 
(TAIL 1 tic) 

[30 40] 
'['B 'C] 
$T 

ST 
[] 
"aroo" 
(ERROR: Index too large.] 
{ERROR: Number expected.] 
(ERROR: Vector expected.] 

True just in case VEe designates an empty rail or sequence: false in case VEe designates a 
non-empty rail or sequence: error otherwise. Note that (EMPTY VEe) will return SF even if 
VEe designates an infinite vector (in contrast with LENGTH). . 

ell-Type: [ {RAILS U SEQUENCES} ] - TRUTH-VALUES Properties: Primitive: kernel. 
Hxamples: (EMPTY []) => $T 

(EMPTY '[]) => $T 
(EMPTY '[A B C]) => SF 
(EMPTY (SCONS» => ST 
(EMPTY (RCONS» => $T 
(EMPTY "No") => $F 
(LET [[X (RCONS '1)]] 

(BLOCK (REPLACE (TAIL 1 X) X) 
(EMPTY X») $F 

(EMPTY '(A. B» (ERROR: Vector expected.] 

(UNIT VEe) 
(DOUBLE VEe) 

Tme just in case the vector designated oy VEe is of length 1 or 2, respectively. Note that 
each of these forms will return SF even if VEe designates an infinite vector (Le., they arc 
defined in terms of EMPTY, not LENGTH). 

ell-Type: [ {RAILS U SEQUENCES} ] - TRUTH-VALUES Properties: Kernel. 
Examples: (UNIT '[A]) => ST 

(DOUBLE (!lEST [10 20 30]» => $T 
(DOUBLE "Two") => SF 
(UNIT 1) => (ERROR: Vector expected.] 

(FOOT VEe) 
Designates the empty vector that is the last tail of the vector designated by VEC. If VEe 
designates a sequence, (FOOT VEC) will return the last tail of the rail to which VEe normalizes .. 
FOOT is primarily useful in the (destructive) extending of vectors (see the definition. of . 
CONCATENATE, for example). .. ... 
.p-Types: [ RAILS ] _. RAILS 

[ SEQUENCES ] - SEQUENCES 

Examples: (FOOT [1 2 3]) => [] 
(= (FOOT [1 2 3]) []) => $T 
(= (FOOT '[1 2 3]) '[]) => SF 
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(LET [[X (SCONS 10 20)]] 
(BLOCK (REPLACE (FOOT tX) '[30 40]) 

X» => [10 20 30 40] 

(REST VEe) 
Designates the first tail of til<' vector designated by VEC. REST plays the role in 3-LlSP that 
CDR plays in standard USPs when used on Iist() signifying enumerations. 
<I>-Types: [ RAILS 1 -> RAILS Properties: Kernel. 

[ SEQUENCES 1 -> SEQUENCES 

Examples: (REST [1 2 3]) => [23] 

(1ST VEe) 
(2ND VEe) 
(3RD VEe) 
(4TH VEe) 
(6TH VEe) 
(6TH VEe) 

(REST 1) => (ERROR: Vector expected.) 

These forms designate, respectively, the first, second. third, fourth, fifth, and sixth elements 
of the vector designated by VEe. In case VEe designates a sequence, each returns the Kth 
element of the rail to which VEC normalizes (J ~ K ~6). Defined to be (NTH 1 VEC), 

(NTII 2 VEe), etc. 
(f:J-Type: [ SEQUENCES 1 -> OBJECTS Properties: Kernel (1ST and 2ND only). 

[ RAILS 1 -> STRUCTURES 

Rxalllples: (3RD [10 20 30 40]) => 30 
(1ST (PREP 'A '[Il C]» => 'A 
(2ND [1]) => (ERROR: Index too 1arge.) 

(MEMBER E VEe) 
True when the object designated by E is an clement of the 'vector designated by VEe. If 
(MEMBER E VEe) is true, it is guaranteed to return: if not, it will terminate only if the vector 
designated by VEe is finite. Note: Since MEMBER is defined in terms of =, it can't be llsed over 
sequences of functions. 
(l>-Type: [ OBJECTS X SEQUENCES 1 -> TRUTH-VALUES Properties: Kernel. 

[ STRUCTURES X RAILS 1 -> TRUTH-VALUES 

Examples: (MEMBER 1 [2 3 4]) => $F 
( Mf. MB t R . 3 [1 1 2 (+ 1 2)]) => $ T 
(MEMBER '2 '[1 2 3]) => $I 
(MEMI3EIl 2 ['1 '2 '3]) => $F 
(MEMIlEIl '[1 '[[A] [] [13]]) => $F 
(MEMBER [] [[1] [] [2]]) => $T 
(MfMBER 1 2) => (ERROR: Vector expected.) 
(MEMI3ER * [+ - * I]) => (ERROR: = not defined over functions.) 

(VECTOR-CONSTRUCTOR TEMPLATE) 
Designates the RCONS or SCONS procedure, depending on whether TEMPLATE designates an 
internal structure or external object, respectively. VECTOR-CONSTIlUCTOR is primarily useful in 
the terminating clause of a recursive definition defined over general vectors (see the 
definition of MAP, for example). 
<I>-Type: [ OBJECTS 1 -> FUNCTIONS 

hxamples: (VECTOIl-CONSTRUCTOR '[]). => 
«VECTQR-CONSTRUCTOR '[]» => 

. (VECTOIl-CONS1IIUCTOR 100) => 
«VEC10n-CONsrnUCTOR 100» => 
(VECrOR-CONSTIIUCTOR ttl) => 
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(MAP FUN VJ V2 ••• V,t) 
Designates the vector obtained by applying the function designated by FUN (of arity k) to 
successive clements of the vectors designated by VI through Vk • The vectors VI through v

k 
should be of equal length. 
<1>- Type: [ FUNCTIONS X (SEQUENCES) - 1 -> SEQUENCES 

[ FUNCTIONS X (RAILS)- 1 -> RAILS 

Examples: (MAP 1+ [2 3 4]) ~ 

(MAP * [1 2 3] [1 2 3]) ~ 
(MAP EF [ST SF] [1 2] [3 4]) ~ 
(MAP CAR []) ~ 

[3 4 5] 
[1 4 9] 
[1 4] 
[] 

Properties: Kernel; cons. 

(MAP UP '[1 A ST]) ~ '['1 'A 'ST] 
(MAP 1+ [1 2 3] [4 5 6]) 
(MAP 1 [1 2 3]) 
(MAP 1+ 100) 

~ 

~ 

~ 

(ERROR: Too many arguments.) 
(ERROR: Not a function.) 
(ERROR: Vector expected.) 

(COPY-VECTOR VEe) 
If VEe designates a mil, (COPY-VECTOR VEe) designates an otherwise completely inaccessible 
rail whose clements are the elements of the rail designated by VEe. If VEe designates a 
sequence, (COPY-VECTOR VEe) designates the same sequence as VEC, but returns an otherwise 
completely inaccessible designator (mil) of it. Note that when VEC designates a sequence, 
(SCONS • vEe) could be used to achieve the same effect. 
<I>-Types: [ RAILS 1 -> RAILS Properties: Cons. 

[ SEQUENCES 1 -> SEQUENCES 

Examples: (COPY-VECTOR' [A B C]) ~ '[A B C] 
(COPY-VECTOR []) ~ [] 
(LET [[V [1 2 3]]] 

[(= Y (COPY-VECTOR V»~ 
(= tY t(COPY-VECTOR V»~]) ~ [ST SF] 

(CONCATENATE Rl Rz) 
CONCATENATE replaces the foot of the mil designated by RI with the rail designated by RI!. 
More formally, if L} and L2 are the lengths of the rails designated by RI and R2, respectively, 
then (CONCATENATE RI Rz) designates a rail of length Ll+L2, whose first Ll elements are the 
elemenL'l of the rail designated by RI , whose L2'th tail is the rail R2• The mil to which Rl 
normalizes is affected, so CONCATENATE should be used with extreme caution; normally APPEND 
wi11 do the job. . 
<I>-Types: [ RAILS X RAILS 1 -> RAILS Properties: Smash. 
Examples: (CONCAlENATE '[A] '[B C]) ~ '[A B C] 

(LET [[X (RCONS)]] 
(BLOCK (CONCATENAfE X '[NEW TAIL]) X» ~ '[NEW TAIL] 

(LET [[X '[1 2 3]] 
[Y '[4 5)]] 

(BLOCK (CONCATENATE X Y) 
[A V]»~ ~ ['[1 2 3 4 5] 

'[4 5]] 

(APPEND Vl Vz) 
If L] and L2 are the respective lengths of the vectors designated by VI and vZ, 

(APPEN J) VI vz)designates the vector of length L 1+ L2 whose first L I clements are the 
c1emcnts of VI' and whose remaining L2 elements are those of vz. Both vectors must be of 
the salllc type. The vector to whi~h Vz normalizes is not copied (Le., Vz is accessible from the· 
result). 
(l>-Typcs: [ RAILS X RAILS 1 -> RAILS 

[ SEQUENCES X SEQUENCES 1 -> SEQUENCES 

Examples: (APPEND [1 2 3] [4 5 6]) ~ 
(APPEND Tl '[A B C]) ~ 
(LET [[X '[M N]]J (APPEND X X)) ~ 

au 

Properties: Cons. 

[1 2 .3 4 5 6] 
'[A B C] 
'[M N M N] 
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(LETSEQ [[X '[M N]] [Y (APPEND X X)]] 
(= X (TAIL 2 V»~) 

(LET [[X [1 2]] [Y [3 4]]] 
(BLOCK (APPEND X Y) 

X» 
(APPEND "Of shoes" " and ships") 
(APPEND 1 [2 3]) 

(APPEND· V.1 V2 ... Vk) 

$T 

[1 2] 
"Of shoes and ships" 
(ERROR: Vector expected.) 

APPEND* is a variant of APPEND that accepts multiple argument vectors. More formally, if Lj is 
the length of the vector designated by each VI. (APPEND V1 V2 ... Vk ) designates the vector of 
length LI + L2+ ... + Lk whose first L[ clements are the clements of the vector designated by 
VI' and whose next L2 clements are the clements of the vector designated by v2, etc. (K ;;:: 1). 
All vectors must be of the same type. The vectors to which vK normalizes is not copied (Le., 
vK is accessible from the result). 
(p-Types: [ RAILS X {RAILS}" ] -> RAILS Properties: Cons. 

[ SEQUENCES X {SEQUENCES}" ] -> SEQUENCES 

Hxalllples: (APPEND* [1 2 3J [4 5 6] [7 8 9]) => [1 2 3 4 5 6 7 8 9] 
(APPEND* '[A B C]) => '[A B C] 
(LET [[X '[G 0]]] (APPEND· X X X» => '[G 0 GOG 0] 
(APPEND* "Mac" "U" "i" "n" "e") => "MacHine" 

(REVERSE VEC) 
Designates a vector (of the type of the vector designated by VEC) whose clements are the 
same as the clements of the vector designated by VEC, except in reverse order. The re'sulting 
vector is otherwise completely inaccessible. 
q)-Types: [ RAILS] -> RAILS Properties: Cons. 

[ SEQUENCES ] -> SEQUENCES 

Examples: (REVERSE []) => [] 
(REVERSE [1 2 3]) => [3 2 1] 
(REVERSE '[[A B] [C 0]]) => '[[C 0] [A B]] 
(LET [[X [10]]] (= X (REVERSE X») => $T 
(LET [[X [10]]] 

(= tX t(REVERSE X») => $F 
(LET [[V '[A]]] (= Y (REVERSE Y») => $F 

(INDEX ELEMENT VECTOR) 
Searches the vector designated by VECTOR for an 'element equal to the object designated by 
ELEMENT. and yields the number indicating the first position in which it was fhund. Designates 
o if the object is not a member of the vector. 
(1)- Type: [ OBJECTS X VECTORS ] -> NUMBERS 

Hxamples: (INDEX 3 [2 3 6 1]) => 2 
(INDEX '[l ['A '11 'C]) => 2 
(INDEX [10] [1 $T [10]]) => 3 
(INDEX Hl "lIello") => 3 
(INDEX '+ []) => 0 

(PUSH ELEMENT STACK) 
Pushes the ohject designated hy ELEMENT onto the sequence designated by STACK. Structural 
field side effects are involved. Returns' OK. 
el)-Type: [ OBJECTS X SEQUENCES] -> ATOMS Properties: Smash; cons. 
Examples: . 1> (SET S [J) 

1= 'OK 
1> (PUSH 1 S) 
1~ 'OK 
1> (PUSH 2 S) 
1= 'OK 
1> S 
1= [2 1] 
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(POP STACK) 
Pops the most recently pUSHed object off of the sequence designated by STACK. StructuraY' 
field side effects are involved. ))esignates the object popped off. 
<P- Type: [ SEQUENCES ] -> OBJECTS Properties: Smash. 
Exal1lples: 1> (BLOCK (SET S []) (PUSH 1 S) (PUSH 2 S» 

1= 'OK 
1> S 
1= [2 1] 
1> (POP S) 
1= 2 
1> S 
1= P 

4.c.3. CLOS U R ES 

(CCONS KIND DEF-ENV PATTERN BODY) 
Designates an otherwise inaccessible closure of the type designated by KIND (typically either 
SIMPLE or IlHl.EC I) containing designators of the environment uesignated by DEF-ENV, the 
pattern designated by PATTERN, and the body designated by B. (Note that (LAMBDA MACRO ... ) 
and (LAMBDA REFLECT! ... ) both construct REFLECT-type closures.) 
Properties: Primitive; kernc1; cons. 
Ij)-Type: [ ATOMS X RAILS X STRUCTURES X STRUCTURES ] -> CLOSURES 

Examples: (CCONS' X '[] 'Y 'Z) 
(CCONS 'SIMPLE tGLOBAL '[X] 'X) 
(~(CCONS 'SIMPLE 

tGLOBAL 
'[X] 
'(+ X 1» 10) 

(PROCEDURE-TYPE CLOSURE) 

. Properties: Primitive; kernel; cons. 
=> '{closure: X [] Y Z} 
=> '{closure: simple {global} [X] X} 

11 

Designates the atom that is the PROCEDURE-TYPE of the closure designated by CLOSURE. 

cp-Type: [ CLOSURES ] -> ATOMS Properties: Primitive; kernel. 
Kml1lples: (PIlOCfDURE-TYP[ (CCONS 'X '[] 'Y 'Z» => 'X 

(PIlOC[DUIlE-TYPE t+) => 'SIMPLE 
(PROCEDURE-TYPE tIF) => 'REFLECT 
(PROCEDURE-TYPE IF) => {ERROR: C10sure expected.} 

(ENVIRONMENT-DESIGNATOR CLOSURE) 
Designates the rail that is the ENV of the closure designated by CLOSURE. Note that while 
ENVIRONMENT-DESIGNATOR is semantically flat, closures are a little confused (they contain 
environment dcsignators instead of environments). ENVIRONMENT is almost always more 
appropriate. 
<P- Type: [ CLOSURES ] -+ RAILS Properties: Primitive; kernel. 
Examples: (ENVIRONM[NT-DESIGNATOR (CCONS 'X '[] 'Y 'Z» => '[] 

(ENVIRONMENT-DESIGNATOR +) => {ERROR: C10sure expected.} 

(ENVIRONMENT CLOSURE) 
Designates the environment in the closure designated by CLOSURE. 

·<p-Type: [ CLOSURES] -+ SEQUENCES Properiies: Kernel. 
Examples: (ENVIRONMENT (CCONS 'X '[] 'Y 'Z» => [] 

(ENVIRONMENT +) => {ERROR: Closure expected.} 
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(PATTERN CLOSURE) 
Designates the internal stnlcture that is the PA TIERN of the closure designated by CLOSURE. 

(Il-Type: [ CLOSURES 1 ... STRUCTURES Properties: Primitive; kernel. 
Hxamplcs: ('PATTERN (CCONS 'X '[] 'V 'Z» => 'V 

(BODY CLOSURE) 

(PATTERN t(LAMBDA SIMPLE [A B] 

( PATTERN 
(PATTERN 

(PCONS B A») 
tNORMALISE) 
+) 

'[A BI 
'[EXP ENV CONT] 
(ERROR: Closure expected.} 

Designates the internal structure that is the BODY of the closure designated by CLOSURE. 

Properties: Primitive; kernel. 
(1)- Type: [ CLOSURES 1 -> STRUCTURES 

HXl1lllples: (BOOV (CCONS 'X '[] 'V 'Z» 
(BODY t(LAMBDA SIMPLE [A B] 

( PATTERN 
(BODV +) 

(REFLECTIVE CLOSURE) 

(PCONS B A») 
tREST) 

Pruper/ies: Primitive; kernel. 
, Z 

'( PCONS B A) 
=> "(TAIL 1 VECTOR) 

(ERROR: C10sure expected.} 

True just in case the PROCEDURE-TYPE of the closure designated hy CLOSURE is the atom 
REFLECT. 

(Il-Type: [ CLOSURES 1 ... TRUTH-VALUES 

HXGmples: (REF LECT IVE 
(REfLECTIVE 
(REFLECTIVE 
(RErLECTIvE 

(DE-REFLECT CLOSURE) 

t+} 
tIF} 
HET} 
(CCONS 'X '[] 'V 'Z» => 

$F 
$T 
$f 
$F 

Properties: Kernel;'cons. 

Designates an otherwise inaccessible closure whose PROCEDURE-TYPE is the atom SIMPLE 

and whose other components are the same as those of the closure designated by CLOSURE. 

Ill-Type: [ CLOSURES 1 -> CLOSURES Properties: Kernel. 
Hxomples: (DE-REfLECT (CCONS 'X '[] 'Y 'Z» => '{closure: simple [] Y Z} 

(DE-REFLECT tIF) => '{simple IF closure} 

(REFLECTIFY FUN) 
Designates a function; returns an otherwise inaccessible closure whose PROCEDURE-TYPE is 
the atom REFLECT and whose other components are the same as those of the closure to which 
FUN nonnalizcs. For example, BLOCK is defined in section 8 to be (REFLECTIFY BLOCK­

IlELPER). 

<P-Type: [ FUNCTIONS 1 ... FUNCTIONS Properl ;es: Cons. 
Examples: (REFLECTIFY .J.(CCONS 'x '[] 'v 'Z» => {closure: reflect [] Y Z} 

(REFLECTIFY NORMALIZE) => {reflective NORMALIZE closure} 

4.c.4. ATOMS 

(AeONS) 
Designates a nameless 

Ifl-Type: [ 1 - ATOMS 

Examples: (ACONS ) 
(= (ACONS) 

and otherwise inaccessible atom. 

=> 
(ACONS» => 
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(atom} 
$F 

Properties: Primitive; cons. 
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4.c.5. TYPING 

(TYPE A) 
Designates the atom associated with the type of the object designated by A (chosen from the 
standard 15). 
.Jl-Type: [ OBJECTS 1 -> A TONS 

Examples: (TYPE 3) 
(TYPE '3) 
(TYPE $I) 
(TYPE 'SF) 
(TYPE HA) 
(TYPE 'H4) 
(TYPE [1 2 3]) 

(ATOM E) 
(BOOLEAN E) 
(CHARACTER E) 
(CHARAT E) 
(CLOSURE E) 
(FUNCTION E) 
(HANDLE E) 
(NUMBER E) 
(NUMERAL E) 
(PAIR E) 

(TYPE '[1 2 3]) 
(TYPE +) 
(TYPE t+) 
(TYPE PRIMARY-STREAM) 
(TYPE fPIlIMARY-STREAM) 
(TYPE '(= 2 3» 
(TYPE 'A) 
(TYPE "3) 
(TYPE • t • , , t '7) 

(RAIL E) 
(SEQUENCE E) 
(STREAM E) 
(STREAMER E) 
(TRUTH-VALUE E) 

Propcrties: Primitive; kernel. 
:::;. 'NUMBER 
:::;. 'NUMERAL 
:::;. 'TRUTII-VALUE 
:::;. 'BOOLEAN 
:::;. , CIiAIlACTER 
:::;. 'CHARAT 
:::;. 'SEQUENCE 
:::;. 'RAIL 
:::;. 'FUNCTION 
:::;. 'CLOSURE 
:::;. 'STREAM 
:::;. 'STREAMER 
:::;. 'PAIR 
:::;. 'ATOM 
:::;. 'IIANDLE 
:::;. 'HANDLE 

P,ach of the fifteen type predicates are trlle of clements of each of fifteen semantic categories .. 
and false of all others. Specifically. (ATOM E) is true iff E designates an atom (and similarly 
for the others). 

,'Jl-Type: [ OBJECTS 1 -> TRUTH-VALUES 
Examples: (ATOM 'A) :::;. 

Properties: Kernel (ATOM. PAIR, RAIL, HANDLE only), 
ST 

(PAIR '(1ST '[A BJ» :::;. $I 
(FUNCTION +) :::;. $T 
(CLOSUIlE '+) :::;. $F 

(VECTOR E) 
'Tme if. and only if. E designates either' a rail or a sequence; false otherwise. 

'Jl-Type: [ OBJECTS 1 -> TRUTH-VALUES 
Examples: (VECTOR [1 2 3]) :::;. $T 

(VECTOR '[A BJ) :::;. $T 
(VECTOR '(1 2 3» :::;. $F 
(VECTOR "String") :::;. $T 

- * 

1,-. 



STANDARD PROCEDURES INTI:.RIM 3-LISP REFERENCE MANUAL 

(INTERNAL E) 
(EXTERNAL E) 

(INTERNAL E) is true if, and only if, E designates an internal structure such as a numeral or a 
rail: t~llse otherwise. Similarly, (EXTERNAL E) is true just in case E designates an external 
structure (Le., an abstraction) such as a number or a sequence: false otherwise. 
'1)- Type: [ OBJECTS] ..... TRUTH-VALUES Properties: Kernel (EX fERNAL only). 
/:'xalllples: (EX TERNAL 123) =:> $T 

(INTERNAL (+ 2 2» =:> $F 
(EXT[RNAL +) =:> $T 
(INTERNAL '+) =:> $T 
(INTlRNAL t+) =:> $T 

(CHARACTER-STRING E) 
True if, and only if, E designates a sequence of one or more characters; flllse otherwise. 
<I>-Type: [ OBJECTS] .... TRUTH-VALUES 

HXl7f11ples: (CIlAIlACTER-STRING "Hello") 
(CHAIlACTER-STIlING [IA IS IC]) 
(CHARACTER-STRING IX) 
(CHAIlACTER-STIlING "H) 
(CHAIlACT[R-STIlING '[I 2 3]) 

=:> $T 
=:> $T 
=:> $F 
=:> $F 
=:> $F 

(CHARACTER-STRING (PREP 1 "2"» =:> $F 

4.c.6. IDENTITY 

(= E1 E2 ••• EK) 
When K is 2, true if E) and E? designate the same object: false otherwise. However, an error 
will be detected if both E) and Ez designate functions. When both E) and Ez designate 
sequences, corresponding e\cments arc compared (using =) from left to right until it can be 
established that the two sequences difter, or until an error is detected. Consequently, 
(= E) Ez) Illay fail to terminate when E) and E2 designate infinite sequences (or sequences 
containing infinite sequences). Note that aILhough equality is defined over closures, it is too 
fine-grained to be used for function identity. When K is greater than 2, E[ will not be 
compared to E) lIn\css E) through E1-) have been determined to all designate the same object. 
'1)- Type: [ OBJECTS X OBJECTS X (OBJECTS)· 1 .... TRUTH-VALUES Properties: Primitive; 

Examples: (= 3 (+ 1 2» 
(= 5 '5) 
(= '5 '5) 
(= $F $F $F $F) 
(= [10 20] [10 20]) 
(= '[10 20] '[10 20]) 
(= ['10 '20] '[10 20]) 
(= '[10 20] ['10 '20]) 
(= CAR CDR) 
(= CAR 3) 
(= [+ 2] [+ 3]) 
(= [2 t] [3 +]). 
(= + 1 +) 
(= + + 1) 

(ISOMORPHIC E1 Ez) 

$I 
SF 
$I 
$I 
$I 
$F 
$F 
$F 
(ERROR: 
$F 
(ERROR: 

. $F 
SF 
(ERROR: 

kernel. 

= not defined over functions.} 

= not defined over functions.) 

= not defined over functions.) 

True if E) and E2 designate similar structures; false otherwise. When either E I or Ez 
designates an external structure [SOMORPIIIC behaves just like =. Otherwise, two internal 
structures are isomorphic if they are = or have isol11orphic corresponding components. 
ISOMOIlPIIIC may fail to terminate on circular structures. 
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<p-Type: [ OBJECTS X OBJECTS] ..... TRUTH-VALUES 
Examples: (ISOMOHPHIC '5 '5) 

(ISOMOHPIlIC '[10 20] '[10 20]) 

~
ISOMOIlPIilC 'rIO 20] ['10 '20]} 
'I SOMOR PI! IC t CAR t COil ) 
ISOMOIlPIIIC '(A. B) '(A. B» 

(ISOMOIIPHIC "[X] "[Xl) 
(ISOMOIIPIIIC t(LAMIlDA SIMPLE [X] X) 

::::;. $T 
::::;. $T 
::::;. $F 
::::;. $F 
::::;. $T 
::::;. $T 

t(LAMBDA SIMPLE [X] X» ::::;. $T 

4.c.7. ARITHMETIC OPERATIONS 

(+ N1 Nz ••• Nk) 
(. N1 Nz ••• Nk) 

Designate, respectively, the slim and product of the numbers designated by Nl through Nt. 
(+) designates 0, and (.) designates 1. 
<p-Type: [ {NUMBERS}- ] ..... NUMBERS Properties: Primitive. 
Examples: (* 2 2 2 2) ::::;. 16 

(+ 1 3 5) ::::;. 9 
(+ 3) ::::;. 3 
(* 3) ::::;. 3 
(+) ::::;. 0 
(*) ::::;. 1 
(+ 'I '2) ::::;. {ERROR: Number expected.} 

(- N1 Nz ... Nk) 
Designates the difference of the numbers designated by Nl through Nt. k must be at least l. 
Specifically. (- N) is equivalent to (- 0 N). and (- Nl Nz ... Nt) is equivalent to (­

N, (+ Nz ••• Nt)}. 

<p-Type: [ NUMBER X {NUMBERS}- ] ..... NUMBERS Properties: Primitive. 
Examples: (- 100 2) ::::;. 98 

(- 3) ::::;. -3 
(- 10 20) ::::;. -10 
(-9135) ::::;.0 
(- 9 (+ 1 3 5)} ::::;. 0 
(-3) ::::;. {ERROR: Not a function.} 
(- 0 $T) ::::;. (ERROR: Number expected.) 

(I N1 Nz) 
Designates the quotient of the numbers designated by N, and Nz• (I Nl Nz) wilt cause an 
error if Nz designates zero. Currently, arithmetic is defined only on integers; ultimately we 
intend to detine full rational (or repeating fraction) arithmetic. with no upper limit on 
numeral size. and no limit on precision. 
<P-Type: [ NUMBERS X NUMBERS] ..... NUMBERS Properties: Primitive. 
Examples: (/ 10 3) ::::;. 3 

(I -10 3) ::::;. -3 
(I 10 -3) ::::;. -3 
(/ -10 -3) ::::;. 3 
(I 100 0) ::::;. (ERROR: Division by zero.) 

(REMAINDER N1 Nz) 
Designates the remainder upon divioing Nj by N2 : error if Nz designates, zero. The sign of a,' 

'non-lero 'remainder is that of the first argument 
<P-Type: [ NUMBER X NUMBERS] ..... NUMBERS 

Examples: (HEMAINDER 10 3) ::::;. 1 
(REMAINDER 10 -3) ::::;. 1 
(REMAINDER -10 -3)::::;' -1 
(REMAINIJEI! -10 -3)::::;' -1 
(REMAIN[)ER 10 0) ::::;. (ERROR: Divislon by zero.) 
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(1+ N) 
(1- N) 

Designates the number one greater or one less than the number designated by N, respectively. 
$-Type: [ NUMBERS ] ...... NUMBERS 

Examples: ( 1 + 20) => 21 
(MAP 1- [2 3 4]) => [1 2 3] 

« Nj N2 ••• NIe) 
«= Nj N2 ... NIe) 
(> NJ N2 ... Ntc) 
(>= Nj N2 ... NIe) 

True if, and only if. the number designated by N1 is less than the number designated by Nz, 
the number designated by Nz is less than the number designated by N3• etc. Similarly for the 
others. except that the relationship is that of being less than or equal «=). greater than (», or 
greater than or equal (>=). In all cases, k must be· at least 2. 
(\l-Type: [ NUMBERS X NUMBERS X (NUMBERSP ] ...... TRUTH-VALUES Properties: Primitive. 
Examples: « 2 3) => $I 

(>= 5 4 4 2 -1 -7) => $T 
«= 99 1 'I) => (ERROR: Number expected.) 
(> 100 1000) => $F 

(ABS N) 
Designates the absolute value of the number designated by N. 

q)-Type: [ NUMBER ] ...... NUMBERS 

l!.xamples: (ABS 100) 
(ABS -100) 
(ABS 0) 
(ABS 'I) 

(MIN NJ N2 ... NIe) 
(MAX Nj N2 ... Ntc) 

=> 
=> 
=> 

100 
100 
o 
(ERROR: Number expected.) 

Designate. respectively, the minimum and maximum of the numbers designated by Nt 
through Nk (K ~ 1). 
tfJ-Type: [ NUMBERS X (NUMBERS)- ] ...... NUMBERS 

Examples: (MIN 3 1 4) => 1 

(ODD N) 
(EVEN N) 

(MIN 0 1 -7) => -7 
(MAX 4) => 4 

True if N designates an odd or even number, respectively. 
$-Type: [ NUMBERS ] ...... TRUTH-VALUES 

Examples: (ODD 100) => $F 
(EVEN 100) => $I 
(ODD -1) => $I 
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(ZERO N) 
(NEGATIVE N) 
( POS IT IVE N) 
(NON-NEGATIVE N) 

True if the number N designates is equal to, less than, greater than, or greater than or equal 
to zero, respectively. 
$-Type: [ NUMBERS] .... TRUTH-VALUES 

Examples: (ZERO 1) => SF 
(NEGATIVE -1) => Sf 
(POSITIVE 0) => SF 
(NON-NEGATIVE 0) => Sf 

(** Ni Nz) 
Designates the Nz-fold product of the number designated by NJ with itself. Nz must designate 
a non-negative number. 
IJl-Type: [ NUMBERS X NUMBERS ] .... NUMBERS 

Examples: ( •• 2 10) => 1024 
(n 10 0) => 1 
( •• -5 3) => -125 
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4.c.S. PROCEDURE DEFINITION and VARIABLE BINDING 

(DEFINE LABEL FUN) 
Establishes a binding of the atom lABEL (llot the designation of that atom - i.e .• lABEL is in 
an intensional context) to the function designator that result,> from normalizing FUN. Unlike 
SET. DEFINE normalizes FUN in an environment in which lABEL will ultimately be bound to the 
result of the normalization. to facilitate recursion. I n other words. (DE FINE lABEL FUN) 
establishes lABEL as the public name for the function designated by FUN. and also enables FUN 
to use lABEL as it'> own internal name for itself. Returns a handle to lABEL. 

Properties: 
Macro: 

Examples: 

Smash-env; abnonnal. 
(DEFINE lABEL FUN) 
=> (BLOCK (SET lABEL 

(V-OPERATOR (lAMBDA SIMPLE [lABEL] FUN») 
, lABEL) 

1> (DEFINE SQUARE (lAMBDA SIMPLE [N] (* N N))) 
1= 'SQUARE 
1> (DEFINE FACTORIAL 

(lAMBDA SIMPLE [N] 

1= 
1> 
1= 

(IF (= N 0) 1 (* N (FACTORIAL (1- N)))))) 
'rACTORIAl 
(FACTORIAL 6) 
120 

(Y-OPERATOR FUN) 
(V-OPERATOR FUN) designates a function with the property that (FUN (V-OPERATOR FUN» also 
designates that same function. In other words, (V-OPERATOR FUN) is a fixed poilll of the 
function designated by FUN. FUN Illust designate a mapping frolll functions to functions. This 
fixed poillt operator is used in defining recursive procedures (see the detinition of DEFINE). 

Ijl-Type: [ FUNCTIONS ] -> FUNCTIONS 
Examples: 1> (SeT FACTORIAL 

(Y-OPERATOR 
(lAMBDA SIMPLE [SELF] 

(lAMBDA SIMPLE [N] 
(IF (~ N 0) 1 (* N (SELF (1- N)))))))) 

1= 'OK 
1> (FACTORIAL 
1= 120 

(Y*-OPERATOR Fj Fz ••. Fk) 

6) 

V*-OPEIlATOR is a generalization of V-OPERATOR that is useful in defining multiple mutually­
recursive procedures. 
III-Type: [ {FUNCTIONS}- ] -> SEQUENCES 
!Jxalllples: 1> (SeT EVEN&ODD 

'1= 'OK 

(Y·-OPERATOR 
(lAMBDA SIMPLE [EVEN OOD] 

(lAMBDA SIMPLE [N] 
(IF (= N 0) $T (ODD (1- N))))) 

(lAMBDA SIMPLE [EVEN ODD] 
(lAMBDA SIMPLE [N] 

(IF (= N 0) $F (NOT (EVEN N»)))))) 

I) «1ST EVEN&ODD) 2) 
1:: $T 
1> «2ND EVEN&ODD) 2) 
1= SF 
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(LAMBDA TYPE PAT BODY) 
Informally. an expression of the form (LAMBDA TYPE PAT BODy) designates the function of 
type TYPE (typically SIMPLE, REFLECT, or MACRO) that is signified hy the lambda abstraction of 
the formal parameters in pattern PAT over the expression BODY. LAMBDA is intensional in its 
second and third argument positions: neither PAT nor BODY is normalized. More formally, 
(LAMBDA TYPE PAT BODY) designates the result of applying the function designateu by TYPE to 
three arguments: a designator of the current environment. and the two expressions PAT and 
BODY (un-nonnalized). 
Properties: 
l!.xamples: 

Kernel; cons; abnormal. 
I) (LAMBDA SIMPLE [A B] (* A B» 
1= {closure: SIMPLE {global} [A B] (* A B)} 
I) ((LAMBDA SIMPLE [N] (+ N N» 4) 
1= 8 
1> ((LAMBDA REFLECT [ARGS ENV CONT] ARGS) • XXX) 
2= 'XXX 

(SIMPLE DEF-ENV PAT BODY) 
This procedure, together with REFLECT, MACRO, REFLECT!, E-MACRO, and E-REFLECT, are most 
useful as the TYPE specification in the context (LAMBDA TYPE PAT BODY). SIMPLE is used to 
define simple proccdures. When a procedure call (FOO . ARbS) is normalized at level Nand 
FOO designates a simple procedure, the sequence of events will be as follows: ARGS will be 
normalized in the current level N environment; the defining environment, DEF-ENV, wi11 be, 
extended by matching the pattern, PAT, against the arguments; finally, the body, BODY, will be 
normalized at level N in this new environment 
<It-Type: r RAILS x STRUCTURES X STRUCTURES 1 .... FUNCTIONS Properties: Kernc1; cons. 
Examples: (SIMPLE '[['X 'I]] '[] 'X) => {closure: SIMPLE [['X 'I]] [] X} 

«SIMPLE '[[ 'X 'I]] '[] 'X» => 1 
«SIMPLE tGLOBAL 

'[X] 
'(+ X 2» 99) => 101 

«SIMPLE '[] '[X] '(ACONS») => (ERROR: Unbound variable ACONS.) 

(REFLECT DEF-ENV PAT BODY) 
REFLECT is used to define reflective procedures. When a procedure call (FOO • ARGS) is 
normalized at level Nand FOO designates a retlective procedure, the sequence of events will 
be as follows: the detining environment. DEF-ENV. will be extended by matching the pattern, 
PAT. against a designator of the un-normalized ARGS. the level N environment. anu the current 
level N+l processor continuation; lastly, the body, BODY, will then be normalized at level N+l 
in this new environment. 
{I>-Type: r RAILS x STRUCTURES X STRUCTURES 1 .... FUNCTIONS Properties: Cons. 
Examples: 1> (SET REFLECT-TEST 

(LAMBDA REFLECT [ARGS ENV CONT] 
(BLOCK (SET STASH ARGS) (CONT "OK»» 

1= 'OK 
I) (REFLECT-TEST + (+ 2 2» 
1= 'OK 
1> STASH 
1= '[+ (+ 2 2)] 
I) (REFLECT-TEST. +) 
1= 'OK 
1> STASH, 
1= '+ 

(REFLECTl DEF-ENV PAT BODY) 
REFLECT! is very similar to REFLECT except that the arguments to the retlective procedure are 
normalized before being mutched against the pattern. 
{I,-Type: r RAILS x STRUCTURES X STRUCTURES 1 ~ FUNCTIONS Properties: 'Cons. 
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Examples: 1) (SET REFLECT/-TEST 
(LAMBDA REFLECT! [ARGS ENV CaNT] 

1= 'OK 
(BLOCK (SET STASH ARGS) (CONT ' 'OK»» 

I) (REFLECT/-TEST + (+ 2 2» 
1= 'OK 
1> STASH 
1= '[{simple + closure} 4] 
I) (REFLECT/-TEST. +) 
1= 'OK 
1> STASH 
1= '(simple + closure) 

(MACRO DEF-ENV PAT BODY) 
When a procedure call (FOO . ARGS) is normalized (at level N) and FOO designates a macro 
procedure. the sequence of events will he as follows: the arguments to the procedure will not 
be normalized: the denning environment will be extended by matching the pattern against a 
designator of the un-normali7.ed arguments: the body will be nort11alized in this new 
environment: finally. the result of this normalization will be re-normalized in the original 
environment. 
!}I-Type: 
Examples: 

[ RAILS X STRUCTURES X STRUCTURES 1 -+ FUNCTIONS 

1) (SET MACRO-TEST 
(LAMBDA MACRO ARGS 

(BLOCK (SET STASH ARGS) ARGS») 
1= 'OK 
1) (MACRO-TEST + (+ 2 2» 
1= [{simple + closure} 4] 
1> STASH 
1= '[+ (+ 2 2)] 
I) (MACRO-TEST. +) 
1= {simple + closure} 
1> STASH 
1= '+ 

(REBIND VAR BIND ENV) 

Properties: Cons. 

Modifies the environment designated by ENV to contain a binding of the internal structure 
designated by VAR to the internal structure designated by BIND. If the structure designated by 
VAR is already bound. that binding will be modified in place: if not, a new binding of the 
structure designated by VAR to the structure designated by BIND will be added to the foot of 
the environment designated by ENV. Environments generated by the 3-USP processor consist 
only of atoms bound to normal-form structures, so that VAR should designate an atom and 
BIND a normal-form internal structure if ENV is intended to continue to designate a well-
formed 3-L1SP environment. Returns 'OK. 

!}I-Type: [ STRUCTURES X STRUCTURES X SEQUENCES 1 -+ ATOMS Properties: Cons; smash. 
Examples: (LET ([ENV [['X '1] ['Y '2]]]] 

(BLOCK ~REBIND 'Y t(+ 2 3) ENV) 
(REBIND 'Z '$T ENV) 
ENV» => (['X 'I] ['Y '5] ['Z '$T]] 

(SET VAR BINDING) 
SET alters the current environment's binding of the atom VAR to be the result of normalizing 
BINDING (in the current environment). Note that the first argument, VAR, is not normalized. 
Returns ' OK • 

. Properiies: Smash-env; abnormal. 
Examples: 1> (SET x (+ 2 2)) 

1= 'OK 
1> X 
1= 4 
I) (SET X (+ X X» 
1= 'OK 
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(SETREF VAR BINDING) 
SETREF is a variant of SET in which both VAR and BINDING are nonnalized. Relurns 'OK. 

Pruperties: Smash-env. 
(!»-Type: [ ATOMS X OBJECTS] .... ATOMS Properties: Smash-env. 
Examples: 1) (SET X 'Y) 

1= 'OK 
I) (SETREF X (- 2 2)) 
1= 'OK 
1> Y 
1= 4 

(BINDING VAR EN V) 
Designates the binding of the internal structure designated by VAR in the environment 
designated by ENV. The 3-L1SP processor will. on it~ own. only establish normal-form 
bindings for atoms. so VAR should designate an atom unless the user provides his or her own 
environment structure (in which case BINDING can be used as a 3-USP analog of USP l.5's 
ASSOC). 

«fl-Type: [ STRUCTURES X SEQUENCES ] .... STRUCTURES Properties: Kernel. 
Examples: (BINDING 'Y [['X 'I] ['Y '2] ['Z '3]]) => '2 

(BINDING 'NORMALIZE GLOBAL) => '(simple NORMALIZE closure) 
(LET [[X (+ 1 2)]] 

«LAMBDA REFLECT [ARGS ENV CONT] 
(CONT (BINDING 'X ENV»») => 3 

(BIND PATTERN ARGS ENV) 
Designates an environment obtained by augmenting the environment designated by ENV with 
the variable bindings that result from the matching of the pattern structure designated by 
PATTERN against the argument structure designated by ARGS. 1\ pattern consisting of a single 
atom will match any argument structure directly: this results in the atom becoming bound to 
the entire argument structure. This basic matching process is extended to rail patterns in the 
usual way: pattern and argument rails must match on an clement by clement basis. The 
designator of the old environment is always a tail of the result. 
(!»-Type: [ STRUCTURES X STRUCTURES X SEQUENCES ] ..... SEQUENCES Properties: Kernel; cons. 
Examples: (BIND 'X '2 [['V 'I]]) . => [['X '2] ['Y 'I]] 

( B I NO '[ X ] '[ 2 ] [[' Y '1] ] ) => [[ 'X '2] [' Y '1 ]] 
( BIND '[ X ] "[ 2 ] [[' Y '1] ] ) => [[ 'X "2] [' Y '1 ]] 
( B I NO '[ X Z] '[ 2 3] [[' Y '1] ] ) => [[ 'X '2] [' Z '3] [' Y '1] ] 
( B I NO '[ X Y] '[ [2] 3] [[' Y '1]]) => [[ 'X '[ 2]] [' Y '3] [' Y '1]] 
(BIND '[X [Z]] '[2 [3]] [['V 'I]]) => [['X '2] ['Z '3] ['Y 'I]] 
(BIND '[X] '2 [['V 'I]]) => (ERROR} 
(BIND '[X] .. '[2] [['V 'I]]) => {ERROR} 
(BIND '(A. B) '(1.2) [['V 'I]]) => {ERROR} 

(LET [[P! El] ... [Pk Ed] BODY) 
Designates the designation that BODY has in an environment which is like the current 
environment except extended by matching the patterns Pi to the results of nonnalizing the 
expressions E j in environment the current environment. In other words all of the E I are 
nomlalized in the same environment. It can be detennined (because of the way in which 
rails are normalized) lhat the E i will be normalized sequentially. but il is considered bad 
programming practice to depend on lhis fact (only BLOCK should be used for explicit 
sequential prQcessing). . 
Properties: Kernel; env; abnollnal. 
Macro: (LET [[P J EJJ ... [Pk EkJ] BODY) 

=> « LAMBDA SHlPLE [P J ... Pk ] BODY) EJ ... Ek ) 

Examples: (LET [[X 3] [Y 4]] (+ X V»~ => 7 
(LET [[[A B] (IlEST [1 2 3])]J (+ A B» => 5 
(LET [[X 3]] 

(LET [[X 4] [Y X]] (+ X V»~) => 7 
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(LETSEQ [[Pl El] ... [Pic Ed] BODY) 
LETSEQ is like LET except that each expression EI+I is normalized in the environment that 
resull') from extending the previous environment' with the results of matching pattern PI 
against the nonnalil.ation of E I' 

Properties: Env; abnormal. 
Macro: (LETSEQ [[PI EI][PZ E2] ••• [Pie EIe ]] BODY) 

=> (LET [[PI EI ]] 

(LETSEQ [[Pz Ez] ... [Pie E/c]] BODY» 
Examples: (LET [[X 3]] 

(LETSEQ [[X 4] [Y X]] (+ X V»~) => 8 

(LETREC [[Vl Ed ... [Vic Ed] BODY) 
Like LET and LETSEQ except that each expression E f is norm,alil.ed in the environment that 
resulL') from extending the original environment with the results of binding all of the 
variables VI against the nonnalizations of their E I' 

Properties: Env; abnormal. 
Alaero: (LETREC [[VI Ed[Vz E2 ] ••• [Vic EIe ]] BODy) 

=> (LET [[VJ 'HUCAIRZ][Pz 'HUCAIRZ] .•• [Vic '~IUCAIRZ]] 
(BLOCK (SET VJ E1 ) 

(SET Vz E2 ) 

(SET Vic f/c) 
BODY) ) 

F:xamples: (LETREC [[EVEN (LAMBDA SIMPLE [N] 
(IF (= N 0) $T (000 (1- N»»] 

[000 (LAMBDA SIMPLE [N] 
(IF (= N 0) $F (NOT (EVEN N»»]] 

(SCONS (EVEN 2) (0002») => [$T $F] 
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4.c.9. CONTROL 

(EF PREM Cj Cz) 
(IF PREM £t £2) 

Both (IF PREM c1 C2 ) and (EF PREM c1 C2 ) designatc the referent of c1 or c2 depending on 
whether PREM designates true or false. respectively. In the case of IF. c1 (c 2 ) is nonnalized 
only if PREM designates true (false). whereas EF is fully (procedurally) extensional. 
(I'-I)'pe: [ TRUTH-VALUES X OBJECTS X OBJECTS ] - OBJECTS 

Properties: Primitive (EF only): kernel: abnormal (IF only). 
/:'xamples: 1> (IF (= 1 1) 'A '6) 

1= 'A 
1) (IF (= 1 Z) 'A '6) 
1= '0 
1> (EF ('" 1 Z) 

(PRINT-STRING "He11o" PRIMARY-STREAM) 
(PRINT-STRING "Good-bye" PRIMARY-STREAM» Bello Good-bye 

1= 'OK 
1> (IF CD 1 Z) 

(PRINT-STRING "He11o" PRIMARY-STREAM) 
(PRINT-STRING "Good-bye" PRIMARY-STREAM» Good-bye 

1= 'OK 
1) (EF [] 'A '6) 
ERROR: Truth value expected. 

(COND [Pj ~] ••• [Pk fk.]) 
Designates C i for the least i such that Pi designates true. Only Pl. Pz • •..• Pi and C i arc 
nomullil'.ed. Error if no Pi designates truc. or some Pi doesn't designate a truth value. 
Properties: Kernel: abnormal. 
RXllmples: 1) (COND [(= 1 Z) 10] 

cr· 1 3) ZO] 
[(a 1 1) 30] 
[$T 40]) 

1= '30 
I) (COND [(= 1 Z) 

[(" 1 3) 
[(= 1 1) 
[$T 

1= 'OK 

(PRINT '10 PRIMARY-STREAM)] 
(PRINT 'ZO PRIMARY-STREAM)] 
(PRINT '30 PRIMARY-STREAM)] 
(PRINT '40 PRIMARY-STREAM)]) 30 

(BLOCK Cj ••• fk.) 
The results of normalizing C1 through Ck-1 are discarded. and the result of normalizing Ck is 
returned. Note that Ck is normalized tail-recursively with respect to the BLOCK, 
(1)- Type: [ (OBJECTS)· x OBJECTS ] - OBJECTS 

Rxa1l1ples: 1> (BLOCK 1 Z 3) 

. (CATCH C) 

1= 3 
1> (BLOCK (PRINT-STRING "Z " PRIMARY-STREAM) 

(PRINT-STRING "+ " PRIMARY-STREAM) 
(PRINT-STRING "Z " PRIMARY-STREAM) 
'DONE) ~ 

1= 'DONE 

DeClaratively speaking. CATCB designates the identity function -it returns what C nOJmalizes 
to. However. if (THROW E) is normalized in the process of normalizing C (and assuming that 
there are no intervening cATcfles) the result of normalizing E is immediately returned as the 
result of the enclosing (CATCfI C). 

cp-Type: [ OBJECTS] - OBJECTS Properties: (Hairy). 
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Examples: 1> (CATCH (+ Z Z)) 
1= 4 

(THROW C) 

1> (CATCH (+ Z (THROW 3») 
1= 3 
1> (CATCH 

1= 6 

(BLOCK (mnOW (+ 3 3)) 
100)) 

Causes the result of nonmllii'.ing C to he returned immediately as the result of the most 
recently executed enclosing CAl CII. The current retlective level is abandoned if there is no 
enclosing CATcn. 

Properties: (Hairy). 
Hxomples: 1> (CATCH (BLOCK (PRINT-STRING "-Z " PRIMARY-STREAM) 

(PRINT-STRING "-1 " PRIMARY-STREAM) 
(THROW 'BLAST-OFF) 

(DELAY C) 

1= 'BLAST-OFF 

(PRINT-STRING "1 " PRIMARY-STREAM) 
(PRINT-STRING "Z " PRIMARY-STREAM))) -2 -1 

1> (CATCH (+ (CATCH (* 5 3» 
(THROW (* 6 (THROW 4»») 

1= 4 
1> (THROW (+ Z Z» 
2= '4 

Defers the normalization of C by embedding it in a LAMBDA expression. 

Properties: Abnormal. 

AIacro: (DELAY C) => (LAMBDA SIMPLE [] C) 

Examples: 1> (SET X (DELAY (* Y Y») 

(FORCE C) 

1= 'OK 
1> (SET Y 7) 
1= 'OK 
1> (FORCE X) 
1= 49 
1> (SET Y 9) 
1= 'OK 
1> (FORCE X) 
1= 81 
1> (DEFINE NEW-IF 

(LAMBDA MACRO [P C1 CZ] 
'(FORCE (EF ,P (DELAY ,Cl) (DELAY ,CZ»») 

1= 'NEW-IF 
I) (NEW-IF (= (+ Z Z) 4) 

YES 
1= 'OK 

(PRINT 'YES PRIMARY-STREAM) 
(PRINT 'NO PRIMARY-STREAM» 

Causes the nonnalization of the DELAYed expression designated by C. 
Examples: 1> (SET X (DELAY (PRINT-STRING GREETING PRIMARY-STREAM))) 

1= 'OK 
1> (SET GREETING. "Hi there P) 
1= 'OK . 
1> (FORCE X) IIi there 
1= 'OK 
1> (SET GREETING "Good-bye") 
1= 'OK 
1> {FORCE X} Good-bye 
1= 'OK 
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(SELECT INDEX ["'j f.11 ["'k f.Jr.l) 
(SELECTQ INDEX ["'j f.11 ["'k f.Jr.l) 

SELECTQ allows one of several clauses (the C I) to the processed based upon the designation of 
INDEX. The MI are tested from left to right. stopping as soon as a clause is selected. If Ml is 
an atom. the fth clause will be selected if the selector designates this atom': if Mj is a rail. the 
fth clause will be selected if the selector is a memher of this rail: otherwise. Mj should be 
the boolean $T which will always be selected. if given half a chance. Error if no clause is 
selected. SELECT is similar except that the selection is based on the designation of "'1 instead 
of the unnormalized structure. 
Properties: Abnormal. 
Macro: E.g. (SELECTQ INDEX 

[A C1] 

[[AI ... AN] Cl ] 

[$1 Ctl> 
=> 
(LET [[ {sel,ector} INDEX]] 

(CONO [(= {selector} 'A) C1] 

[(MEMBER {selector} '[AI ... AN]) Cz] 

[$1 Ct ]» 
Example: 1> (DEFINE ACTIVITY 

(LAMBDA SIMPLE [DAY1 
(SELECTQ DAY 

[SUNDAY 'SLEEP1 

1= 'ACTIVITY 

[[MONDAY THURSDAY1 'WORK1 
[$T 'RUMINATE1») 

1> (ACTIVITY 'SUNDAY) 
1= 'SLEEP 
1> (DEFINE ACTIVITY-Z 

(LAMBDA SIMPLE [DAY1 
(SELECT DAY 

['SUNDAY 'SLEEP1 
[['MONDAY 'THURSDAY1 'WORK1 

, [ST 'RUMINATE1») 
1= 'ACTIVITY-2 
1> (ACTIVITY-Z 'THURSDAY) 
1= 'WORK 

(DO [[VARj INITj NEXTll ••• [VARk INITk NEXTkll 
[[EXIT-TESTj RETURNll ... [EXIT-TESTj RETURNJ11 
BODY) 

DO is a general-purpose iteration operator (taken from SCI-IEME. and generalized from 
MACLISP and ZETALlSP). The variables VAR! through VARk are initially bound to the results 
of normalizing the expressions INIT j through INITk (these "initializing" expressions are 
normalized sequentially. but all of them arc normalii',ed before any of the bindings are 
established). Then each of the EXIT-TEST j are processed in order: if any is true, the 
corresponding expression RETURN j is processed. with the result of that RETURN j being returned 
as the result of the entire 00 form. If none of the tests are true. BODY is processed (result 
ignored), and the variables VAR 1 through VARk arc bound, tuthe results of processing NEXT1 ' 

through NEXTk• and the process repeats. The NEXT j arc normalized in an environment hi 
which all of the VAR j remain bound to their previous bindings. BODY may be omitted. 
Properties: Abnormal: env. 

56 

a .2&ii& 



STANDARD PROCEDURES INTERIM 3-L1SP REFERENCE MANUAL 

Macro: (DO [[VAR1 INITl NEXT1] .•• [VARk INITk NEXTk]] 
[[EXIT-TEST1 RETURN1] ... [EXIT-TESTj RETURNj]] 
BODY) 

=il> 
( LETREC 

[[{loop} 

(LAMBDA SIMPLE [VAR1 ... VARk1 
(COND [EXIT-TEST1 RETURN1] 

[EXIT-TESTj RETURNj] 
[$T (BLOCK BODY ({loop} NEXT1 ... NEXTk»]»]] 

«(loop} INIT1 ... INITk» 
Example: 1> (DEFINE NEW-REVERSE 

(LAMBDA SIMPLE [VEC] 
(DO [[V VEC (REST V)] 

[R «VECTOR-CONSTRUCTOR VEC)) (PREP (1ST V) R)]] 
[[(EMPTY V) R]]))) 

1= 'NEW-REVEIISE 
1> (NEW-REVERSE -Rogatfen-) 
1= "neitagoR" 

4.c.lO. TRUTH VALUE OPERATIONS 

(NOT E) 
True if E designates false. and false if E designates true. 
(1,·Type: [ TRUTH-VALUES] -+ TRUTH-VALUES 

Examples: (NOT $F) =;. $T 
(NOT ([VEN 102» =;. $F 
(NOT 1) =;. (ERROR: Tru th va 7 ue expec ted.) 

(AND E1 Ez ••• Ek) 
(OR E1 Ez ••• Ek) 

(AND E 1 E2 ... Ek ) is true just in case all th.e E j are true: (OR E I E2 ... Ek ) is true just in case 
at least one of the E j is true. Procedurally. these forms normalize their arguments one-by­
one only until a deciding case is found ($F for AND: $T for OR): thus they may be able to 
return even ir somc or their arguments are non-tel'minilting. k may be 0: (AND) returns $1; 
(OR) returns $F. 

f1'. Type: [ {TRUTH-VALUESP ] -> TRUTH-VALUES 

Examples: (AND (= 1 1) (= 1 2» 
(OR (= 1 0) (= 1 2) (= 1 1» 
(AND) 
(OR) 
(LET [[X 3]] 

(BLOCK (AND (= 1 2) 
(BLOCK (SET X 4) $T» 

X» 

4.c.l.I. STRUCTURAL. SIDE . EFFECTS' 

(REPLACE 51 5z) 

Properties: Kernel (AND only); abnormal. 
=;. $F 
=;. $T 
=;. $T 
=;. $F 

Replaces the pair, rail. atom. or closure designated by 51 with the structure of the same type 
designated by 52' Returns' OK (therefore it will typically be used only within the scope of a 
BLOCK): however, subsequent to its execution the ficlJ will bc altered in such a way that every 
relationship in which the designation of 51 participated will be changed to have the 
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designation of 52 as its participant (with the consequence that the designation of 51 becomes 
henceforth inaccessible). REPLACE is not defined over the other internal structure types: 
numerals. charats. streamers. or handles. REPLACE is a very dangerous operation that should 
be used with extreme caution. 

CP-Types: C PAIRS X PAIRS] -.. ATOMS Properties: Primitive: smash. 
C. RAILS X RAILS ] -.. ATOMS 
C CLOSURES X CLOSURES] -.. ATOMS 
C ATOMS X ATOMS] -. ATONS 

Hxamples: {LET [[X '(+ 2 3)]] 
{BLOCK {REPLACE (CDR X) '[20 30]) 

X» =* '(+ 20 30) 
{LET [[X '[]]] 

{BLOCK (REPLACE X '[NEW TAIL]) 
X» =* '[NEW TAIL] 

{LET [[X '[AI A2]]] 
{BLOCK (REPLACE 'AI 'A2 ) 

X» =* '[A2 A2] 
(RPLACA PAIR NEW-CAR) 
(RPLACD PAIR NEW-CDR) 

RPLACA (RPLACO) alters the pair designated by PAIR. making its CAR (CDR) be the internal 
structure designated by NEW-CAR (NEW-CDR). Returns 'OK. 

CP-Types: C PAIRS X STRUCTURES] -. ATONS Properties: Smash. 
Examples: 1> (SET X '(A. B» 

1= 'OK 
1> (SET Y X) 
1= 'OK 
1> (RPLACA X 'C) 
1= 'OK 
I) X 
1= '(C. B) 
I) Y 
1= '(C . B) 

(RPLACN N RAIL NEW-ELEMENT) 
RPLACN alters the rail designated by RAIL, making its Nth component be the internal structure 
designated by NEW-ELEMENT. 'OK is returned. 

cp-Type.s: C NUMBERS X RAILS X STRUCTURES] -. ATONS Properties: Smash. 
Examples: 1> (SET X '[ONE TWO THREE]) 

1= 'OK 
I) (SET Y (REST X» 
1= 'OK. 
I) (RPLACN 2 X'··) 
1= 'OK 
1> X 
1= '[ONE •• THREE] 
1> Y 
1= '[ .. THREE] 

(RPLACT N RAIL NEW-TAIL) 
(RPLACT N RAIL NEW-TAIL) replaces (using REPLAC~) the Nth TAIL of the rail designated by 
RAIL with the rail designated by NEW-TAIL. Returns 'OK. . 

cp-Types: [ NUMBERS X RAILS X RAILS] -. ATOMS Properties: Smash. 
Examples: I) (SET X '[ONE TWO THREE]) 

1= 'OK 
1> (SET Y (REST X» 
1= 'OK 
1> (SET Z (REST Y» 
1= 'OK 
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1> (RPLACT 1 X 
1= 'OK 
1> X 
1= '[ONE END] 
1> Y 
1= '[END] 
1> Z 
1= '[THREE] 

'[END]) 

4.c.12. LEVEL CROSSING OPERATORS 

(UP S) 
1'5 

Designates the form to ~~ich S normalil':es. '1's' expan~s to (UP S) in the standard notation. 
Note that UP, although It IS not a reflectIve procedure, IS nonetheless not strictly extensional 
since what it designates is a function not only of its arguments' desigl/atiun, but also of i~ 
argument's procedural cunsequence (what it returns). 
4»-Type: [ OBJECTS J ~ STRUCTURES Properties: Primitive; kernel. 
/!,xamples: 1'5 '5 

1'(+ 2 3) '5 
1'(LAMBDA SIMPLE [X] X) 
['(= 2 3) 1'(= 2 3)] 
(LET [[X [2 3]]] 

'(closure: SIMPLE {global} [X] X} 
['(= 2 3) 'SF] 

(DOWN S) 
+5 

(= X [2 3]» 
(LET [[X [2 3]]] 

(= 1'X 1'[2 3]» 

$T 

SF 

If s designates R - a normal-form designator - then (DOWN 

expands to '(DOWN S)' in the standard notation. 
4»-Type: [STRUCTURES J ~ OBJECTS 

Examples: + ' 4 4 

EXP) wi11 normalize to R. 

Properties: Primitive; kernel. 

+(NTH 2 '[10 20 30]) 
+3 

20 
(ERROR: 
$T 
(ERROR: 

Structure expected.) 
hST 
+'X Not a normal form structure.} 

(REFERENT EXP ENV) 
If EXP designates Rand R normalizes to R' in the environment designated by fNV, then 
(REFERENT EXP ENV) will return R'. Thus REFERENT can obtain the referent of any structure, 
whereas DOWN is restructed to normal-form structures. 
4»-Type: [ STRUCTURES X SEQUENCES J -. OBJECTS 

Properties: (Arbitrary effects due to sub-normalization). 
Examples: (REFERENT' 1 GLOBAL) => 1 

(REFERENT 'X [['X 'I]]) => 1 
(REFERENT "(+ 2 2) []) => '(+ 2 2) 
(REFERENT (peONS '+ '[22]) GLOBAL) => 4 
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4.c.13. SYSTEl\1 UTI LITIES 

(VERSION) 
Designates a character string that idenlifies lhe 3-LlSP implementation. 
<\>-7)lpe: [ 1 -.. SEQUENCES 

Example: 1> (VERSION) 
1= "3-LISP version AOO. i4ay 1, 1983" 

(LOADFILE FILENAME) 
Loads 3-LlSP definitions from the file with the same spel1ing as the atom designated by 
FILENAME. These delinitions. which are slored as characler slrings. arc sluffed into the 
primary stream so that subseqllent READS will see lhem. Returns', OK. (This is an interim 
mechanisrri; work is under way in providing a more reasonable means of saving and loading 
input files.) 
<1>-Type: [ ATOMS 1 -.. ATOMS Properties: Primitive; I/O. 
Example: 1> (LOADFILE 'UY-FILE) 

1= 'OK 
C .. contents of file MY-FILE are read in at this point} 

(LOAD FILENAME) 
A variant of LOADf ILE that does not normalize its argument. 
Properties: Abnormal; 1/0. 
Macro: (LOAD FILENAME) => (LOADFILE' FILENAME) 

Example:' 1> (LOAD MY-FILE) 
1= 'OK 
C .. contents of file MY -FI I.E are read in at this point.} 

(EDITDEF PROCNAME) 
Every time a character string of the form '(DEfINE FOO FUM)' or '(SET FOO FUM)' arc 
encountered by READ, the string is remembered with the atom FOO. Anytime late~, 
(EDITDEf 'FOO) will retrieve this string so that it can be edited (with INTERLlSP-D's TTYIN). 
Upon completion of editing. the string is quelled for READ. just as is done when a file is 
LOADed. Returns' OK. Note that the code for the stnndard procedures can be accessed in this 
manner. (This too is an interim mechanism; work is under way in providing a more 
reasonable means of editing 3-LlSP code.) 
<I)-Type: [ ATOMS] -.. ATOMS Properties: Primitive; 1/0. 
/:'xample: 1> (EDITDEF 'FOO) 

C .. the text string definition of FOO is displayed for editing.} 
(EDIT PROCNAME) 

A variant of EOITDEr that docs not normalize its argument. 
Properties: AbnonnHI; 110. 
Macro: (EDIT PROCNAME) =) (EOITDEr' PROCNAME) 

Example: 1> (EDIT NORMALISE) 
C., the text string definition of NORMALIZE is displayed for editing,} 
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4.c.14. INPUT and OUTPUT 

PRIMARY-STREAM 
Designates the primary input-output stream through which all commlln'lcat' 'd , ' Ion IS one, Note that only characters can be read from or wntten to this stream, 

tp-Type: STREAMS Properties: Variable, 
Examples: PRIMARY-STREAM => {streamer} 

(TYPE PRIMARV-STREAM) => 'STREAM 
(INPUT STREAM) 

Designates the next item in the stream designated by s, It should be assumed that S is side­
effected by this operation. 
tp-Type: C STREAMS 1 -+ OBJECTS Properties: Primitive; I/O. 
Examples: 1> (INPUT PRIMARY-STREAM) 'I 

1= 117 
1> [(INPUT PRIMARY-STREAM) (INPUT PRIMARY-STREAM)] Oz 
1= "Oz" 

(OUTPUT S STREAM) 
Puts the stmcture designated by S into the stream designated by STREAM. Returns' OK. It" 
should be assumed that STREAM is side-effected by this operation. 
tp-Type: C OBJECTS X STREAMS 1 -+ ATOMS Properlies:Primitive; I/O. 
Examples: 1> (OUTPUT #7 PRIMARY-STREAM) 1 

1= 'OK 
1> [(OUTPUT #0 PRIMARY-STREAM) (OUTPUT #z PRIMARY-STREAM)] Q! 
1= 'OK 

(NEWLINE STREAM) 
Outputs a carriage return character to the stream designated by STREAM. Returns' OK. 

tp-Type: C STREAMS 1 -+ ATOMS Properties: I/O. 
Examples: 1> (BLOCK (NEWLINE PRIMARY-STREAM) 

(OUTPUT #7 PRIMARY-STREAM» 
7 
1= 'Ol{ 

(PROMPT&READ N STREAM) 
Outputs a level N input prompt to the stream designated by STREAM, READS an expression from 
that stream, and returns a designator of that expression. 
ill-Type: [ NUMBERS X ST}EAMS 1 -+ STRUCTURES Properties: I/O. 
Examples: 1> (PROMPT&READ 100 PRIMARY-STREAM) 

100> Hello 
1= ' HELLO 

.( PROMPT&REPL Y ANSWER N STREAM) 
PRINTS the stmcture designllted by ANSWER. preceded by a level N output prompt, to the 
stream designated by STREAM. Returns 'OK. 

tp-Type: C STRUCTURES X NUMBERS X STREAMS 1 - t1TOMS Properties:. 110. 
Exainples: 1> (PROMPT&REPL Y 'HELLO 100 PRIMAffY-STREAM) 

100= BEllO 
1= 'OK 
1> (PROMPT&RfPLY (PROMPT&READ 15 PRIMARY-STREAM) 15 PRIMARY-STREAM» 
15> (+ 2 2) 
"f5'?(+ 2 2) 
1= 'OK 

61 

&&&hUM a. 



STANDARD PROCEDURES INTERIM 3-USP REFERENCE MANUAL 

(PRINT-STRING STRING STREAM) 
OUTPUTS the character in the string designated by STRING to the stream designated by STREAM. 
Returns 'OK. 

<I»-Type: [ SEQUENCES X STREAMS 1 - ATOMS Properties: 110. 
Examples: 1> (PRINT-STRING "He110 there" PRIMARY-STREAM) Hello ttiere 

1= 'OK 

(READ ST,REAM) 
READ parses and internalizes a character sequence notating a 3-LISP structure and returns a 
handle to that structure. The sequence of characters is obk1ined from the stream designated 
by STREAM. Note that all pairs and rails accessible from the result were previously completely 
inaccessible. 
(I)-Type: [ STREAMS 1 - STRUCTURES Properties: 110; cons. (Not currelltly explained) 
I!.xamples: 1> (READ PRIMARY-STREAM) (A • B) 

1= '( A . B) 
1> (READ PRIMARY-STREAM) '$T 
1= "$T 

(PRINT S STREAM) 
PRINT externalizes the structures designated by S and sends the sequence of character to the 
stream designated by STREAM. Returns 'OK. 

<I»-Type: [ STRUCTURES X STREAMS 1 - ATOMS Properties: 110; cons. (Not currently explained) 
Examples: 1> (PRINT' (A . B) PRIMARY-STREAM) (A B) 

1= 'OK 
1> (PRINT "$T PRIMARY-STREAM) ~ 
1= 'OK 

(INTERNALIZE STRING) 
STRING is taken as designating a character sequence that nOk1tes some 3-LISP structure. 
INTERNALIZE returns a handle to this structure. Note that all pairs and rails accessible from 
the result were previously completely inaccessible. 
(It-Type: [ SEQUENCES] - STRUCTURES Properties: Cons. (Not currelltly implemelited) 
Examples: 1> (INTERNALIZE "(A. B)") 

1= '( A • B) 
1> (INTERNALIZE (PREP H' "$T"» 
1= "$T 

(EXTERNALIZE S) 
'I11e intcrnal structure designated by s is converted to a character string that would notate 
this structure (up to structure isomophism). 'Ille result designates this character sequcnce. 
Note that some structures, such as circular rails, will usually cause this procedure to loop 
indefinitely. 
<I»-Type: [ STRUCTURES 1 - SEQUENCES Properties: Cons. {Not currently implemented) 
Examples: 1> (EXTERNALIZE '(A. B» 

1= "(A . B)" 
1> (2ND (EXTERNALIZE "$T» 
1= "$" 
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4.c.lS. OTHER GENERAL UTILITIES 

(10 E) 
10 designates the single argument identity function. (1O E) returns what E normalizes to. 
<1>- Type: [ OBJECTS 1 ->- OBJECTS 

Fxamples: (10 3) 
(10 (+ 2 2» 
(1O'{+23» 
(1O 10) 

(10* E1 E2 ••• EK) 

=> 3 
=> 4 

'(+ 2 3) 
=> {simple 10 closure} 

10* designates the multi-argument identity function. (IO* . E) returns what E normalizes ,to. 
<I>-Type: OBJECTS ..... OBJECTS 

Examples: (1o* 3) => [3] 
{1O* (+ 2 2) (TYPE '1» => [4 'NUMERAL] 
{IO* '(+ 2 3» => ['(+ 2 3)] 
(IO* . GLOBAL) => {global} 
{1O* . (+ 2 2» => 4 

(MACRO-EXPANDER FUN) 
FUN must normalize to a closure that was generated with MAcno. Designates a function that 
will perform the macro expansion entailed in normalizing a call to FUN. 

<I>-Type: [ FUNCTIONS 1 ->- FUNCTIONS 

Examples: ({MACnO-EXPANDER DELAY) 
, '[(FOO X)]) => '{LAMBDA SIMPLE [] (FOO X» 

({MACRO-EXPANDER LET) 
'[[[X 1] (+ X 2)]) => '{{LAMBDA SIMPLE [X] (+ X 2» 1) 

(QUOTE EXP) 
Returns a designator of the structure EXP. Note that QUOTE doesn't normalize its argument 
(It is interesting to see what happens when QUOTE is used as a functional argument: other 
than that, QUOTE is never really needed since the 3-LlSP structural field provides this 
capability via handles.)' 

Properties: Abnormal. 
Examples: (QUOTE 2) 

, 2 
{QUOTE (+ 2 2» 
'(+ 2 2) 
(NORMALISE 'A [] QUOTE) 
(MAP QUOTE [1 2]) 
ARGS» ] 
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4.c.l6. PROCESSOR 

(NORMALIZE EXP ENV CONT) 
Normalizes the structure designated by EXP in the environmcnt designatcd by ENV with 
continuation designated by CONT. Under nOimal circumstances, the normal-form designator 
that results from this normalization will be passed as the single argulllent to the continuation. 
Error if EXP does not designate a structure. 
Ijl-Type: [ STRUCTURES X SEQUENCES X FUNCTIONS] -+ OBJECTS Properties: Kernel; CPS. 
Examples: (NORMALIZE 'I [] 10) => '1 

(NORMALIZE 'X [['X '111 TO) => '1 
(NOIlMALIZE '(+ 2 2) GLOBAl. ID) => '4 
(NORMALIZE '+ GLOBAL QUOTE) => '(BINDING EXP ENV) 
(NORMALIZE '$T GLOBAL QUOTE) => 'EXP 

(REDUCE PROC ARGS ENV CONT) 
Reduces the referent of the structure designated by PROC with the referent of the stmcturc 
designated by ARGS in the environment designated by ENV with continuation designated by 
CONT. Under normal circumstances, the normal-form designator that results from this process 
will be passed as the single argument to the continuation. 
Ijl-Type: [ STRUCTURES X STRUCTURES X SEQUENCES X FUNCTIONS 1 -+ OBJECTS 

Properties: Kernel: CPS. 
Examples: (REDUCE' + '[ 2 2] GLOBAL 10) =>' 4 

(REDUCE 'IF '[$T 12] GLOBAL 1O)=> '1 
(REOUCE '+ '[2 2] GLOBAL 

(LAMBDA MACRO [X] tX» => 't(HR()C! • .j.ARGSI) 

(NORMALIZE-RAIL RAIL ENV CONT) 
Normalizes the rail designated by RAIL in the envir(lI1ment designated by ENV with 
continuation designated by CONT. Under nonnal circumstances, the normal fonn rail that 
results from this processing will be passed as the single argument to the continuation. 
I}>-Type: [ RAILS X SEQUENCES X FUNCTIONS 1 -+ OBJECTS Properties: Kernel; CPS. 
Examples: (NORMALIZE-RAIL '[1] [] ID) => '[1] 

(NOIlMAI. TZE-RAIL '[X Xl [['X 'I]] TO) => '[1 1] 
(NOIlMAI.1ZE-RAIL '[(+ 2 2)] GLOBAL ID) => '[4] 
(NORMALIZE-RAIL '[+] GLOBAL 

(LAI4IlDA MACRO [X] tX» => '(PREP FIRST! REsrl) 
(NOIlMALIZE-RAIL '[] GLOBAL 

(LAMBDA MACRO [X] tX» => '(RCONS) 

(READ-NORMALIZE-PRINT LEVEL ENV STREAM) 
Starts a READ, NORMALIZE, PRINT loop with ENV designating the :nitial environment. STREAM 
designates the stream through which this driver loop communicates; the designation of LEVEL . 
is used as a (hopefully unique) identifying prompt. Under normal circumstances, READ­

NORMALIZE-PRINT will not terminate. 
(1'- Typc: [ OBJECTS X SEQUENCES X STREAMS.] -+ OBJECTS Properties: CPS. 
Hxamples: 1> (RF.AD-NORMALIZE-PRINT 'NEW GLOBAL PRIMARY-STREAM) 

'NEW> (+ 2 2) . . 
~4 
~NEW> ; This level is just as good as the old one. 
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(NORMAL S) 
True just in case S designates a normal-form internal structure. 
("\>-Type: [ STRUCTURES ] ~ TRUTH-VALUES Properties: Kernel. 
Examples: (NORMAL' 3 ) ::::::> $T 

(NORMAL '(+ 2 3» ::::::> $F 
(NORMAL t (+ 2 3» ::::::> $T 
(NOIlMAL '[1 2 3]) ::::::> $T 
(NORMAL '[ 1 2 A]) ::::::> $ F 
(NORMAL 'A) ::::::> $F 
(NORMAL "A) ::::::> $I 

(NORMAL-RAIL RAIL) 
True just in case RAIL designates a 
(fJ-Type: [ RAILS] ... TRUTH-VALUES 
Examples: (NORMAL-RAIL '[]) 

normal-form rail. 

(NORMAL-RAIL '[1 $T HC]) 
(NORMAL-RAIL '[1 2 A]) 

(PRIMITIVE CLOSURE) 

::::::> $T 
::::::>$I 
::::::> $F 

Properties: Kernel. 

True just in case CLOSURE designates 
otherwise. 

one of the thirty or so primitive closures; false 

<11-Type: [ CLOSURES ] ... TRUTH-VALUES 
Examples: (PRIMITIVE t+) 

(PRIMITIVE tNORMALISE) 
(PRIMITIVE tIF) 

PRIMITIVE-CLOSURES 

::::::> ST 
::::::> $F 
::::::> SF 

This variable designates the sequence of primitive closures. 

Properties: Kernel. 

<II-Type: SEQUENCES Properties: Variable; kernel. 
f'xamples: (MEMBER tEF PRIMITIVE-CLOSURES) ::::::> $T 

(MEMBER tIF PRIMITIVE-CLOSURES) ::::::> SF 

GLOBAL 
This variable designates the global environment. The rail to which GLOBAL is bound is shared 
across atI reflective levels, and is a tail of the environment designator captured in most 
closures. 
(I.-Type: SEQUENCES Properties: Variable. 
Examples: 1> (DEFINE LAST 

(LAMBDA SIMPLE [S] 
(IF (UNIT S) (1ST S) (LAST (REST S»») 

1= 'LAST 
1) (SET XXX X '[HORTUS SICCUS]) 
1= 'OK 
1) (BINDING 'XXXX GLOBAL) 
1= "[HOIlTUS SICCUS] 
1) (LAST GLOBAL) 
1= ['XXXX "[HORTUS SISSUS]] 
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(COND-HELPER ARGS ENV CONT) 
(BLOCK-HELPER CLAUSES ENV CONT) 
(AND-HELPER ARGS ENV CONT) 
(OR-HELPER ARGS ENV CONT) 

These arc auxiliary procedures used in the definition of COND, BLOCK, AND, and OR, 

respectively; e.g., COND is defined as (REFLECTIFY COND-HELPER). 

(1)- Type: [ STRUCTURES X SEQUENCES X FUNCTIONS 1 -+ OBJECTS 

Properties: Kernel (COND-HElPER and AND-HElPER only); CPS; (smash; cons; [/0). 
Examples: (COND-HElPER '[(= 2 2) 1][$T 2]] GLOBAL 10) => '2 

(BLOCK-HELPER '[X X X] [['X '1]] ID) => '1 
(AND-IIELPER '[(= 2 2) (= 3 3)] GLOBAL 10) => '$I 
(OR-HELPER '[(= 2 2) (= 3 4)] GLOBAL ID) => '$T 

66 

a 



RUNNING 3-LISP INTERIM 3-LlSP REFERENCE MANUAL' 

5. Running 3-LISP 

In comparison to the LISP MACl-lINE LISP implementation of 3-LISP presented in the appendix of 
[Smith 82a]. the current implementation is a couple of orders of magnitude more efficient. This 
version of 3-L1SP is implemented in INTERLlSP-D for the Xerox 1100. 1108. and 1132 processors; 
this section endeavors to explain to someone familiar with INTERLlSP-D how to go about starting 
up 3-LISP. 

S.a. Starting orr 

Restoring the 3-USP SYSOUT file in the standard way will put you at the INTERLISP top level. 
After connecting to your directory. you invoke the function 3-LISP to get to the (level I) 3-L1SP top 
level. Important note: You ClllIl/of mix INTERLISP and 3-LISP code; i.e this is not an embedded 
implementation like. say. the original implementations of SCHEME. 

S.h. Special Characters 

In addition to the notational conventions explained in §3 the lIser must be aware of the following 
special interrupt characters. 

Character 
DC 
yc 

III 3-LISP 

Hard reset to 3-LISP '1>' top level. 
Exit to INTERLISP. 

III Illterlisp 

Hard reset to INTER LISP top level. 
Enter 3-LISP. 

As mentioned in §3, the backslash character ',' should be used in place of the down-arrow character 
',I-'. However, Xerox 1100 series keyboards do not have the back-quote character'" - type the 
tilde character '-' instead. 

S.c. Editing 

The TTYIN package is used to read 3-LISP expressions, thereby providing parenthesis balancing and 
the usual stable of input editing capabilities (with the exception of automatic (re-)formatting, which 
does not work properly due to read macros). 

Expressions of the from '(DErINE Foo Expression)' or '(SET Foo Expression)' are treated specially 
by READ. When such an expression is encountered, it is saved in the INTERLISP world as the 3-

LISP- FNS file package type uefInition of the literal atom named Foo. The entire text of the 
expression is saved exactly the way it was entered: a subsequent call to the 3-L1SP primitive EDITDEF 

(or EDIT) redisplay the expression in the editor window and open it up for editing (again. with 
. TI'YJN). After the text in the window has been. fixed; a single weIH(jl111ed J-USP expressiOli is' 

. i queued .for READ. The modified expression is not automatically written back: what happens will 
depend on whether the modified expression begins in 'DEF INE' or 'SET'. An editing session can be 
abandoned by using the DC interrupt; the modified expression will be discarded. 

• 

Important note: Although the editor window can be enlarged, it cannot be scrolled. This imposes 
an unfortunate constraint on the length of one's' 3-L1SP procedure definitions. 
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5.d. Saving Your Work 

An mentioned above. the fNTERLlSP file package type 3-LISP-FNS is used for recording the text 
string definitions of 3-LlSP variables that acquire their binding via DEFINE or SET. These detinitions 
can be assigned to files as per the normal INTERLISP mechanisms (e.g., CLEANUP, FILES?, etc.). 

The 3-L1SP primitive LOADFILE (or LOAD) is implemented with an fNTERLISP LOAD of the named file. 
Once loaded. all 3-LISP-FNS contained on that tile are extracted and qllelled for READ. (Note that it 
is necessary to connect to the appropriate directory prior to doing a 3-LlSP LOADF ILE since the file 
name cannot contain special characters like 'C, ')', or'; '.) 

5.c. A Word on Protection 

The current implementation of 3-LlSP protects itself from accidental damage by disallowing REPLACE 
operations on all of the atoms. pairs. ruils, and closures created as part of the standard system. The 
one exception, of course, is the foot of the global environment rail, which must be REPLAcEable if 
global SETS and DEF INES are to be possible. However. the text string detinitions of the standard 
procedures are 1101 prolcc/C(/ since they play no etTectively connected role in the opemtion of the 3-
LISP processor. Since it is convenient to be able to consult the standard detinitions from time to 
time. and to clone them when a variant is required. it is best to avoid mangling them (i.e., always' 
leave the editor via DC to ensure that the modi tied definition is not saved). 
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Appendix A. Standard Procedmc Definitions 

This appendix contains definitions for all of the standard procedures described in §4. and illustrates 
the structure of the primitive closures. Some of the definitions given here (such as It)r LAMBDA and 
DEFINE) are viciously circular. in that they usc themselves (the defillition of DEFINE. for example. 
starts out as (define DEFINE ... ). but these circular definitions arc nlr more illuminating than the 
code that is actually used to construct the appropriate closures. What is true about these definitions 
is that once the procedures are defined. the definitions presented here will leave them semantically 
uncha nged. 

The Reflective Processor (the "Magnificent Seven") 

1 ..... (def i ne READ-NORMALIZE-PRINT 
2 ........... (lambda simple [level env stream] 
3 ................. (normalize (prompt&read leve'l stream) env 
4 ........................ (lambd.a'simple [result] ; ConlinuationC-REPLY 
5 .............................. (block (prompt&"eply result level ,stream) 
6 ............................................. (read-normalize-print level env stream»»» 

7 ..... (define NORMALIZE 
8 ........... (lambda simple [exp env cont] 
9 ................. (cond [(normal exp) (cont exp)] 

10 ............................. [(atom exp) (cont (binding exp env»] 
11 ............................. [ ( rail ex p) (n 0 rma 1 i z e - r ail ex pen v con t ) ] 
12 ............................. [(pair exp) (reduce (car exp) (cdr exp.) env cont)]») 

13 ..... (def i ne REDUCE 
14 ........... (lambda simple [proc args env cont] 
15 ................. (normalize proc env 
16 ........................ (lambda simple [procl] ContinuationC-PROC! 
17 .............................. (if (reflective procl) 
18 ...................................... (+(de-reflect proc'!) args env cont) 
19 ...................................... (normalize args env 
20 ............................................. (1 ambda simp 1 e [args!] Continuation C-ARGS! 
21 .................................................... (if (primitive procl) 
22 .............................................................. (cont t(+procl . +args!» 
23 .............................................................. (normalize (body proc!) 
24 ...................................................................................... (bind (pattern proc!) args! (environment procl» 
25 ...................................................................................... cont»»»») 

26 ..... (define NORMALIZE-RAIL 
27 ....... : ... (l,ambda simple [rail anv cont] 
28 ................. (i f ('emp ty ra i 1 ) 
29 .......................... (cont (rcons» 
30 .......................... (normalize (1st rail) env 
31 ................... , ........... (lambda simple [first!] Continuation C-FIRST! 
32 .......... , ............................ (normalize-rail (rest rail) env 
33 ..................................... ~ ....... (lambda simple [rest!] Continuation C-REST! 
34 ................................................... (cont (prep first! rest! »»»») 
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Processor Utilities 

(define NORMAL 
(lambda simple [x] 

(let [[tx (type x)]] 
(cond l{llIelllber tx ['atom 'pair]) $F] 

[(member tx ['numeral 'charat 'boolean 'handle 
'closure 'streamerJ) $'] 

[(= lx 'rail) (normal-rail x)]»» 

{define NORMAL-RAIL 
{lambda simple [rail] 

( con d I ( emp t y rail) $ fl 
[(normal (1st rail» {normal-rail (rest rail»] 
[$' $F]») 

(define PRIMITIVE 
(lambda simple [closure] 

(member closure primitive-closures») 

(set PRIMITIVE-CLOSURES 
[t+ t- t* t/ t( t) t(= t)= tef tlype treplace 
tnth tempty ttail tlength trcons tprep tscons 
tccons tprocedure-type tenvironment-designator 
ipatlern tbody tpcons tcar tcdr tacons tup tdown 
tinput toutpul tloadfile teditdef]) 

(define BINDING 
(lambda simple [var env] 

(if (= var (1st (1st env») 
(2nd (1st env» 
(binding var (rest env»)N 

(define BIND 
(lambda simple [pattern args bindings] 

(cond [(alom paltern) (prep [pattern args] bindings)] 
[(handle args) (bind pattern (map up 'args) bindings)] 
[(and (empty paltern) (emply args» bindings] 
[$1 (bind (1st pattern) 

( 1 s t a "g s ) 
(bind (rest pattern) (rest args) bindings»]») 

(define REFLECTIVE 
(lambda simple [closure] 

(= (procedure-type closure) 'reflect») 

(define DE-REFLECT 
(lambda simple [closure] 

(ccons 'simple 
(environment-designator closure) 
(pattern closure) 
(body closure»» 

Naming and Procedure Definition 

(define LAMBDA 
(lambda reflect [[kind pattern body] env cont] 

(reduce kind t[tenv patlern body] env contI»~ 

(define SIMPLE 
(lambda simple [def-env pattern body] 

'(ccons 'simple def-env pattern body») 

(define REFLECT 
(lambda simple [def-env pattern body] 

'(ccons 'reflect def-env ~attern body») 
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(define MACRO 
(lambda simple [def-env pattern body] 

«lambda simple [expander] 
(lanilida reflect [args env cont] 

(normalize (expander. args) env cont») 
(simple def-env pattern body»» 

(def ine REFLECT! 
(lambda simple [def-env pattern body] 

(let [[fun (simple def-env pattern body)]] 
(lambda reflect [args env cont] 

(nonnali7e args env 
(lambda simple [args!1 

(fun args! env cont»»») 

(define Y-OPERATOR 
(lambda simple [fun1 

( let L I, temp (I ambda s imp Ie? ?) 1] 
(block (replace ttemp t(fun temp» temp»» 

(define Y*-OPERATOR 
(lambda simple funs 

(let l[lemps (map (lambda simple [fun] (lambda simple? 7» funs)]] 
(map (lambda simple [temp fun] 

(block (replace ttemp t(fun . temps» temp» 
temps 
funs»» 

(define REFLECTIFY 
(lambda simple [fun] 

(reflect (environment-designator tfun) (pattern tfun) (body tfun»» 

(define DEFINE 
(lambda macro [label form] 

"(blOCk (set ,label (y-operator (lambda simple [,label] ,form») 
,tlabel») 

(define SET 
(lambda reflect [[var binding] env cont] 

(normalise binding env 
(lambda simple [binding!] 

(block (rebind var binding! env) 
(cont "OK»»» 

(define SETREF 
(lambda reflect! [[var! binding!] env cont] 

(block (rebind var binding! env) 
(cont "OK»» 

(define REBIND 
(lambda simple [var binding env] 

(cond [(empty env) (replace tenv t[[var binding]])] 
[(= var (1st (1st env») (rplacn 2 t(lst env) tbinding)] 
[$T (rebind var binding (rest env»]») 

(define LET 
(lambda macro [list body] 

"«lambda simple ,(map 1st list) ',body) . ,(map 2nd list»» 

(define LETSEQ 
(lambda macro [list body] 

(if (emp ty 1 is t ) 
body 
"(let [,(1st list)] 

, (letseq ,(rest list) ,body»»)) 

(define LETREC 
(lambda macro [list body] 

" ( ( 1 amb d a simp 1 e ,( map 1 s t 1 is t ) 
(block 

(block. ,(map (lambda simple [x] "(set. ,x» list» 
,body) ) 

.• (map (lambda simple [x] .. ?) 1 ist»» 
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Control Structure Utilities 

(define IF 
(lambda refleCt [args env cont] 

«ef (rail args) 
( 1 amb d a simp 1 e [] 

(normal ize (1st args) env 
(lambda simple [premise!] 

{normalize {ef "'premise! (2nd args) (3rd args» 
env 
cont» » 

(lambda simple [] 
(reduce tef args env cont»»» 

(define CONO-HELPER 
(lambda simple [clauses env cont] 

{normal ize (1st (1st clauses» env 
(lambda simple [premise!] 

{if "'premise! 
{normalize (2nd (1st clauses» env cont} 
(cond-helper (rest clauses) env cont}»»} 

(define CONO (reflectify cond-helper» 

(define BLOCK-HELPER 
(lambda simple [clauses env cont] 

(if (unit clauses) 
(normal ize (1st clauses) env cont) 
(normal ize (1st clauses) env 

'(lambda simple? 
(block-helper (rest clauses) env cont»»}) 

(define BLOCK (reflectify block-helper» 

(define DO 
(lambda macro args 

(let [[loop-name (acons)] 
[variables (map 1st (1st args»] 
[inlt (map 2nd (1st args)}] 
[next (map 3rd (1st args»] 
[quitters (2nd args)] 
[body (if (double args) '$T (3rd args»]] 

, (letrec 
[[, loop-name 

(lambda simple ,variables 
(cond 

. ,(append quitters 
'[[$T (block ,body 

(,loop-name. , init»») 

(define SELECT 
(lambda macro args 

( letseq 
[[dummy (acons)] 
[select-helper 

(,loop-name. , next»]]»)]] 

(lambda simple [[choice action]] 
.(cond [(rail choice) 

'[(niember ,dummy ,choice) ,action]] 
[(not (boolean choice» 
'[(= ,dummy ,choice) ,action]] 

[$1 '[,choice ,action]]»]] 
'(let [[,dummy ,(1st args)]] 

(cond . ,(map select-helper (rest args»»») 
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(define SELECTQ 
(lambda macro args 

(letseq 
[[dummy (acons)] 
[selectq-helper 

(lambda simple [[choice action]] 
(cond [(atom choice) 

'[(= ,dummy ,tchoice) ,action]] 
[(rail choice) 

'[(member ,dununy ,tchoice) .action]] 
[$T '[.choice .action]]»]] 

(let [[,dummy ,(1st args)]] 
(condo .(map selectq-helper (rest args»»»)) 

(define CATCH 
(lambda reflect [[exp] env cont] 

(cont (normalize exp anv id»» 

(define THROW 
(lambda reflect! [[exp!] env cont] expl» 

(define DELAY 
(lambda macro [exp] 

'(lambda simple [] .exp») 

(define FORCE 
(lambda simple [delayed-exp] 

(delayed-exp») 

V ector Utilities 

( define 1ST (lambda simple [vector] 
(define 2ND (lambda simple [vectorJ 
(define 3RD (lambda simple [vector] 
(define 4TH (lambda simple [vector] 
(define 6TH ( 1 ambda simple [vector] 
(define 6TH ( lambda simple [vector] 

(nth 1 
(n th 2 
(nth 3 
(nth 4 
(nth 5 
(nth 6 

vector») 
vector)) ) 
vector» ) 
vector)) ) 
vector» ) 
vector» ) 

(define REST (lambda simple [vector] (tail 1 vector») 

(define FOOT 
(lambda simple [vector] 

(tail (length vector) vector») 

(define UNIT 
(lambda simple [vector] 

(and (not (empty vector» (empty (rest vector»») 

(define DOUBLE 
(lambda simple [vector] 

(and (not (empty vector» (unit (rest vector»») 

(define MEMBER 
(lambda simple [element vector'] 

(cond [(empty vector) $F] 
[(= element (1st vector» $T] 
[$T (member element (rest vector»]») 
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(define ISOMORPHIC 
(lambda simple [el e2] 

(cond [(not (= (type el) (type e2») $F] 
[(= el e2) $I] 
[(rail el) 

(or (and (empty el) (empty e2» 
(and (not (empty el» 

(not (empty e2» 
(isomorphic (1st al) (1st e2» 
(isomorphic (rest e1) (rest e2»»] 

[(pair e1) 
{and {isomorphic (car el) (car e2» 

{isomorphic (cdr e1) (cdr e2»)] 
[(closure e1) 

{and {isomorphic (procedure-type e1) 
(procedure-type e2» 

{isomorphic (pallern el) (paltern e2» 
{isomorphic (body el) (body e2» 
{isomorphic (environment-designator e1) 

(environment-designator e2»)] 
[(handle el) (isomorphic leI le2)] 
[$I $F]») 

(define INDEX 
(lambda simple [elenent vector] 

(letrec 
[[index-helper . 

{lambda simple [vector-tail position] 
{cond [(empty vector-tail) 0] 

[{= (1st vector-tail) element) position] 
[$T {index-helper (rest vector-tail) (1+ position»]»]] 

(index-helper vector 1»» 

{define VECTOR-CONSTRUCTOR 
{lambda simple [template] 

(if (external template) scons rcons») 

{define XCONS 
(lambda simple args 

{pcons (1st args) (rcons . (rest args»») 
(define MAP 

(lambda simple args 
(cond [(empty (2nd args» «vector-constructor (2nd args»)] 

[(double args) 
(prep ({1st args) {1st (2nd args») 

{map (1st args) (rest (2nd args»»] 
[$T (prep «1st args) . (map 1st (rest args») 

(map. {prep (1st args) (map rest (rest args»»)]») 

(define COPY-VECTOR 
(lambda simple [vector] 

{if (empty vector) 
«vector-constructor vector» 
(prep (1st vector) (copy-vector (rest vector»»» 

(define CONCATENATE 
(lambda simple [raill rai12] 

{replace (foot rail1) rai12») 
(define APPEND 

{lambda simple [vectorl vector2] 
(if (empty vectorl) 

vector2 
(prep·{lst vectorl) 

(append. (rest vectorl) vector2»»). 

(define APPEND­
(lambda simple args 

{if (unit args) 
(1st args) 
(append (1st args) (append· . (rest args»»» 

76 



I~ 

APPENDlXA 
INTERIM )-l.ISP REFERE1\CE ~IANUAf. 

(define REVERSE 
(letrec 

[[rev (lambda simple [vt v2] 
(if (emp ty v 1) 

v2 
(rev (rest vi) (prep (1st vi) V2))]] 

(lambda simple [vector] 
(rev vector «vector-constructor vector»»» 

(define PUSH 
(lambda simple [element stack] 

(replace tstack 
t(prep element 

(if (empty stack) 
(scons) 
(prep (1st stack) (rest stack»»») 

(define POP 
(lambda simple [stack] 

(let [[top (1st stack)]] 
(block 

(replace 'stack t(resl stack» 
top» » 

Arithmetic Utilities 

(define 1+ (lambda simple [n] (+ n 1») 
(define 1- (lambda simple [n] (- n 1») 
(define .. 

(lambda simple [01 n] 
(do [[i 0 (1+ i)] 

[a 1 (* a m>11 
[[(= i n) a]]») 

(define REMAINDER 
(lambda simple [x y] 

(- x (* (I x y) y»» 

(define ABS 
(lambda simple [n] 

(if « n 0) (- n) nIl) 
(define MAX 

(lambda simple numbers 
(letrec 

[[max2 
(lambda simple [x y] (if (> x y) x y»] 

[max-helper 
(lambda simple [unseen-numbers maximum] 

(if (empty unseen-numbers) 
maximum 
(max-helper (rest unseen-numbers) 

(max2 maximum (1st unseen-numbers»»)]] 
(max-helper (rest numbers) (1st numbers»») 

(define MIN 
(lambda simple numbers 

(letrec 
[[min2 

(lambda simple [x y](if «, x y) x y)}] 
[min-helper 

(lambda simple [unseen-numbers minimum] 
{if (empty unseen-numbers) 

minimum 
(min-helper (rest unseen-numbers) 

(min2 minimum (1st unseen-numbers»»)]] 
(min-helper (rest numbers) (1st numbers»») 

(define ODD (lambda simple args (not (zero (remainrier n 2»» 
(define EVEN (lambda simple args (zero (remainder n 2») 
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(define NEGATIVE (l ambda simple [n] « nO) » 
(define NON-t~EGA TIVE (lambda simple [n] (>= n 0» ) 
(define POSITIVE (1 ambda simple [n] (> n 0» ) 
(define ZERO (lambda simple En] (= nO) » 

General Utilities 

(define ATOM {l ambda simple [x] ( = ( type x) 'atom» ) 
{deFine RAIL { lambda simp 1 e [x] { = ( type x) 'ra il ») 
(define PAIR ( lambda simple [x] (= ( type x) 'pair») 
{define NUMERAL (lambda simple [x] {= ( type x) 'numeral») 
{deFine HANDLE { lambda simple [x] { = ( type x) 'handle») 
{deFine BOOLEAN ( lambda s imp Ie [x] { = (type x) 'boolean») 
(define CHARAT {lambda simple [x] { = ( type x) 'charat») 
{define CLOSURE {lambda simp 1 e [x] { = (type x) 'closure») 
{define STREAMER {l ambda simple [x] {= (type x) 'streamer» ) 

(define NUMBER {lambda simple [x] (= ( type x) 'number) » 
(define SEQUENCE {lambda simp 1 e [x] (= ( type x) 'sequence») 
(define TRUTH-VALUE (l ambda simple [x] (= ( type x) 'truth-value») 
(define CHARACTER (lambda simple [x] ( = (type x) 'character») 
(define FUNCTION { lambda simple [x] (= (type x) 'function») 
(define STREAM (l ambda simple [x] ( = ( type x) 'stream») 

(define VECTOR 
(lambda simple [x] (member (type x) (' ra i 1 'sequence]») 

(define INTERNAL 
(lambda simple [x] 

(member (type x) 
[' atom' rail 'pair 'numeral 'handle 'boolean 'charat 

'closure 'streamer]») 

(define EXTERNAL 
(lambda simple [x] 

(member (type x) ['number 'sequence 'truth-value 

(define CHARACTER-STRING 
(lambda simple [s] 

'function 'stream]») 

(cond [(or (not (sequence s» (empty s» $F] 
[{and (unit s) (character (1st s») $1] 
[$T {and {character (1st s» 

{character-string (rest s»)]») 

(define ENVIRONMENT 
(lambda simple [closure] 

'(environment-designator closure») 

(define REFERENT 
(lambda reflect! [[exp! env!] env cont] 

(normalize 'exp! 'env! cont») 
{define MACRO-EXPANDER 

{lambda simple [macro-closure] 

'character 

'(binding 'expander (environment tmacro-closure»» 

(define ID (lambda simple [x] x» 
(define 10- (lambda simple x x» 

(define QUOTE {lambda reflect"[[a] e cj (c tal»~ 

(define RPLACT 
{lambda simple [n rail new-tail] 

{replace (tail n rail) new-tail») 

(define RPLACN 
(lambda simple [n rail new-element] 

(replace (tail (- n 1) rail) (prep new-element (tail n rail»») 
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(define RPLACA 
(lambda simple [pair new-car] 

(replace pair (peons new-car (cdr pair»») 
(define RPLACD 

(lambda simple [pair new-cdr] 
(replace pair (peons (car pair) new-cdr»» 

(define NOT (lambda simple [x] (if x SF ST») 
(define AND 

(lambda reflect [args eny cont] 
(if (rail args) 

(and-helper args eny cont) 
(normalize args eny 

(lambda Simple [argsl] 
(and-helper argsl eny cont»»» 

(define AND-HELPER 
(lambda simple [args eny cont] 

(if (empty args) 

(define OR 

(cont 'ST) 
(normalize (1st args) eny 

(lambda simple [premise!] 
(if ""premisel 

(and-helper (rest args) eny cont) 
(conl 'SF»»») 

(lambda reflect [args eny cont] 
(if (rail args) 

(or-helper args eny cont) 
(normalize args eny 

(lambda simple [args!] 
(or-helper args! eny cont»»» 

(define OR-HELPER 
(lambda simple [args eny cont] 

(if (empty args) 
(cont 'SF) 
(normalize (1st args) eny 

(lambda Simple [premise!] 
(if ""premise! 

(cont '$I) 
(or-helper (rest args) eny cont»»») 

Input / Ouput 

( def i ne READ (1 ambda simp 1 e [s t ream] (mys tery) » : Implemented. but not explained. 

(define PRINT (lambda simple [x stream] (mystery») : Implemented. but not explained 

(define INTERNALIZE (lambda simple [x] (mystery») ; Notyetimplemented. 

(define EXTERNALIZE (lambda simple [x] (mystery») : Not yet implemented. 

(define PRINT-STRING 
(lambda simple [string stream] 

(if (empty string) 
'OK 
(block (output (1st string) stream) 

(p ri n t-s tri ng (res t s tr.i ng·) stream») n 
.( def i ne NEWLINE 

(lambda simple [stream] 
(output # 

stream» ) 
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(define PROMPT&READ 
(lambda simple [level stream] 

(block (newl ine stream) 
(print ,level stream) 
(print-string ") " stream) 
(read stream»» 

(define PROMPT&REPLY 
(lambda simple [answer level stream] 

(block (print 'level stream) 
(print-string "= " stream) 
(print answer stream»» 

System 

(define VERSION 
(lambda simple [] 

"3-LISP version AOO. May I. 1983"» 

(define LOAD 
(lambda macro [filename] 

'(loadfile .'filename») 
( def i ne EDIT . 

(lambda macro [name] 
'(editdef .'name») 

Primitive Procedures 

(define TYPE 
(define • 
(define EF 
(define UP 
(define DOWN 
(define REPLACE 

(define ACONS 

(define PCONS 
(define CAR 
(define CDR 

(define ReONS 
(define SCONS 
(define PREP 
(define LENGTH 
(define NTH 
(define TAIL 
(define EMPTY 

(define CCONS 

(lambda simple [e] (type e») 
(lambda simple entities (= . entities») 
(lambda s4mple [premise cl c2] (ef premise cl c2») 
(lambda simple [e] (up e») 
(lambda simple [s!] (down 51») 
(lambda simple [51 52] (replace 51 52») 

(lambda simple [] (acons») 

(lambda simple [51 52] (pcons 51 52») 
(lambda simple [pair] (car pair») 
(lambda simple [pair] (cdr pair») 

(lambda 
( lambda 
(lambda 
(lambda 
( 1 ambda 
( 1 ambda 
(lambda 

simple 
simple 
simple 
simple 
s imp Ie 
simple 
5 imp 1 e 

structures (rcons . structures») 
entities (scons . entities») 
[e vector] (prep e vector») 
[vector] (length vector») 
[n vector] (nth n vector») 
[n vector] (tail n vector») 
[vector] (empty vector») 

(lambda simple [kind def-env pattern body] 
(ccons kind def-env pattern body») 

(define PROCEDURE-TYPE .. .... . 
(l~mbda simple [closure] (~rocedu~e-type closure») 

(define ENVIRONMENT-DESIGNATOR 
(lambda simply Lclosure] (environment-designator closure») 

(define PATTERN (lambda simple [closure] (pattern closure») 
(define BODY (lambda simple [closureJ (body closure») 

(define + (lambda simple numbers (+ . numbers») 
(define - (lambda simple numbers (- . numbers») 
(define I (lambda simple [n1 n2] (I n1 n2») 
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{define • (lambda simple numbers (* numbers») 
{define < {lambda simp 1 e numbers (< numbers»» 
{define <- {lambda simple numbers (<= numbers») 
{define > { '1 ambda simple numbers (> numbers» ) 
{define >- {l ambda simple numbers (>= numbers») 

{define INPUT {lambda simple [stream] (input stream») 
{define OUTPUT {lambda simple [e stream] (output e stream») 

{define LOADFILE {l ambda simple [file-name] (loadfile file-name») 

{define EDITDEF {lambda simple [procedure-name] (editdef procedure-name») 
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Appendix B. How to Implement 3·LISP 

Since the 3-USP reflective tower is infinite, and since the standard definition of J-L1SP is 
non-efTective, neither the reflective processor nor the informal meta-theoretic descriptions of J-L1SP 
show how the language is finite. In this section, however, we show why J-USP is indeed finite, and 
present a program that implements a full virtual tower, as a constructive demonstration of how it 
can be efTectively implemented. As it happens, we use 3-USP as the implementing language, and 
for simplicity embed the structural field, global environment, etc., isomorphically (Le., a rail is 
implemented directly as a rail, etc.). The resulting processor therefore bears the same relationship 
to J-USP as standard meta-circular processors bear to standard USPs. The implelllentation makes 
no crucial use of the retlective capabilities of the embedding J-USP, and no crucial usc of recursion; 
the code, therefore, could be straightfhrwardly translated into PASCAL, microcode, or any other 
language of choice. If one were to implement J-USP in such a language, however, one would havc 
to implement the 3-USP structural ficld as well. 

An analysis of the 3-USP tower is given in section B.I.. showing how all but a finite number 
of thc lowest levcls contain no infollnation. A simple but complete implementation (about 120 Iincs 
of codc) is then presented in section B.2. In section B.3. we show how to "compile'" other 
procedures into the implementation (kernels, standards, etc.), i.llciuding many simples and some 
retlcclives (LAMUOA, IF, etc.), and show how to make the control now in the implementation 
processor more transparent 

B.l. The Finite Nature of 3-L1SP 

It is first important to understand how 3-USP treats tail-recursion. In particular, notice that 
if the processor normalizes a redex of the form '( FUN . ARGS)' in some environment Eo with 
continuation Co. the form' FUN' is normalized with a C-PROC! continuation that embeds a binding of 
the atom 'CONT' to Co. Assuming that the closure that results (FUNI. so to speak) is not reflective. 
'ARGS' is nonnalii'.cd with a C-ARGS! continuation thal also has 'CONr' bound to Co. Then. assuming 
that' FUN r' was not primitive. either. the body or the closure is normalized. in an environment built 
by extending the environment from 'FUN I' by matching the pattern to ARGS!. and with the 
cOl/tilll/litiol/ Co. In other words (as Steele and Sussman point out in the SCHEME literature), the 
processor continuation embeds for argulIlel/t processing. but not for procedure calling. 

We say. because of this continuation protocol. that the 3-USP p~ocessor runs programs tail-
recursively, If. in other words. there is a call to FOO. for example: 

(+ 2 (FOO X Y» 

and FOO has the following definition: 

(define FOO 
(lambda simple [a b] 

(* a (1+ b»» 

then the continuation in effect when the expression '( FOO X Y)' is normalizcd will bc identical to 
thc one in which the body of FOO - '(* a (1+ b» - is normalized. 

Generalizing slightly, we say that a position or cOl/text within an expression is tail-recursive 
with respect to the embedding expression if. and only if, when a sub-expression in that context is 
normalized in the course of normalizing the embedding context, it is normalized with the same 
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continuation as that used to l1o,:malize the whole. We have just seen that the bodies of closures are 
t1il-recursive with respect to full procedure ca1\s, but there arc some other cases. Specifically, 
consider the expression 

(IF (= 1 2) 'YES 'NO) 

given the following definition of IF (simplified for clarity from the standard one): 

(define IF 
(lambda reflect [[premise cl c2] env cont] 

(normalize premise env 
(lambda simple [premise!] 

(normalile (ef ~premise! cl c2) env cont»») 

The first argument to IF (' (= 1 2)' in the example) is normalized with a 
(l AMl30A SIMPL.E [PREMISE!] ... ) continuation, but when the premise has returned a boolean of one 
sort or the other, the selected consequent (c 1 or C2 - 'YES or . NO in the example) is normalized 
with the same continuation as was the whole IF redex. The second and third argument positions to 
IF, therefore, arc tail-recursive with respect to the embeLlding IF. 

We adopt the presentational convention of underlining an expression (or the left parenthesis 
and the CAR, if the expression is another redex) if it is in a tail-recursive context with respect to the 
redex it occurs within. Thus we would have the following presentation for FOO: 

(define FOO 
(lambda simple [a b] 
~ a (1+ b»» 

and the following definition of the normal recursive FACTORIAL. (since both arguments to IF arc tail­
recursive with respect to IF): 

(define FACTORIAL 
(lambda simple En] 

ill (= n 0) 
1 
~ n (factorial (1- n»»» 

Since the embedded call to FACTORIAL is not underlined, FACTORIAL. as a whole, will generate 
continuation structure ("_stack") proportional to the depth of the recursion. An -iterative version, 
however, is the following: 

(define FACTORIAL 
(lambda simple En] 

(factorial-helper 1 n») 

{define FACTORIAL-IIELPER 
-{lambda simple [acc nJ 

ill (= n 0) 
acc 
{factorial-helper (* acc n) (1- n»») 

In this case the recursive call is underlined, since it is tail-recursive with respect to its own 
definition, which implies (because the processor runs programs tail-recursively) that no continuation 
structure _ is generated- by recursive calls to r ACTon IAL -H[LPER, or, to put -it another Way, -r ACTOR IAL­

IIELPER is iterative. 

It can be determined by simple inspection of the definitions that all of the consequent 
clauses of CONUS are tail-recursive with respect to the COND, as arc the clauses of SELECT and SELECTQ, 

as well as other common constructs. 

Given this analysis of rail-recursion, we then look at the processor code itself (not, this time, 
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at what it docs with the continuations for the program it is nllll1illg, but at its own code, with 
respect to the continuations it wi1\ require ill the processor that is runlling it). Specifically, we can 
immediately underline the tail-recursive positions in the magnificent seven. We have distinguished 
the continuations from the main bodies of the three named primary processor proc.edures by using 
italics and bold-face. For example, C-PROC! (lines 16-25) is shown in italics: the call to IF (line 
17) is the top-level call in il<; botly. and the calls to the dc-reflected version of PROC! and to 
NORMALIZE arc underlined, since they arc tail-recursive lVith respcct II) the C-PROC! contilluatioll as a 
whole (not with respect to REDUCE). The other three continuations arc treated similarly. 

1 ..... (define READ-NORMALIZE-PRINT 
2 ........... (lambda simple [level env stream] 
3 ................. (normal ize (prompt&read level stream) env 
4 ................... ; .... (lambda simple [result] ConlinuationC-REPLY 
5 .............................. (block (prompt&reply result level stream) 
6 ............................................. (read-normalise-print level env stream)))))) 

7 ..... (define NORMALISE 
8 ........... (lambda simple [exp env cont] 
9 ................. (cond [(normal exp) (cont exp)] 

10 ............................. [(atom exp) (cont (binding exp env»] 
11 ............................. [(rail exp) .(normalize-rail exp env cont)] 
12 ............................. [(pair exp) (reduce (car exp) (cdr exp) env cont)]») 

13 ..... (define REDUCE 
14 ........... (lambda simple [proc args env cont] 
15 ................. (normal ize proc env 
16 ........................ (lambda simple [proct] ConlinuationC-PROC! 
17 .............................. ill (ref7ective proct) 
18 ................ ; ..................... (.J.(de-reflect proct) args env cont) 
19 ................... ~.................. (normal fze args env 
20 ............................................. (lambda simple [argsl] ContinuationC-ARGS! 
21 .................................................... .l:!.! (primitive procl) 
22 .............................................................. (cont t(.J.procl . .J.argsl» 
23 ............................................................... (normalize (body procl) 
24 ...................................................................................... (bind (pattern procl) argsl (environment procl» 
25 ...................................................................................... cont»»)))))) 

26 ..... (define NORMJ\LIZE-RAIL 
27 ........... (lambda simple [rail env cont] 
28 ................. .L!i (emp ty ra i I) 
29 .......................... (cont (rcons» 
30 .......................... (normal ize (1st rail) env 
31 ............................... (lambda simple [first/] Continuation C-FIRST! 
32 ....................................... (normalize-rail (rest rail) env 
33 ............................................. (lambda simple [restl] Continuation C-REST! 
34 ................................................... (cont (prep firstl restl »»)))))) 

The finiteness of 3-USP now follows uirectly (by inspection) from this annotated code, as manifested 
by the ti.)l1owing simple control anu dal1l flow argument. First, we carry out the argument ignoring 

. the existencG of line 18: 

1. . Note first that the four stantlard continuations plus C-REPLY will always be bound to 
the formal parameter CONT. and I'lII'thermOl"e that that pm<lllleter will never have any 
other binding. This is true a) bccause each continuation is bound to the formal 
parameter CONT in the procedure to which it is first passet.l (C-REPLY. C-PROC!, C­
ARGS!. and C-rIRST! arc each third argumcnts to Nom·1J\l IZE. ,lI1d C-RLST! is a third 
argument to NORMJ\1. [ZE-RAll): b) hecause in the three places where CONT is in turn 
passed as an argument to a processor procedure (lines 11, 12. and 25) it is passed to a 
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procedure that binds it to CONT; and c) because those eight calls (lines 3, 11, 12, 15, 19, 
23, 30, and 32) are the only places in the processor that the three named procedures are 
called. 

2. Each of the nine calls to a named processor procedure (again. lines 3, 6, 11. 12, 15, 19, 
23, 30. and 32) is in a tail-recursive position with respect to the procedure or 
continuation in which it occurs (Le.. all nine are underlined). 

3. Each of the five calls to CONT (on lines 9, 10, 22, 29. and 34) are also in tail recursive 
positions with respect to the procedures or continuatiolls in which they occur (they too 
are underlined). 

4. From the previous three facts, it follows that all eight of the mutually recursive 
processor procedures (the magnificent seven pIllS READ-NOHMALIZE-PHINT) always call 
each other tail-recursively. Therefore, it follows that tlle processor that is runlling this 
processor will build up no continuation structure by running the processor. (Actually, 
this is not strictly true; rather, at each call 10 a PI'P procedure the continuation will be 
the same, but between them - as for example within a call to NORMAL - it will build 
up temporarily.) 

5. Since (by hypothesis) all levels of tlle tower were initialized by the level above's reading 
in an expression of the form '(READ-NORMALIZE-PRINT LEVEL GLOBAL PRIMARY-STREAM), it 
follows that the continuation being passed around at each reflective level is an 
unchanging instance of a C-REPLY continuation (again, more accurately, this is a 
constant base, on top of which small excursions are constantly constructed and then 
discarded). All of these C-REPLYs are isomorphic except that each embeds its own 
binding for the variable LEVEL. 

6. Since the call to .J,(DE-REFLECT PROCI) is in a tail-recursive position (underlined), the 
continuation that it will be called with by the processor running it - i.e., the 
continuation that will be passed to REDUCE up one level with PROC designating .J, (DE­

REFLECT PROC I) - will always be a C-REPL Y continuation. 

If the processor contained no reflective procedures, that would be all there is to the proof. 
However, the processor does (crucially) contain five reflectives: AND. CONDo IF. LAMBDA, and LET 

(it would be possible to reduce this number from five to one, but not to zero - Le., it can be 
proved that tlle processor must contain at least one reflective closure). In order to complete the 
proof. therefore. we have to examine the definitions of these five procedures. and show that the de­
reflected versions that are called by the processor that is running the processor share the crucial 
properties we just demonstrated for the basic seven procedures. LAMBDA is straightforward: its 
detinition is: 

(define LAMBDA 
(lambda reflect [[kind pattern body] env cont] 

(reduce kind tltenv pattern body] env cont») 

·It is manifest that REDUCE is called tail-recursively, and that CONT is passed to REDUCE'S CONT; 

therefore processing P(DE-HErLEcT tLAMBDA) AHGS ENV CONT) will preserve the iterative nature. of 
-the- processor. Similarly COND;.J,(DE:"REFLECT tCOND.) is SilnplY COND-f1ELPEH: 

(define COND (reflectify cond-helper» 

(define COND-II[LPER 
(lambda simple [clauses env cont] 

(normalize (1st (1st clauses» env 
(1ambda simp1e [premisel1 

ill .J,premisel 
(norma1ize (2nd (1st c1auses)) env cont) 
(cond-he1per (rest c1auses) env cont)))))) 
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COND-HELPER is itself tail-recursive, calls NORMALIZE tail-recursively passes I . . . . ,a more comp ex 
contl11uatJOn. that calls NORMALIZE tail-recursively. and passes CONT only as an argument to CONT in 
NORMALIZE; It too, therefore, keeps the processor iterative. 

AN.D is called. in the p~ocessor .onlywith rail arguments, so the second clause in the definition 
of AND IS never Invoked m runnmg the processor. although it is well-formed in any case: 

(define AND 
(lambda reflect [args eny cont] 

ill (rail args) 
(and-helper args eny cont) 
(normalize args eny 

(1ambda simple [argsl] 
(and-he1per argsl env cont)))))) 

AND-HElPER, which is caned tail-recursively with CONT passed through, catts NORMALIZE tail-recursively. 
with a continuation that preserves both protocols for continuations and tail-recursion. 

(define AND-HELPER 
(lambda Simple [args eny cont] 

ill (empty args) 
(cont 'ST) 
(normalize (1st args) eny 

(lambda simple [premisel] , 
ill .premisel 

(and-helper (rest args) env cont) 
(cont '$F))))))) 

Continuation C-AND 

IF is very slightly more difficult to analyse, although its behavior is straightforward. The invocation 
of EF will construct two closures, built with LAMBD~, one of which will be selected and returned as 
the result of the call to EF. In constructing those closures no ppp's are catted, so the processor does 
not embed. The resull of the EF is the procedure that is catted tail~recursively with respect to the 
call to .(DE-REFLECT 'tIF). which enables us to annotate the definition of IF as follows: 

(define IF 
(lambda reflect [args eny cont] 

i(ef (rail args) 
(lambda simple [J 

(normalize (1st args) eny 
(lambda simple [premisel] ; Continuation C-IF 

(normalize (ef .premisel (2nd args) (3rd args)) 
env 
cont)))) 

(lambda simple [1 
(reduce 'tef args eny cont»»» 

Again. all cans to IF in the processor arc with rail arguments, so that the middle clause is always 
selected. Again, the call to NORMALIZE is appropriately tail-recursive, as is lhe cull wilhin the 
provided continuation, and the continuation of the level below is passed through intact. 

Finally we have LET. The definition is as follows: 

(define LET 
(lambda macro [list body] 

'«lambda simple ,(map 1st list) ,body) . ,(map 2nd list»» 

It is clear that no processor procedures arc called at all in constructing the form to be handed back 
to, the processor for ,normalization; and the form that is constructed contains o'nly a LAMBDA, which' 
we have already treated. 
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B.2. 3x3: A Direct Embedding of 3-LISP in 3-LISP 

This section contains a complete implementation of 3-LISP in 3-LISP. (It has been run 
successfully by the current implementation, albeit very' slowly. Furthermore, the actual INTERLISP 
implementation was derived from this code.) 

The differences between the following implementation processor and the reflective processor 
are relatively minor: 

I. :NORMALIZE is the implementation of NOIIMAI.IZE; :REDUCE implements REDUr.E, etc. 

2. All calls between the implementations of primary processor procedures are done 
indirectly by CAlling the real version. For example, the line (normal i ze­
rail exp env cont) in NOIIMflllZE becomes (cal1 normal ize-rail exp env cont) in 
: NORMALIZE. A quick glance at the implementation processor will reveal no explicit calls 
to any procedures with a name beginning in ': '. 

3. The closures fbr the standard continuations are explicitly constntcted with MAKE­
CONTINUATION. This ensures that legitimate standard continuation closures are built (we 
would not want to give the object program access to an implementation level closure; 
REDUCE and : REDUCE are similar but not identical). 

4. The four classes of standard continuations, C-PROC!, C-ARGS!, C-FIRST!, and C-REST!, 
are implemented by top-level procedures :C-PHOC!, :C-AHGS!. :C-FlRST!, and :C-RESTI, 
respectively. The procedure IMPOHT is used to access non-local variables (e.g .• C-PROC! 
uses ARGS so :C-PROC! must import ARGS). 

5. : C-ARGS!, the implementation of C-ARGS!. contains additional code that shins the 
implementation processor down whenever possible (i.e .• whenever one of the closures 
for which an implementation procedures exists is about to be expanded). (The 
corresponding logic for shifting up a level whenever necessary is buried in CALl.) 

6. The parameter pattern for a primary processor' procedure should also be used by the. 
implementation in order to ensure that pattern match failures happen to the 
implementation if, and only if, they would happen to the reflective processor. 

Italics arc used in the following code to indicate those fragments that diner from the corresponding 
code in the reflective processor. 

:NORMALIZE. :REDUCE.and :NORMALIZE-RAIL 
(define :NORMALIZE 

(lambda simple [exp env cont] 
(cond [(normal exp) (call cont exp)] 

[(atom exp) (call cont (binding exp env»] 
[(rail exp) (call normalize-rail exp env cont)] 
[(pair exp) (call reduce (car exp) (cdr exp) env cont)]») 

(define :REDUCE , 
.(lambda simple [proc args env cont]· 

(call normalize proc env 
(make-continuation @samp7e-c-procl)}) 

(define :C-PROCI 
(lambda simple [proc!] 

(import [args env cont] 
(if (reflective proc!) 

(call +(de-reflect proc!) args env cont) 
(call normalize args env 

(make-continuation @sample-c-argsl))) 
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(define :C-ARGSI 
(lambda simple [args!] 

(import [procl cont] 
(cond [(primitive proc!) (ca11 cont t(.j.proc! . hrgs!»] 

[(processor-procedure procl) 
(block (shift-down cont) 

(register .j.procl .j.argsl) 
((implementation-of procl) . .j.argsl))] 

[$T (expand-closure proc! args! cont)]»» 

(define EXPAND-CLOSURE 
(lambda simple [proc! args! cont] 

(call normalize (body proc!) 
(bind (pattern proc!) args! (environment proc!» 
cont» ) 

(define :NORMALIZE-RAIL 
(lambda simple [rail env cont] 

(if (empty ra il) 
(call cont (rcons» 
(ca11 normalize (1st rail) env 

(make-continuation @sample-c-firstl))) 

(define :C-FIRSTI' 
(lambda simple [first!] 

(import [rail env] 
(call normal'ize-rail (rest rail) env 

(make-continuation @sample-c-restl))) 

• (define :C-RESTI 

CALL 

(lambda simple [rest!] 
(import [firstl cont] 

(ca1J cont (prep first! rest! »») 

We can't call object-level continuations with (cont ... ), since if they were reflective, that would cause 
the iII/pfeil/entation processor to reflect, rather than enabling us to reflect the tower it is running. 
Similarly we can't call any of the seven primary processor procedures directly, like NORMALIZE and 
C-PROC!, since we need to lise our own private versions of them (: NOIlMAI.I Zf, : C-PROC!, etc.). 
Also, we can't call simple lIser procedures directly if they are lIut primary processor procedures, 
since we won't have implementation level code for them: they require that we shift up and expand 
their bodies explicitly. 

CALL-SIMPLE, which is only used by (the expansions (1) CALL, checks to see if the procedure to be 
called at the current /el'e/ is a primary processor procedure. Since primary processor procedures 
have an implementation equivalent that can be run at the current /Cl'eI. there is no need to change 
levels. However, we must REGISTER this call so that we can "chicken out" later. In all other cases, 
lacking code to run at tlie current /ew'/. the implementation processor shifts up one level and 
expands the closure - i.e., runs the implementation of NORMALIZE at tlic lIext higher level. In effect, 
CALL implements both "compiled-to-compiled". an.d "colnpiled-Lo-\nterpreted" calls, where the' 

. 'primary processor pi'ocedures arc the only "compiled" routines in the system. 

fly assumption. all of the primary processor procedure implementations (the':' routines) ate correct 
implementations of their counterparts in the reflcctive processor provided that no "runny busincss" 
is involved. In particular, the implementations arc not designed to handle renective continuations 
(if the continuation would be called: no harm is done if a reflective continuation is simply passed 
along to some other procedure, or embedded in a continuation), When an implementation 
procedure is on the verge of calling a reneclivc continuation. CALL will detect this fact, shirt up, and 
expand the closure for the primary processor procedure that was making the CALL lIsing the 
information recorded by REGISTER in the global variables @LAST-PROCESSOR-PROCEDURE. and @LAST-
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PROCESSOR-ARGS (we refer to this process as chickenillg out). 

We also have to chicken out when we encounter one of the primitive procedures being used as a 
continuation. One reason is that the primitives return an answer - that would cause the 
continuation-passing "implementation processor to cease its processing. Another reason is that there 
might be a reflective continuation IW(J levels up that should prevent the primitive from being called 
(see note at end of section). 

(define CALL 
( 1 ambda mac ro exp 

'(let [[fun .(1st exp)]] 
(if (or (reflective tfun) (primitive tfun» 

(expand-closure @last-processor-procedure 
@last-processor-args 
(shift-up» 

(call-simple fun .(rest exp»»» 

(define CALL-SIMPLE 
(lambda simple [fun args] 

REGISTER 

(if (processor-procedure tfun) 
.(block (register fun args) 

« implementation-of tfun) . args» 
(expand-closure tfun targs (shift-up»») 

chicken-oul! 

Every time we enter the implemenlHtion version of a primary processor procedure we use HEGISTER 
to record in global variables (registers) the details of the event. This information is used in three 
distinct ways: 1) by MAKE-CONTINUATION in constructing continuations. 2) by IMPORT as the source of 
non-local variable bindings. and 3) by CALL in "chickening out." 

(define REGISTER 
(lambda simple [fun args] 

(block (set @last-processor-procedure tfuO) 
(set @last-processor-args targs»» 

MAKE-CONTINUATION 

It is important that the continuation closures built by the implementation processor be 
indistinguishable from the ones that the retlective processor would build. In particular. all C­
PROC! (say) closures share the same pattern and body structures. They also have an environment 
designator (rail) whose initial bindings cells are made from fresh lengths of rail. but whose fourth 
tail is the environment designator found in the d05ure ttl!' H[()UCE. Also. all C-ARGS! continuation 
closures contain an environment designator whose first tail is the environment designator found in 
some (unique) C-PROC! closure, MAKE-CONTINUATION is passed a template closure. from which the 
appropriate pattern and body structures are extracted. and uses the globally-recorded current 
primary processor procedure and the arguments passed to it. 

(define MAKE-CONTINUATION 
(lambda simple [template] 

(simple t(bind (pattern @las~-processor-procedure) 
@last-processor-args 
(environment @last-processor-procedure» 

(pattern template) 
(body template»» 
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IMPORT 

The standard continuations use some variables defined in an enclosing non-global scope. For 
example. a C-PROC! continuation uses ARGS. ENV. and CONT, which are local to REDUCE; a C-ARGS! 
continuation uses CONT and PROC!. which are local to REDUCE and the enclosing C-PROC!. 
respectively. Thus the implementations of the standard continuations need to get hold of these 
bindings. This is achieved by having IMPORT extract the bindings from the environment designator 
of the closure for the current primary processor procedure (@last-processor-procedure). 

(define IMPORT 
(lambda macro [vars body] 

'(let .(map (lambda simple [var] 
'[,var ~(binding ,tvar (environment @last-processor-procedure»]) 

vars) 
,body» ) 

For example. the code: 

(define :C-RESTI 
(lambda simple [restl] 

(import [first! cont] 
(call cont (prep first! rest!»») 

is equivalent by this macro-expansion to the following: 

(define :C-REST! 
(lambda simple [rest!] 

(let [[first! ~(binding 'first! (environment @last-processor-procedure»] 
[cont '(binding 'cont (environment @last-processor-procedure»]] 

(call cont (prep first! rest!»») 

PROCESSOR-PROCEDURE 

PROCESSOR..,PROCEDURE is used to recognize closures that correspond to some primary processor 
procedure. For these procedures. IMPLEMENTATION-OF retrieves the corresponding implementation 
procedure that can be cal/ed instead of expanding their c'losure. TABLE -OF - EQU IVALENTS serves as the 
basis of this mapping: but a simple equality test is inadequate since each standard continuation is 
actually a whole family of closures. The procedure MATCH-CLOSURE is used to detennine if a 
particular closure is sufficiently similar to a canonical member of its family to ensure that the 
implementation procedure would be a correctly implcmentation. "Sufliciently similar" amounts to 
having identical patterns and bodies. and sufficiently similar environment designators, as determined 
by MATCH-ENV. For MATCII-ENV to succeed. both rails must be the same length. share a tail that 
includes the global rail as a proper tail. and have plausiblc binding cells for the same atoms and in 
the same order. 

Note that in a serious implementation it would be ludicrous to do all of this pattern matching: 
instead the implementation should "stamp" the processor procedure closures in a way that is 
invisible to 3-USP proper. but visible to its internal version of PROCESSOR-PROCEDURE (and the stamp 
would be invalidated if a user ever obtained access to such a closure and smashed it). Recognition 
(PROCESSOR-PROCEDURE) and mapping onto implementation equivalent (IMPLEMENTATIOtJ-OF) could 
then be unit-time operations (but with a price; the crikria for dass membership would. be restricted. 
so that· some .closures isomorphic to standard processor procedures wOlild not be recognized. even 
though they deserve to be). 

(define PROCESSOR-PROCEDURE 
(lambda simple [proc] 

(do [[table table-of-equiva1ents (rest table)]] 
[[(empty table) SF] 
[(match-closure proc (1st (1st table))) $T]]») 
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(define IMPLEMENTATION-OF 
(lambda simple [proc] 

(do [[table table-of-equivalents (rest table)]] 
[[(match-closure proc (1st (1st table») (2nd (1st table»]]») 

(set TABLE-OF-EQUIVALENTS 
[[tnormalize :normalize] [tnormalize-rail :normalize-rail] 

[treduce :reduce] [@sample-c-proc! :c-procl] 
[@sample-c-args! :c-args!] [@sample-c-first! :c-firstl] 
[@sample-c-restl :c-restl]]) 

(define MATCII-CLOSURE 
(lambda simple [candidate master] 

(or (= candidate master) 
(and (= (body candidate) (body master» 

(= (patLern candidate) (pattern master» 
(match-env (environment-designator candidate) 

(environment-designator master»»» 

(define MATCH-ENV 
(lambda simple [candidate master] 

(co~d [(= master tglobal) SF] 
[(= candidate master) ST] 
[ST (and (noL (empty candidate» 

(rail (1st candidate» 
(double (1st candidate» 
(= (1st (1st candidate» (1st (1st master») 
(handle (2nd (1st candidate») 
(match-env (rest candidate) (rest master»)]») 

SAMPLE CONTINUATION CLOSURES 

Samples of each of the four kinds of standard continuation closures are needed (they are used with 
MAKE-CONTINUATION and in TABLE-OF-EQUIVALENTS). This clever way of procuring them will only 
work if the implementation language is a full-blown 3-LlSP: in any other setting it will be necessary 
to apply a somewhat more tedious approach - see NEW-TOP-LEVEL-CONTINUATION for an example. 

(define THROW-CONT (lambda reflect [[] env cont] tcont» 

(set @SAMPLE-C-PROCI t(catch «throw-cont»» 
(set @SAMPLt-C-AIlGSI t(catch (id* . (throw-cont»» 
(set @SAMPLE-C-FIRSTI t(catch ['7 (throw-cont)]» 
(set @SAMPLE-C-RESTI (binding 'cont (environment @sample-c-first») 

SHIFT-UP and SHIFT-DOWN 

SHIFT-UP pretends that we arc n~)w playing reflective processor at one level higher than we were just 
a moment ago, and adjusts the continuation stack, @LEVEL-STACK, so that it accurately reflects our 
new stance. Similarly, SIIIFT-DOWN pretends that we are going to play reflective processor at one level 
lower than we were a moment ago, and saves the continuation for our former level 011 the 
continuation stack. The continllation stack should contain a continuation for each of the reflective 
levels; however, we postpone the,ir creation until the implementation first reaches that reflective 
'level. ' 

(define $~IFT-UP 
(lambda simple [] 

(if (empty @level-stack) 
(new-top-level-continuation) 
(pop @level-stack})}) 

(define SHIFT-DOWN (lambda simple [cont] (push cont @level-stack») 
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GENESIS 

GENESIS starts things off at level 1 with a continuation stack consisting entirely of top-level 
continuations. Note that the call to READ-NORMALIZE-PRINT will cause the implementation to shirt lip 
to level 2, although the embedded call to NORMALIZE within it will subsequently .drop it back down 
again. 

(define GENESIS 
(lambda simple [] 

(block (set @level-stack (scons» 
(set @next-level 1) 
(call read-normalize-print 1 global primary-stream»» 

NEW-TOP-LEVEL-CONTINUATION 

The tower (hanging garden) we implement is allegedly initialized in the following way. First. 
"God" normalizes the form: 

(read-normalize-print 00 global primary-stream) 

and then types in the following set of incantations (the fonn read in on each line generates the 
"p romp t&read" for the next): 

00) (read-normalize-print 00-1 global primary-stream) 

3) (read-normalize-print 2 global primary-stream) 
2) (read-normalize-print 1 global primary-stream) 

This means that the activity at level 1 is driven by the tail-recursive (underlined) call to NORMALIZE 
inside READ-NORMALIZE-PRINT: 

'" (define READ-NORMALIZE-PRINT 
'" (lambda simple [level env stream] 
'" (normalize (prompt&read level stream) env 
'., (lambda simple [result1 ; Continuation C-REPLY 
iii (block (prompt&reply result level stream) 
;,; (read-normalize-print level env stream»»» 

Top-level continuations, then, arc simply closures created by the normalization of the LAMBDA 
expression within READ-NORMALIZE-PRINT (italicized in the foregoing). 

The only usc of the global variable @NEXT-LEVEL is to set up the correct binding for LEVEL inside 
each successive new top level continuation, in order to simulate the infinite number of incantations. 
The strictly linear "hierarchy" of control levels is a partial myth, foisted on the user by this 
in itialization protocol. . 

(define NEW-TOP-LEVEL-CONTINUATION 
(letseq [[rnp-environment (environment tread-normalize-print)] 

[rnp-pattern (pattern tread-normalize-print)] 
[rnp-body (body tread-normalize-print)] 
[c-reply-pattern (2nd (cdr (3rd (cdr rnp-body»»] 
[c-reply-body (3rd (cdr (3rd (cdr rnp-body»»]] 

(lambda simple [] 
(block (set @next-level (1+ @next-level» 

(simple·t(bind rnp-p~~terri· 
t[@next-level ·global primary-stream] 
rnp-environment) . 

c-reply-pattern 
c-reply-body»») 
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NOTES ON 3X3 

* This version is presented llsing DEFINES, but, in fact. if you were to nll1 this you would have to 
establish all of these proceuures definitions in a giant LAOELS, since otherwise these definitions 
will be visible in the global environment, which would be incorrect. It is crucial, however, that 
the environment we hand out (through RfAD-NORMAI.IZE-PRINr) be the real global environment, 
so th?t when user code reflects, it gets access to the genuine article. 

* The implementation assumes that the object level program will be prevented from smashing 
those parts of the standard 3-LlSP system upon which it depends. For example, the 
implementation would die if the object program smashed SI:T since the implementation uses SET 
on a regular basis (in REGISTER), and even though it is conceivable that the underlying 
implementation need not have protected SET since it isn't in the kernel. Conversely. everything 
that is protected in the underlying implementation is, like it or not, protecteu in the new tower. 

* CALL is ,defined as a macro because it is critical that the argument expression not be processed 
when the procedures being CALLed is either renective or primitive and the argument processing 
potentially involves a side-effect or an error. 

* In the reflective processor, the check for renective closures is j)erformed in C-PROC!, not C­
ARGS!. As a consequence, any closure that makes it to C-ARGS! as the binding of PROC! will 
be expanded regardless of its procedure type. In other words, in regular 3-LlSP the expression 
(FOO (REPLACE tFOO t(REFLECTIFY FOO») will treat FOO as if it were a simple closure (which it 
was at the time C-PROC! had a look at it). It is for this reason that MATCH-CLOSURE ignores 
procedure type. 

* The implementations are correct only relative to the standard reflective processor - : NORMALIZE 
docs not engender the behavior of just any old program walking o.ver the bouy of the closure for 
NORMALIZE. 

* The viability of the technique of chickening out depends on the fact that primary processor 
procedures do nothing irrevocable prior to calling their continuation. When this is not the case, 
it is necessary to do a more vertical shift-up; this involves putting together authentic-looking 
environment and continuation structures describing the current state of the computation one 
level up and shifting up into :C-PROC!. Chickening out causes a shift up into the t<lil-end of :c­
ARGS! at an earlier instant. 

* To make sure that the bindings arc in the right order (e.g .• PROC. then ARGS, then ENV, then 
CONT), MAKE -CONTI NUA TION uses the same kernel proceuure (0 I NO) as the reflective processor. 

* The call to BIND in MAKE-CONTINUATION will not fail provided that the primary processor 
procedures and their implcmentations have similar patterns. 

SOME NASTY TEST CASES 

The 3-LlSP renective processer provides a nne-grained description of how 3-L1SP programs arc 
processed. An implcmentatipn of 3-USP can be considered correct only if carcful alten~ion is paid 

. to the rmlllY subtleties entailed by this account. Here arc some nasty test cases that illuminate some 
of the finer pO.ints that arc easily missed. 
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1. Replacing a simple closure with a reflective one. The test for renectiveness is done prior to 
normalizing the arguments. Hence, changing a simple closure into a reflective one during 
argument normalization will not have an immediate effect. 

1> (set foo (lambda simple [x] (+ xl») 
1= 'foo 
1> (set fee (lambda reflect [x] (- xl») 
1= 'fee 
1> (foo 100) 
1= 101 
1> (foo (block (replace tfoo tfee) 100)) 
1= 99 
1> (foo 100) 
{ERROR: Pattern match fai7ure} 

2. Using renective procedures as continuations. The effect of using a reflective procedure as a 
continuation is bizarre but predictable! 

1) (normalize '1 global id) 
1= 'I 
I) (normalize '1 global quote) 
1= 'exp Prom line 9 of reflective processor 
1) (normalize '+ global id) 
1= '{simple + closure} 
I) (normalize '+ global quote) 
1= '(binding exp env) From line 10 
1) (normalize '(+ 1 2) global id) 
1= '3 
1) (normalize '(+ 1 2) global quote) 
1= 't (.j.p roc I . hrg s! ) From line 22 
I) (normalize-rail '[] global id) 
1= '(] . 
1> (normalize-ran '[] global quote) 
1= '( rcons) : From line 29 
1> (normalize-ran '[1] global id) 
1= '(] 
1> (normalize-ran '[1.1 global quote) 
1= '(prep first! restl) : From line 34 

3. Smashing a continuation. I\n implementation may not trust the procedure type of a 
continuation - it can be changed on the fly. 

I) (let [[dummy-id (lambda simple [x] x)]] 
(normalize '(id (replace, ttdummy-id tquote)) global dummy-id)) 

1= '(binding exp env). 
1> (let [[dummy-id (lambda simple [x] x)]] 

(normalize '(id (~eplace ,ttdummy-id tup» global dummy-idlY 
1= "'OK 

4. Tampering with the environment of a continuation closure. The environment designator within 
a standard continuation closure can be changed, making it non-standard. In the following, a 
new binding for NOIl~Ii\LIZE is sturred into a C-ARGS! closure; this binding will be used when it 
comes to expanding the closure. 

1) (define CHANGE-CaNT 
(lambda 'reflect [[exp] env cont] 
. (block 

(push ['normalize t(lambda simple [a e c] (c tal)] 
(environment tcont» 

(normal ize exp env cont).))) 
1= 'CflANGE-CONT 
I) «lambda simple x (print 'hello primary-stream» . (change-cont (+ 2 2») 
1= '(print 'hello primary-stroam) 
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5. Sharing of environment tails between C-PROC! and C-ARGS! continuations. A C-ARGS! closure 
contains an environment designator whose first tail is the environment designator captured by 
the corresponding C-PROC! closure. 

1) (define SAVE-CONT 
(lambda reflect [[var exp1 env cont1 

(block (rebind var ttcont env) 
(normalize exp env cont»» 

1= 'SAVE-CONT 
1) «save-cont xl -) . (save-cont x2 [11» 
1= -1 
1> xl 
1= '{simple C-PROC! closure} 
1> x2 
1= '{simple C-ARGS! closure} 

i.e. (- 1) 

1) (- (environment-designator xl) (rest (environment-designator x2») 
1= $I 

6. Fresh top~tevel continuations. Each time through READ-NORMALIZE-PRINT a new C-REPLY . 

continuation closure is created. 

I) (define SAVE-CONT 
(lambda reflect [[var exp1 env cont1 

(block (rebind var ttcont env) 
(normalize exp env cont»» 

1= 'SAVE-CONT 
1) (save-cont xl xl) 
1= '{simple C-REPLY closure} 
1) (save-cont x2 x2) 
1= '{simple C-REPLY closure} 
1> (- xl x2) 
1= SF 
1> (Q (pattern xl) (pattern x2» 
1= $I 
1> (Q (body xl) (body x2» 
1= $T 
1> (- (environment-designator xl) (envfronment-des~gnator x2» 
1= SF 
I) (a (environment xl) (environment x2» 
1= $I 

7. Using a primitive as a continuation with a renective continuation over it. Care must be taken in 
such cases because the primitive may never get invoked. 

1> (normalize '(normalize '10 global output) global quote) 
1= 't(+procl . hrgsl) ; From line220flhe renectiveprocessor 

8. Rebinding a kernel procedure in the global environment. This is almost always fatal. 

I) (set normalize 10) 
[Thud.] 

9. Smashing a kernel procedure, its body, or its pattern. . This too is usually fatal. 

1> (set x (body tatom» 
h 'OK 
1> x 
1= '(= (type x) 'atom) 
1> (rplaca x 'rcons) 
{Thud.} 

10. Clobbering the global environment. The global environment rail must always be in normal 
form; otherwise, (env i ronmen t proc!) on line 24 would error on all standard procedures. 

1> (replace (foot ~global) '[haI1) 
[Thud.} 
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11. Circular rails can calise NORMALIZE to hang - even nonnal-fonn ones. 

1) (set x (rcons '1» 
1= '[1] 
1> (block (replace (foot x) x) 'done) 
1= 'DONE 
1) (block (normalize x global id) 'done) 
[.S'tuck in NORMAL-RAIL chasing a TAlL.] 
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8.3. Some Simple 3x3 Optimizations 

COMPILED SIMPLES 

The most glaring ineffIciency in the code given in section B.2 is that, except for the seven 
primary processor procedures, every 3-L1SP procedure is treated by explicitly expanding the closure. 
3x3 can be extended so as to "compile" some standard procedures - i.e., treat them in a manner 
similar to primitives, the only difference being that weird continuations will not cause feather 
dusters to be donned but. instead, will force the closure to be expanded. Some rules apply: most 
notably, no compiled procedure may call a non-compiled one (e.g., MAP and V-OPF.RATOR arc out) on 
this simple strategy. 

We have to add a test to : C-ARGS! to check for procedures other than pnnlltlvcs for which 
we have "compilations" (and chcck to makc sure that running the compiled vcrsion is "safc"), and 
provide a recognition mcchanism. Since our implcmentation language is a full 3-L1SP, we 
automatically have compilations for all simplc kernels: 

(define :C-ARGS! 
(lambda simple [args!] 

(import [proc! cont] 
(cond [i£! (primitive proc!) 

(and (compiled proc!) 
(not (reflective tcont» 
(not (primitive tcont»» 

(call cont t(.J.proc! . .J.args!»] 
[(processor-procedure procl) 

(block (shift-down cont) 
(register .J.procl .J.argsl) 
«implementation-of proc!) . .J.argsl»] 

[$T (expand-closure procl args! cont)]»» 

(define COMPILED 
(lambda simple [proc] 

(member proc compiled-procedures») 

(set COMPILED-PROCEDURES 
(map up 

[** 1+ 1- 1st 2nd 3rd 4th 5th 6th abs append append· atom bind binding 
boolean character character-string charat closure concatenate copy-vector 
de-reflect double environment even external foot function handle id id· 
index internal isomorphic macro macro-expander max member min negative 
newline non-negative normal normal-rail not number numeral odd pair pop 
positive primitive print prompt&read prompt&reply push rail read rebind 
reflect reflect! reflectify reflective remainder rest reverse rplaca 
rplacd rplacn rplact sequence simple stream streamer truth-value unit 
vector vector-constructor xcons zero]» 
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COMPILED KERNEL REFLECTIVES 

To handle kernel reflectives (such as IF) one needs in general a) to define implementation 
procedures for the main body of the reflective proceuure and It>r each of the continuations it 
constructs (of which IF has one), b) to construct a sample closure t(Jr those continuations and for 
the ue-rellected version of the main proceuure, and c) to aud an appropriate entry to the TABLE­
OF - EQU [VALE NTS. It is essenti,lI that the compiled kernel reflective not fall ofr or its parentheses 
(for this reason, the above technique would not apply to TIIROW). 

LAMBDA is easy: one only need add (again we lise italics to indicate those parts of this 
implementation version that diner rrom the user-visible version): 

(define :LAMBDA 
(lambda simple [[kind pallel'n bodyl env cont] 

(call reduce kind t[tenv pattern body] .env contI»~ 

and add one more entry to the table of equivalent'i: 

(set TABLE-Of-EQUIVALENTS [[tnormalize :normalize] 
[tnormalize-rail :normalize-rail] 
[treduce :reduce] 
[@samp 1 e-c- p roc! : c -proc! ] 
[@sample-c-args! : c-arg s! ] 
[@sample-c-first! : c-fi rst!] 
[@sample-c-rest! :c-rest!] 
[(de-reflect tlambda) :lambda]]) 

To deal with IF, we would add (with the same lise of italics): 

(define :IF 
(lambda simple [args env cont] 

(if (rail args) 
(call normalize (1st args) env 

(make-continuation @sample-c-if» 
(call reduce tef args env contI»~) 

(deflne :C-IF 
(lambda simple [premise!] 

(import [args env cant] 
(call normalize (if 'premise! (2nd args) (3rd args» env contI»~) 

(set @SAMPlE-C-If t(catch (if (throw-cont) 7 7») 

and append the following two entries to the table of equivalents: 

[(de-reflect tif) :if] 
[@sample-c-if :c-if] 

As a final example, consider compiling READ-NORMALIZE-PRINT. First, define the standard 
implementation version: 

(der i ne : REAO-NORMALI ZE-PRINT 
(lambda simple [level env stream] 

(cai7 normal ize (prompt&read level stream) env 
(make-continuation @sample-c-reply)) 

. (define :C-REPLY 
(lambda simple [result] 

(import [level anv stream] 
(block (prompt&reply result level stream) 

(call read-normalize-print level env stream»») 

(set @SAMPLE-C-REPLY 
(block (sel @next-level 1) 

t(new-top-level-continuation») 

Then add to the table of equha\cnts the enlries: 
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[tread-normalize-print :read-normalize-print] 
[@sample-c-reply :c-reply] 

AND, OR, COND, BLOCK, and so on are all similar. 

To illustrate the compilation of macros, we will show how to compile DEFINE, assuming the 
following definition: 

(define DEFINE 
(lambda macro [label body] 

;; ; 
'(block (set .label {y-operator (lambda simple [.label] .body») 

• t 1 abe 1 ) ) ) 

Note that this definition does not make accessible, to any instance of it, a rail that is shared by all 
definitions (i.e., it sets up no "own" variables). If it did, we would have to extract a handle to that 
very rail; as it is, we can construct a fresh version: 

(define :DEFINE 
(lambda simple [[label body] env cont] 

{call normalize '(block (set .label (y-operator (lambda simple [. label] ,body») 
,tlabel) 

env 
cont») 

And the standard addition to the table of equivalents: 

[(de-reflect tdefine) :define] 

Note that this compiles only the first stage of the macro expansion. 

CONTROL FLOW 

The code presented in section 11.2. is inefficient in a particular way: CALL, which can be 
called with any kind of procedure (simple or reflective, primary processor or lIser) is sometimes 
used in a place where the argument is known to be a specific one of the three named processor 
procedures (NORMALIZE, REDUCE, or NORMALIZE-RAIL). In stich a circumstance the code, as written, 
will go through a whole set of unnecessary checks to make sure Ulat it isn't primitive or reflective, 
look up the implementation version, and then register the state and call that implementation 
version. At the point of call. however, we know perfectly well what that implementation procedure 
will be (specifically, for NORMALIZE it is : NORMALIZE, for REDUCE it is : REDUCE, and for NORMALIZE-RAIL 

it is : NORMALIZE -RAIL). It is possible. therefore. to simplify the CALL sequence considerably in these 
specific cases. A simple way to do so is to define three procedures (CALL-NORMALIZE, CALL-REDUCE, 

and CALL-NORMALIZE-RAIL) which merely do the necessary state registration and call the 
implementing, versions directly: 

(define CALL-NORMALIZE 
(lambda simple ar'gs 

(block (regist~r normalize args) (:normalize . args»» 

(define CALL-REDUCE 
(lambda simple args 

,(blbc~ (register reduce a~gs~ (:reduce. args») 

(define CALL-NORMALIZE-RAIL 
(lambda simple args 

(blOCk (register normalize-rail args) (:normalize-rail . args»» 

Then, each place in the code there is an expression ()f the form '(CALL NORMALIZE •.• )', it can be 
replaced with '(CALL-NORMALIZE .•• )'. Rather than rewrite the whole 11.2. processor. we give just 
those procedures that change under this revision, with the altered fragments of the code underlined. 
Additionally, we lise CALL-SIMPLE in place of CALL in C-PROC! for rcflectives, since DE-REFLECT will 
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always return a non-primitive simple. Also, we call EXPAND-CLOSURE on READ-NORMALIZE-PRINT in 
GENESIS, since we know that READ-NORMALIZE-PRINT is not a processor procedure or compiled 
(although it can be compiled, in which case it should read (CAll-READ-NORMALIZE-PRINT ... »: 

(define :NORMALIZE 
(lambda simple [exp env cont] 

(cond [(normal exp) (call cont exp)] 
[(atom exp) (call cont (binding exp env»] 
[(rail exp) (call-normalize-rail exp env cont)] 
[(pair exp) (call-reduce (car exp) (cdr exp) env cont)]») 

(define :REDUCE 
(lambda simple [proc args env cont] 

(call-normalize proc env 
(make- con t i nua t ion @sampl e-c-p roc! » » 

(define :C-PROCI 
(lambda simple [procl] 

(import [args env cont] 
(if (reflective procl) 

(call-simple ~(de-reflect proc!) [args env cont]) 
(call-normalize args env 

(make-continuation @sample-c-argsl»»» 

(define :NORMALIZE-RAIL 
(lambda simple [rail env cont] 

(if (empty rail) 
(call cont (rcons» 
(call-normalize (1st rail) env 

(make-continuation @samp~e-c-firstl»») 

(define :C-FIRSTI 
(lambda simple [firstl] 

(import [rail env] 
(call-normalize-rail (rest rail) env 

(make-continuation @sample-c-rest!»))) 

(define EXPAND-CLOSURE 
(lambda simple [proc!- argsl cont] 

(call-normalize (body procl) 

(define GENESIS 
(1 ambda simp 1 e [] 

(bind (pattern proc!) args! (environment procl» 
cont») 

(block (set @level-stack (scons» 
(set @next-levol 1) 
(expand-closure tread-normalize-print 

t[l global primary-stream] 
(shift-up»» ) 
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1. Introuucliol1 

For thrl!e rea~ons, Lh:;p's s(!lf·rer.!rential properties have not 
leu to a gelleral ullIlcrs!anding of what it is for a cumputational 
syslem lel reason, in Sllb,;t.111tial way"', about its own operations 
allli strudurcs. FiI'st, there is more to rc.m,;oning lhan refl!rel1ce; 
one nlso needs It lheory, in terllls of which lo makll sense of the 
referellced domain. A computer :>y"lllm able to reuson about 
it~;llif - what I will call a rl!flcclive system - will therefore 
need an account of it.<;elf embedded within it. Second, there 
must hI! a systematic relationshil) betwl!en that embedded 
aCClJunt and lhe system it defocribes. Without such a connection, 
tile account would be useless - as disconnected ns the words of 
a hUlllc!;s drunk who carries on about the evils of inebriation, 
without reali"ing that his story applies to him~elf. Traditional 
embeudings of Lisp in Lisp are inlldequate in just this way; thay 
provide no means fOI' the implicit state of the Li,;p process to he 
refleded, moment by moment, in the explicit terlll!! of the 
.:ombe(Hed <lccount. Third, a reflective ~ystcm must be given an 
appropriate vantage point at which to stand, far enough away to 
h:we itself in focus, and yet close enough to Ree the important 
tip-tails. 

This paper presents a general architecture, called 
prucl!cillrui refleclioll. to l-iupport self·directed Tlwsoning in a 
serial programming langnage. The archit~cture, iIlu~<trated in a 
revamped dialect c;llled 3-Li:-;p, solves all three problems with a 
single mechaniHm. The hasic idea is to define an infinite tower 
of procedul'!Il self-models, very much like metacircular 
interpreters [Steele and Sussman 1978bl, except connected to 
ellch olher in n simple hut critical way. In Huch an architecture, 
any aspect of a proce$'s statt! that can be described in terms of 
the lheory can be rendered explicit, in program accessible 
structums. Furthermore, as we will see, this apparently infinite 
architecture can be linitely implelllented. . 

The ~ln'hitectl1rc allows the user to define complex 
prr.g-rn:nmillg constructs (:;uch as escape operators, deviant 
\"nriublc.passing protocol~, and dehugging primit.ives). by writing 
direct :lllalouues of lhose metalinJ.:uistic semnnticnl expressions 
that would 710rmally he used to describe them. As is always 
true in Remanlic,;, the metalheoretic descriptions must be 
phrased ill terms of some particular ~ut of concepts; in this case 
I have used a theory of Li~p ba,;cd on envimnlllents and 
continuations. A 3'U"p Ilroaram, therefore, at nny Jloint during 
a computation. call ohlain representalirm" of the environment 

Permission to copy without fee all or part of this material is granted 
provided that the,copies are not made ~r distri~uted for dir~t 
commercial advantage, the ACM copynght nouce and the title of the 
pUblication and it!! dale appear, and notice is given .that copying is by 
permission of the Associalion for Compullng Machinery. To ~opy 
otherwise, or to republish, requires a fee andior speCific permls~lon. 

@ 1983 ACM 0-89791-125-3/84/001/0023 $00.75 
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and continuation charnctel'i~ing the Nt~te of the computation at 
that point. Thus. such con!ltrucl!! Wi TlIROW and C,'lTtll, which 
must otherwise be providerl primitively, can in :l-Lisp be en~ily 
defined liS user prCJCedures (and defined, furthermore, in code 
that is (I!most isomorphic to lhe ,\-calculuR ellllnlions one 
normally writes, in the metalaflJ.:uat~e, to describe them)_ And 
all this call be done without writing the entire program in a 
continllation'pllI-;sing style, of t.he SOI·t illustrnted in (Steele 
1976). The point is noL to dl!cide at the outset wh'lt should nnd 
whnt should not he explicit (in Steele's example, continuations 
must be passed around explicitly from the beginning). Rather, 
tile reflective architecture provides a method of making some 
aspects of thl! computation explicit. right in thl! midst of a 
computation, even if they were implicit a moment earlier. It 
provides n mechanism; in other words, of reaching up and 
"pullin!r information out of the sky" when unexpected 
circumst:lIlces warrant it, without having to worry about it 
otherwise • 

The overall claim is that reflection is simple to build on a 
semantically sound base, where 'se.mantically sound' means 
more than that the semanlics be carefully formulated. Rather. I 
assume throughout· that computational !It!"'..:dures have 11 

s.,'malltic significance that transcends their m:.naviQural import 
.- or, to put this another way, that computa:iu.:nl structures are 
about something, over and. above the effects they ~ave on the 
systemg they inh::lbit. Lisp's NIL. for example, not only 
evaluates to iL~elf rorever, but also (and somewhat 
independently) stands for Falsehood_ A reconstruction of lisp 
semantics, therefore, must deal explicitly with bot.'l do!Clarative 
and procedural aspccts of the overall significance of 
computational structures. This distinction is different from 
(though I will contrast it with) the distinction between 
operatiollal and denotational semnntics. It is a recolI~truction 
hilS been developed within a view that programming languages 
are properly to be under!ltood in the ~ame theorcticnl t.erms used 
U) analyse not only olher computer Innguages. but even nRtural 
languages. 

This approach forces us to distinguish between a structure's 
vnlue anu what it returns, and to discriminate entities, like 
numerals and numbers, that are isomorphic but not identical 
(both instnnces of the general intellectunl h)'giene of avoiding 
use/mention errors). Lisp's basic nolion of e\-aiuation, I will 
arp'ue. is confused in this regard, and should bl! rt!placed with 
independent notions of designation and simplification. The 
rei:ult is illustrated in a semantically rationaii.~ed ciialcct~ called 
2-Lis)l, based on a simplifying (de!lignation'presening) ·term. 
rp.ducing processor. The point of defining i·Lisp is that th~ 
l'eOective 3-Lisp can be very simply defined on top of it. whereas 
defining a rcnective version of a non-ration.:l!lSf'd dialect would 
lit! mo"~ compii-cated and more dimcult ;'0 .... nri"r.<t.and. 

The strnlegy of pre~enting a gencm! ;-,rc-ililucture by 
developing a concrete instance of it was seiected (Ill the grounds 
that a gelluine theory of reflcct:ion (perhaps annlogous to t.he 
th~ory of recursion) would be dilTIcult to motivate or defend 
without taking this first, more pragmatic, step. Tn section 10, 



howev~r. wc will sketch u gencral "recipe" for auding reflective 
capabilities to an..., ,;erial l:ll1gua~e: 3-Lisp is the. result. of 
applying this COl1\'ersion process to the non-retlectlve 2-Llsp. 

It is sometimes ~aid thue therc ::Ire only a few constructs 
frum which languages are assembled. iru::luding fnr example 
pretlicates. terms. functions. composition, recursion. abstraction. 
,1 Immching selL'ctor, and quantilicotion, Though different from 
t:lese notions (ond not definable in terms of them), refleetion is 
perhaps best viewed as a proposed addition to thot fomily. 
Given this view, it is helpful to understond reflection by 
comparing it. in particular, with recursion - a construct with 
which it shares mony features, Specifically, recul'lIion can seem 
viciously circular to the uninitiated. ond can lead to confused 
implementotions if poorly understood. The mathematical theory 
of recursion, however, underwrites our ability to use rccursion 
in programming lanb'Uagell without doubting its fundamental 
soundness (in fact. for many pro,;rammers. without 
understonding much about the formal theory at all). Ret1eetive 
systems, similarly, initially seem viciously circular (or at least 
infinite). and are difficult to implement without an adequate 
understanding. The intent of this paper, however, is to argue 
that reflection is as well-tamed a concept as recursion. and 
potl!lltially as efficient to use. The long-range goal is not to 
force programmers to understond the intrkacies of designing a 
reflective dialect. but rather to enable them to use reflection and 
l'ecul'!lion with equal abandon. 

2. Motivating Intuitions 

Befol'e taking up technical details. it will help to layout 
some motivations and assumptions. First, by 'reflection' in its 
must general s.mse. I mean the ability of an agent to reason not 
only introspectively, about its self and internal thought 
pl'ucesses, but nl50 externolly, about its behaviour and situation 
in t.he world. Ordinary reasoning is external in 1\ simple sense; 
l he' point of reJlllctiDn is to give an agent a more sophi"ticated 
stance from which to consider its own presence in that 
embedding world. There is a growing consensus l that reflective­
abilit,ies underlie much of the plauticity with which we deal with 
the world. both in language (such as when one says Did you 
understand u,hut I meafuO and in thought (such as when one 
wonders how to deliver bad news compassionately). Common 
sense suggests that re/1ection enables us to master new skills. 
COpll with incomplete knowledge, define terms, examine 
assumptions. review and distill our experiences, Illarn from 
unexpected situations, plan. check for consistency, and recover 
from mistokcl!. 

In spite of werking with reflection ill .formal languages, 
most of the driving Intuitions about reflection arc grounded in 
human rationality and language. Steps tnwards reflection, 
howr.ver. can also be found ill much of current compututional 
practice. Debu;;,/.!ing svst.I!m!i. trace pockages, dynamic code 
<.lptimizerl<. run·time compilers, macros, metacircular 
inwrpreters. error hn mllers. type tleclorationl!. escape operators, 
curnnllll1ts. :md a variet.v ()f other prol;rnrnming constructs 
Involve, in OUIl way or anuther, structures that refer to or deal 
with <.lther Darts of a comoutational svstem. These oractices 
~tlf!'';l!st, as a first step townrdli a more ({oner:!l theory. defining 
a limited and rather illtro~pective nution of 'procedural 
,·cl1ection': Hlllf·referential behaviuur ir. procedural langtlu~es. in 
which' I!xpr~ssions arc pr:marily used instructiunally. to 
eng.,mdur b"havinur. rother thall a~~l'rtionally, to make claims. 
It is the hope that the lessons learned in ~his smaller t.::isk will 

. ~ei've .well· in' the ·Iarger account .. 
We me~tioneu at the outset that the general task. in 

defining a reflective system. i~ to ~mhp.d a tlieory of the syfitem 
in the ~vstem. so as til SII ppurt ~mouth 3hll'ting between 
re:tslln1l1g- directly ~bout Lhe world and reasoning ..about that 
rell!;oning. 13ecausc '.'IC :He talkang 1)1' rcasoning. not merely of 
lan~uage, we "dded a.l additional requirement on this embedded 
theory, beyond its I;"ing descriptive and true: it must "Isn be 
what we wi II call consuLtl' cunJleC'led •. ,0 thnt accounts of objects 
and events are tied dire~tly to those objects and events. The 

Figure I: .4. Serial Model o(Compu.tation 

calL~nl relationship. furthermore. must go both ways: from eVent 
to descri!Jtion, and from description back to event, (It is as if We 
wera creating a magic kingdom. where frlJm a cake you could 
automatically get a recipe. and from a recipe you could 
automatically get a cake.) In mathematical cases of self­
reference, including both self-referential statements. and modeL! 
of syntax and proof theory, there is of course no causation at all, 
sinc'! . thel'e is no temporality or behaviour (mathematical 
systems don't run). Causation, however. is certainly part of any 
reflective ogent. Suppose. for example. that you capsize while 
conoeing through difficult rnpids. and swim to the shore to 
figure out what you did wrong. You need a description of what 
you were doing at the moment the mishap occurred; merely 
having a name for yourself. or even a general description of 
yourself, would be useless. Also, your thinking must be able to 
have some effect; no good will come 'from your merely 
contemplating a wonderful theory of an improved you. As well 
as stepping back and being able to think about your behaviour, 
in other words, you mlLSt also be able to take a revised theory 
and "dive back in under it", adjusting your behaviour so as to 
satisfy the new account. And finally, we mentioned that when 
you toke the' stP.p backwards. to reflect. you need a place to 
st.1nd with just the right combination of connection and 
detochment. 

Computotional reflective systems. similarly, must provide 
both directions of caUsal connection, and an appropriate vantage 
pOint. Consider, for exnmple. a debugging system thut accesses 
stock frames and other implementation-dependent 
representations of prOCC:lSOr state, in order to give ~hQ lIser an 
account of what a program is up to in the midst of a 
computotion. First. stock·frame!l and implementation codes are 
really just dellCriptionli. in a rather inelegant language, of the 
stote of the process they dl?scrihe. Like any rie!lcriptioll. they 
make explicit some of what wa.; Implicit in the process itself 
(this is one reallon the~ lire useful in debuggi'ng). Furthermore. 
hecause of the natu/'e of implementation. they are always 
avmlable. and always true. They hnve these properties because 
they playa cau.sal role ill .. the· very eXistence of the process they 
implement: they therefore automaticnlly solve the ""vent-to­
dc~cl'iption" direction of causal connnction. Second. debugrring 
systems must solve the "description to rp.ality" problem. by 
providing a wny of makin,{ revised deSCriptions of the process 
true of thnt process, They careful! y provine facili ties for 
altl!rilll; the underlYing stnte, based on the user's descript.ion of 
IYnnt thnt swte .;hnultl bt!. Without this directinn of rausnl 
connection. the tlebu~ging system. like an abstract model. could 
hovp, no l!ffcct 011 the "rocells it was ~;ocamining. And finally, 
f1rorrrammerll who write debugging systems wrestle with the 
£lruhlem of providing a proper vank.ge point. en this case. 
practice has been particularly atheor-etical; it is 'typical to 
arran!!:c, vl!ry cautiously. fur the debugger to tiptoe around its 

'own .tock frames. in order to aVOid '1arlahle clashes anu other 
unwonted inteructions. 

As we will see in developing 3.Lisp, all of thesl! concerns 
can ill! dealt with 'n a rellcctive language in ways that arc both 
simple anti unplementatlon-indepl!ndent. The procedural coue in 
the nletaclrcular processor serves as the "theory" discUS:led 
above: tho: c:,usal connection is providetl by a mechanism 
wherl!by procedures at olle Icvei in the retlective tower are run 
in thl! process one level above (a deun 'Nay, essentially, of 
enabling ::I program to define ,ubroutines to be run in its nwn 
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lnlpleml!llt:1tlonl. [n iJnu' sense It i:; all strni\:htforward; the 
~ubtluty 01 :.I-Lisp ha~ :0 du nut so much with the power of such 
a nlechani~m. whidl is uvidunt, but with how :;uch power can be 
finitely pro\'iJ~d - a qUl!stiun we will examine in section 9. 

Some tinal assumptions. I assume a simple serial model of 
computation, illustrated in Figure 1. in which a computational 
process as a whole is divided into an internal assemblage of 
program and uata structures collectively called the structural 
{ie/d. coup Iud with an internal process that e:tamines and 
manipulates these structures. In computer science this inner 
process (or 'homunculus') is typically called the interpreter: i.n 
order to avoid confusion with semantic notions of interpretation, 
I will call it the processor. While models of reflection fur 
concurrent systems could undoubtedly be formulated. I claim 
here only thut our particular architecture is general for calculi 
of this serial (i.e .• single processor) sort. 

I will use chI! term 'structure' for el~ments of the structural 
field. all of which arc inside the machine, never for abstract 
mathematical or other "external" entities like numbers. 
fUllctions. or radios. (Although this terminology may be 
confusing for semanticists who think of a structure aH a model. I 
wallt to avoid calling them expressiolls . • ince the latter term 
connotes linJ.,'llistic or notationul entitie:;. The aim is for a 
concept covering both data st.ructures and internal 
rupruRentntion:; of programs, with which til categorizll what we 
would in orrlinury English call the structure of the overall 
pmcess or agent.) Consequently, I call metas/rue/Ilral any 
.;tructure that designates another structure. reserving 
nlldasYlIluctic for l!xpre:;:;ions designating lin~uistic entities or 
Ilxpressi()ns.~ Given our intufest in inturnal self-refl!rence. it is 
duar that hoth stTllctUr:l1 fi<!ld and processor. as well as­
nnmhul's ilnd functions und til.! like, will be part of the semantic 
domain. Note that rno)ta:;tructural calculi must l.e distinguished 
frq,n the!>:,! that aru higher·order, in which tr.rms and arguments 
rnay dc:;igllHle iunctions of any degree (2·Lisp and 3·Lisp will 
have both properties).3 

:l. ,\ FramewOl'k (or Computational Semantics 

We turn. then, to qUI!stions of semantics. In the simplest 
';aSIl, ~i!mantics is t.'lken to involve a mapping, possibly 
crmtextuall.v relativi~,!d. from a syntactic to :;emantic domain. as 
~hvwl1 in rigure 2. The mapping (.~) is called an ill/erpretation 
liu1I'IilJll (to be distinguished, as noted above, from the standllrd 
':II:llPUtc,' science notion of an IIII~rp,.eter). It ill usually sptlcified 
inductively, with ru:>pect to the compositional structure of the 
!llcmunts of the syntactic domain, which is typically a 3L!t of 
sYlltactic or linguistic sorts of !lntlties. The semantic domain 
may he of any type whatsoever, including • uomain of 
hehaviour; In rl!lll!ctive systems it will often include thl! 
syntactic domain as a proper part, We will usc a variety of 
diITerent terms for rliITerent kinds of semantic relationshill; in 
the gcneral cast!, we will call 5 a symbol or sigll, and say that s 
~i>:lIi/ies d, or conversely that d is the significance or 
UlI~,.p,.e(ntion of s. 

[n a computational setting. there are several semantic 
relation~hip's - not rliITerent ways of chllracttlriting the sam~ 
rclntionshlp (as· nperntional and ul!notaLional seman tical 
accounts are sometimes taken to bt!), for example, but ~tll1uinely 
ciistmct re1utionships. Thl!se different relationships make for a 
mor!) complex semantic framework. as do ambiguities in the URe 
of words like ·pro~rnm·. [n many scttings, such as in purely 
exten~innal functional proll'l'ammlng languages, such distinctions 
:ue iucuns<!<jut!ntwl. But when we turn to ret1ection, self­
ret'crencl1. and mctastructural proce>lsors. these otherwise minor 
distinctions playa much more important role. Also. since the 
:;emantlcal theu\':; we adopt wtll be Jt least partially embedded 
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'.\'ithin j.Lisp. the analysis will at'f"ct the formal design. Our 
:tpproach. therefore. will be start With basic and simple 
intuitions. and to idl'ntify a Iiner'i!r:tined set of distinctions than 
arc usually employed. We Will consider \'ery hridly the issue of 
how current progmmmmg bn\:uage 3emantics would be 
reconstructed in thest! terms. but the complu:<ities involved in 
answuring that question adequately would take us beyond the 
scope of the present paper, 

At the outset. we distinguish three things: a} the objects 
and events in the world in which :l computational process is 
embedded. including both real-world objects like cars and caviar. 
and set· theoretic abstractions like numbers and functions (Le .. 
we adopt a kind of pan· platonic idealism about mathematics); b) 
the internal elements. structures. or prnces:;es inside the 
computer, inc1ading data structures, program repre::;entations. 
e:tecution sequences and RO forth (these are all formal objects, in 
the sense that computation is formal symbol manipulation); and 
c) notational or communicational expressions. in some ext.ernally 
observable and consensually established medium of interaction, 
guch as strings of characters. streams of words. or sequences of 
'lisplay images on a computer terminal. The last set are the 
clln:;itituents of the communica~ion one has \vith the 
computational proces.'!; the middle are the ingredients of the 
process with which one interacts. and the first (at least 
presumptively) arc the elements of the world about Ivhich that 
communication is held. In the human case, the three domains 
correspond to world. mind. and language. 

It is a truism that the third domain of objects -
r.ommllnication clements - are semantic. We claim. however. 
that the miudle set are semantic as well (Le., that structures are 
bl!srers of menning, information. or whatever). Distinguishing 
between t.he semantics of communicative expressions and the 
semantics of internal structures will be one of main features of 
the framework we adopt. It .should be noted. however, that in 
~pitc of our endorsing the re3lity of internal structures, and the 
reality of the embedding world, it is nonetheless true that the 
only things that actually happen with computers (at least the 
only thing we will consider, since we will ignore sensors and 
manipulators) are communicative interactions. If. for example. 1 
ask my Lisp machine to calculate the square root of 2. what I do 
is to type ~ome expression like (SQRT Z. 0) at it. and then receive 
back some other expression. probably quite like I. 414, by way of 
response. Thl! inter3ction is carried out entirely in terms of 
expresSions; no structures. numbers, or functions are part of the 
interactional event, The participation or relevance of any of 
these more nbstrnct objects. therefore. must be inferred from. 
and merli3ted through. the communicative act. 

We will begin to analyse this complex of relationships 
using the terminology suggested in rigure 1. By o. very simply. 
we refer to the relationship between external notational 
e!'Cprr.ssions and internal sr,ructures; by 0/ to the processes and 
behaviours those structural field elements engender (thus 'l' is 
inherently temporal). and by .~ to the ~ntities in the world that 
thuy designate. The rulatinns .~ and .~ :tre named. for mnemonic 
convenience, by analob'Y With philosophy and p!lycholo~y, 

respectively, since a study of ,~ is a study of the relationship 
hetwcen htru~ture9 and the world, when'a>! a study of 0/ is a 
study of the reiation:>hipli among symbols. all of which. in 
contrast, are "within the head" (of person or machine). 

Computation is inherently ternporal; our gemantic analysis, 
therefore, Will have to deul expliCitly with relationships across 
the passage of time. In Figure -4, therefore, we have unfolded. 
the diagram 'of. Figure 3 :lcTOSS a unit ot" time. so as to gilt at a 
full configuration of these relationships. The expressions nl and 
n'Z are intended to be linguistic or communicative entities, as 
described :Ibove; 51 ilnd s.! are internal structures over which 
the internal proce~"ing is deli ned. The relationship 0, which we 
wil! call i"ler(lali.~alion, relates these two kinds of 'lbject, as 
appropriate for the device or process In question (we will say, in 
aduition,' that nl IIOlalliS st>. For example. In first·order logic nl 
and n'l would he expreSSions, perhaps written with letters and 
spaces and '3' signs; 51 and s,!. :. :he I.!xtent they can uven be 
said to exist, would be somuthmo, like abstract denvation tree 
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Figurc.1: Semantic Relationship~ ill a Computational Process 

types of the corresponding first-ordnr formulae. In Lisp, as we 
will see, nl and n2 would be the input and output axpressions, 
written \\-ith letters and paranth~ses. or parhaps with boxes and 
arrows; ~I and Sol would be the cons-cells in the 5·expression 
heap. 

In contrast. dl and dz are elemonts or fragments of the 
embedding world. and .\. is the relationship that internal 
~tructllrt!s bear to them. '1'. in oLher words. is the interpretation 
function that makes .!xplicit what we will call the designation of 
intern.ll ,:tructures (not the designation of linguistic terms, 
which wO\lld be described by '~.O). The relationRhip between my 
mental token for T. S. Eliot. for example. and thtl poet himself. 
would be form\llated as part of .~. whereas the relationship 
hetween' Lhe public name "T. S. Eliot' and the poet would be 
expressed as .~( O( ·'r.!:U-:!.IOT-)) • T,S.l·;Llo'r, Similarly, -II would 
relate an in~crnal "numeral" structure (say. the numeral J) to 
Lhe corresponding number. As mentioned at the outset, our 
focus on .~ is evidl.!nce of our permeating semnnticnl assumption 
that all structures have designations - or. to put it 'another 
wav. that the structures are all' symbols.· 

. The '" relation. in contrast to 0 and ,~, always (and 
liectll'sarily. bp.cau.o;c it dOi:len't have access til anything else) 
relates' some internal structures to others, or at lenst to 

. hehaviours over thtlm. To the extent that it would make sense­
to wlk of a '" in logic. it would approximately he the formally 
computed dedvability relationship (i.e.. f-); in a natural 
deduction or rellolution ~hl.!mes, i' would be a subset of the 
derivnbility .. ~Intionlihip. picking out the particular inference 
procedures those regimens adopt. In a computational setting. 
howuv(!r. '" would be the function computed by the processor 
(i.e.. .y is uvaluation in Lisp). 

The relaLionships 0. "', and '1> have ditTerent relative 
importances in diffurent linguistic disciplines, and different 
mlationships among Lhem have heen given different names. For 
example. 0 is usually ignored in logic, and there is little 
tendt!llcv to villlV the study of .;, called proof theory, as 
5emanti~al. althou~h it is always related to semantics, as in 
proving soundnesl' and completeness (which. incidentally. can be 
c:q>l"usscd as the equation '1"91.52) .. I d l r;;. d2 I: if one ':'lkes:1' 
Lo he a relation. and ." to he an invp.rse satisfactIon l'elatlonshlp 
hetween .entences and pOl'llible worlds that satisfy them). In 
addition, there arc a variet~1 nf "indl.!pendence" claim:! that have 
arisen in different fields. That'" doel' not ulllquely determine <1>, 
for example, is the "psychology narrowly construed" and 
concomitant methodological solipsism of Putnam, Fodor. and 
others i rodor 19801. That 0 is usually specifiable 
compositionally and indr.pendently of .~ or 'v is essentially a 
statemtlnt uf the au'tonomr thesis for language. Similarly. when 

. 0 cannot be .spe~ilicd· indcpently of '~. computer science will say 
that a prOGramming ltingunge "cannot be parsed except ~t 
runtime" (Tuco and thl.! first versions of Small talk were of thiS 
character ). 

f!.. ~horough analysis of these semantic rp.iation.ship!l. 
however. and of the relatiotlship,; among them. IS the subject of 
a different paper. ror present purposes we ntle~ not tak~ a 
stand on which of o. "', or ." has a prior claim on bemg 
,;emantics. but we do need :\ littl~ terminology to make sense of 
it all. For discussion. Wtl will refer to the ".,," of a structure as 
its dec/amtit·p import. and to its ""," as il.t! procedural 

Figure 4: A Frarnel"ork for Compatational Semantics 

consequence. It is also convenient to identify some of the 
~ituations when two of the sill: entities (nt. nil. SI. 52. dt. and 
<12) arc identical. In particular, we will say that 51 is self­
re,-erential if d, • 51. that'" de-references 51 if 52 • d l • and that 
.y is dusigllation-preserlJing (at 51) when dl • d2 (as it always is, 
for example. in the '\'-calculus. where'" - a- and ,B-reduction _ 
do not alter the interpretation in. the standard model). 

It is natural to ask what a program is. what programming 
language semantics gives an account of. and how (this is a 
related [!uestion) ~ aml '" relate in the programming Inllguage 
case. An adequate answer to this. however, introduces a maze 
of comple~ity that will be considered in future work. To 
appreciate some of the dilTIculties. note that there arc two 
different ways in which we can conceive of a program, 
sU!Jgesting different seman tical nnalyses. On the one hand. a 
program can be viewed as a linguistic object' that describes or 
signifies a computational process consisting of the data 
titructures and activities that result from (or arise during) its 
execution. In this sense a program is primarily 11 

communicative object. not so much playing a role within a 
computational process as existing outside the process and 
representing it. Putting aside for a moment the question of 
whom it is meant to cornmunicate to. we would simply say that 
a program is in the domain of 0, and. roughly. thut ,~·e of such 
an t!xpression would be the computation described. The same 
charncterizatioll would of course npply to a specification; indeed. 
the only salient difference might be that a specification would 
avoid using non-effective conctlpts in describing behaviour. One 
would tlxpect specificntion!l to be stated in a declarntive 
language (in the sense defined in footnote 4), since specifications 
aren't themselves to be executed or run. even though they speak 
about behaviours or computations. Thus, for program or 
specification b de~crihing computational process c. we would 
have (for the relevant langunge) something like '~(O( b) • c. If 
b wcre a prollram. there would be an additional constraint that 
the program somehow play a causal role in engendering the 
computational process c that it is taken to describe. 

There is. however. an alternative conception. that places 
the program inRidt! the machine as a causal participant in the 
behaviour that results. This VICW is clofler to the one implicitly 
adopted in Figure I, and It is closer (we claim) to the way in 
which a Lisp [lro(l'r:lm must be semantically analysed. especially 
if we are to understand Lisp's emergent reflective propertitls. [n 
some ways this different view has a von :-Icuman character. in 
the sense of equating program and data. On this vit!w. the more 
appropriate equaLion 1V0uid ~eem to be "'(O( b) • c, since one 
would expect the .pr!:lcesslng of the program to yield the 

. appropriate. behavfour. One 1V0uid ~eem to have to reconcile 
this equation With that in the previous paragraph; something it 
is not de'ar it is possible to do. 

But this will require further work. Whnt we can say here 
1>1 that programming language semantics 3eems to focus on 
what, in our ~crminol06'Y. would be un arnalll'am of '" and .~. 
ror our pU'1loses we nlled only note that WI.! will hav/! to keep '" 
and .~ strictly separate. whiltl recognlsmg (because of the context 
relativitv and nonlocnl effects) that the two parts cannot be told 
indl!pendently. Formnlly. one needs to ~pecify a general 
significance fUllction L. thut recursi vely specifies .~ and ~ 
togt!ther. In particular. given any ,;tructure Sl. and any state .of 
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thl! pr"ce~~or .11Id tlw rest (')1' thl) nl)ld (~ncodl!tl. :mv. in au 
"nvjronmlluf. cOlltlnuutiun. and perha[ls a '~tore). ::: wiil specify 
thl) structurc. cOllligtlr:ltion. and ~(ntc (hat would result (Le .. it 
wIll ~pl'<'ii:: the tI~': of ~ I). and also the relutionship to the world 
that sl signilies. Felr llxample. givcll a Li~p ;;Ll'ucture of the 
form (OOt (PRCG (SETQ 1\ Z) A)). ::: would :ipecify that the whole 
~tructure designated the numher thrlJe. that it would return the 
numeral 3. and that the machine would be left in a state' in 
which the binding of the variable A was changed to the numeral 
z. 

Befure leaving semantics com[lletely. it is instructive to 
apply our various distinctions to traditional Lisp. We said 
above that all interaction with computational processes is 
mediated by communication; this can be stated in this 
terminology by noting that e and e- l (we will call the latter 
e.TternaiisaJion) are a part oC any interaction. Thus Lisp's "read­
eva I-print" loop is mirrored in our analysis as an iterated 
version oC o-I.;'oe (i.e., if 111 is an expression you type at Lisp, 
then 02 is 0.1('1'(0(01» ». The Lisp structural field, as it 
happena, has an extremely simple compositional structure, based 
on a binary directed graph of atomic elements called cons-cells, 
extended with atoms, numerals, and so forth. The linguistic or 
communicative expressions that we use to represent Lisp 
programs - the formal language objects that we edit with our 
editors and print in books and on terminal screens - is a 
separate lexical (or sometimes graphical) object, with its own 
syntax (of parentheses and identifiers in the lexical case; of 
boxes and arrows in the graphical). 

There is in Lisp a relatively close correspondence between 
expressions and structures; it is one·to·one in the graphical case, 
but the dtandal'u lexical notation is both ambiguous (because of 
shared t;Jils) and incomplete (because of its inability to 
represent cyclical structures). The correspondence need not 
have been as cloSe as it is; the process of converting from 
external ~yntax or noLation to internal structure could involve 
arbitrary amounts of cumputation. :111 evidenced by read macros 
and other synLactic or notational devices. But the important 
point is that it is ~tructural field clements, not notations, over 
which most Lisp opl!ration.'1 are defined. If you type 
(RPtACA • (A • B) • C). for example. Lhe processor will change the 
CAR of a field 'structure; it will not back up your terminal and 
erase the eleventh character uf your inDut eXDression. 
Similarly, Lisp uloms :'Ire nl)lu tJi'Jmellt."i. not to he confused with 
their lexic.'ll representatiuns (calll..u P·names). Again. quoted 
ferms like (QUOTE AnC) designate lltl'U.:tural field elements, not 
input stl;ngs. 'rhe ,form (QUOTE ... ), in otfwr words, is a 

structural quotation e)perator: notational quutation is different, 
u:;lill11y nutated with string quote:!. (:'ADco).5 

·1. EVilluution Considered Harmful 

The claim that ,111 Lhree I'clationships (0 •• (>. and '1') figure 
crucially ill an account of Lisp is not 11 fornlal one. It makes an 
empirical claim on the minds of progTammers. and cannot be 
5eLtlcd by [lointing to any curTl.!nt theories or implementations. 
:-.ionethelcs,<;. it is unargllahll! that Li~p's numerals designate 
numbers. and that t.he atoms r and NIL (at least in prcdicative 
contexts) de:;ignate truth and falSity - no onl! could learn Lisp 
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Figure 5: USP Evaluation us. Designatio,,: Some Examples 
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Figure 6: LISP's "De-reference [fYou Can" Eualuation Protocol 

without learning this fact. Similarly, (EQ • A • a) designates 
falsity. Furthermore, the structure (CAR • (A , B) designates 
the atom A; this is manifested by the fact that people, in 
describing Lisp, use expressions such as "if the CAR of the list is 
LAMBDA. then it's a procedure", where the term "the CAR of the 
list" is used as an English referring expression. not as a quoted 
fragment of Lisp (and English. or natural language generally, is 
by definition the locus of what desigllntion is). (QUOrE A), or . A, 

is unother way of designating the atom A; that's just what 
quuLation is. Finally. we can take atoms like CAR and + to 
designate the obvious functions. 

What. then. is the relationship between the decla;"tive 
import (.,.) of Lisp strucLures and their procedural consequence 
('I')? Inspection of the data given in Figure 5 shows that Lisp 
obeys the following constraint (more mu.~t be said about'" in 
tholle cuses [or which ,~( 'I'(.'i) • <P( 5). since the identity function 
would satisfy this equation): 

vs € 5 [ if [<I>(S) ~ 51 tnen ['~(s) • oft(S) I (l) 
else [of>(i'(sj) • 01>(3) Ii 

All Lisps. including Scheme [Steele and Sussman 197841, in 
other words. derp.ference any structure whose dellignation is 
another structure. but will return a co-designating structure for 
any whose designation is outside of the machine (Figure 6). 
Whereas evaluation is often thought to correspond to the 
semantic interpretation function '1>. in other words, and 
therefore to have type EXPRESSIONS - VAlUES, evaluation in Lisp 
is often a designation-preserving operation. In fact no computer 
can evaluate a structure like (. Z 3). if that means returning 
the designation. any more than' it can evaluate the name 
Hesperus or pl!rznllt butter. 

Obeying ~f(uation (1) is highly anomolous. It means that 
even if one knows what Y is. and knuws X evaluates to Y, one 
still doesn't know what X designutes. It licences such semantic 
anomalies as (+ 1 'Z). which will evaluate to 1 in all extant 
Li~ps, Informally. we will say that l.i,;p·s evaluator eros.ves 
seman/ieal leL·e/s. and therefore ohscure!! thl! difference between 
simplific:ltion and deslIl'nution. Give!n that processors cannot 
always de-reference (since the co-domain is limited to the 
~tructur:ll field). it sp-ems they should always simplify. and 
therefore ,lUCY the following con~traint (diagrammed in Figure 
7): 

vs € 5 ['P('I'(S)) • ·~(s) 1\ NORMAL-rORM('I'(S)) I (2) 

The contcnt of this cquati • .I11 "-I<!nrly depends entirely on the 
content of the predicatl! NORMAL-FORM (if :IORMIIL-FORM were ;\x. true 

thl!n 'I' could be the identity functiun), In the ,\-calculus. the 

/' normal fonn 

~.----cl} : f . 

SI 

<1>1.-1 __ --. 

Figure i: A Normalisatioll Protocol 
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Figure 8: Application IJS. Reduction 

notion I)f normal-formedness is defined in terms of the 
procllssing protocols (a- and ,a-reduction), but we cannot use that 
definition here. on threat of circularity. Instead, we say that a 
structure is in normal form if and only if it satisfies the 
following three independent conditions: 

l. It is cIJIIII!:tt-illdependellt. in the sense of having the same 
declarativl! (·f.) and procedural (,~) import independent of 
the context I)f use; 

2. It is side-etTeN-free. implying that the processing of the 
structure will have no tlffect on the structural field. 
proce;;sor ~tate. or external world; and 

:1. It is stahle. meaning that it must normalise to itself in all 
contexts. so that 'I' will be idempotent. 

Wtl would then havp. to prove. given a language specification.. 
that equution (2) is satisfied. 

I 

! 
I 

Two notes. First, I won't use the terms 'evaluate' or 
'value' for expre~sioru; or ~tructures, referring iru;tead to 
",,,·nwli.mliOIl for '1'. and desigllation for <1>. I will sometimes call 
the result of normalising a structure its result or what it 
"l!l/IrII.~. There is also a prohlem with the terms 'apply' and 
'application'; in standard Lisps, APPLY is a function from 
structure!l and arguments onto values, but its use, like 
·evallla~e·. is rife with use/mention confusions. As illustrated in -
Figure 8. we will use 'apply' for mathematical function 
application - i.1! •• to refer to a relationship between a function. 
some arguments. and the vuluf! of the function applied to those 
arguments - and the term 'reduce' to relate the three 
expressions that designate functions. arguments, and values. 
respllcti vl!ly. Notll that [ ~till use the term 'value' (as for 
example in the pl'evious sentence). but only to name that entity 
onto which a function maps its arguments. 

Second. the idea of a normnlising processor depends on the 
idea that symbolic structures have a semantic significance prior 
to. and independent of, the wny in which they arc treated by 

. the processor. Without this assumption we could not even ask 
about the >lemantic chnrnctllr of the Lisfl (or any other) 
pror.essor. let alone suggest a cleaner version. Without such an 
assumption. more generally. one cannot say that a given 
pror.nssor is r.ol'rcct. or r.oherent. or incoherent: it is merely what 
it i>l. Given one account of what it noes (like an 
implcment:ltlOn), one cun compare that to anoth!!r account (like 
a ~",ecification). One can "lso prove thnt it nas certain 
properties, such as that it always terminates. or uses resour.: .. s 
in certam ways. One can prove propertle:! of progrnms written 
in Lilt! lan~uage it runs (from a speCIfication of the ALGOL 
processor. for exam",le. one might prove that a particui:u 
program ~orted itll input). However none of these questions deal 
with the fundamental question about the semantical nature of 
the. prqcessor itself .. We are not looking ior a way in wnich to 
;;ay th"t the semantics of (CAR • (A . B» is A because that is how 
the language is defined; r;lther, we want to MY that the 
languagt! was defined that way because A is what (CAR • (A . B» 
designates. Semantics. in other words. can be 11 tool ".Vi th which 
to judge systems, not merely a method of describing them. 

5. 2-Lisp: ,\ Semantically Rationalised Dialect 

Since we have torn apart the notion of Ilvaluation into two. 
constituent notions. we must start at the beginning and build 
Lisp over again. ~·Lisp is a propos~d result. Some summary 
comments can be made. First. I have reconstructed what r call 
the category structure of Li!!p, r~quiring that L~e ca~egories into 
w~i,:h Lisp s~ructures are sorted. for val'ious purposes. line up 
(glvang the dIalect a property called category alignment). More 
speci~callY, Lisp expressions are sorted into categories by 
notation. by structure (atoms. cons pairs, numerals), by 
procedural treatment (the "dispatch" inside EVAL), and by 
declarative semantics (the type of object designated). 
Traditionally. as illustrated in Figure 9. these categories are not 
aligned; lists. a derived structure type, include some of the pairs 
and one atom (NIL); the procedural regimen treats some pairs 
(those with LAMBDA in the CAR) in one way. most atoms (except T 

and NIL) in another, and !:i() forth. In 2-Liap we require the 
notational, structurnl. procl!dural. and semanLic categories to 

- correspond one-to-one. as shown in Figul'e 10 (this is a bit of an 
oversimplification. since atoms and pairs - representing 
arbitrary variables and arbitrary function application structures 
or redexes - can designate entities of any semantic type). 

A summary of 2-Lisp is given in Figure 11, but some 
comments can be maue here. Like most mathematical and 
logical languages. 2-Lisp is almost entirely declaratively 
extensionaL Thus ( .. 1 Z), which is an abbreviation for 
(+ • [I Z]). designates the value of the application of the 
function designated hy the atom + to the sequence of numbers 
designated by the rail (I Z J. In other words ( .. 1 Z) designates 
the number three, of which the numeral 3 is the normal-form 
designator; (+ I 2) therefore normalises to the numeral 3, as 
expected. 2·Lisp is also usually cull-by-value (what one can 
th~nk of as "proce~ul'ally extensional"), in the sense tho.t 
procedures by and lnrge normalise their arguments. Thus. 
(+ I (BLOCK (PH I NT ·hell o· J Z) ivill. normnlise to 3. printing 
'hello' in the proceSll. 

Many propertie!l of Lisp that must normally be posited in 
an ad hoc way fall o.ut directly from our analysis. ·For esample, 
one must normally state explicitly that some atoms. such as T 
and NIL and the numerals. are self·evaluating; in 2-Lisp, the fact 
that the boolean con"t:mts are self· normalising follows directly 
from the fact thllt they are normal form designators. Similarly, 
closures are a natural cnteg!:lry. and dir.tinguishable from the 
functions they designate (there is amhiguity. in Scheme •. as to 
whether the value of • is a funclion or a closure). l~inally, 
because of the category alignment. if x designates a sequence of 
the first three numbers (Lo!., it IS bound to the rail [7. J J), then 
(+ X) will designate five and normalisl! to 5; no metnthcoretic 
I~ar.hinery is needed for this "uncllrrying" operntioll (in regular 
LISp one must use (APPL Y '. Xl; in Scheme. (.WPl Y , Xl). 

There arc numerou:; propcrti~s of Z-Lisp that we will 
ignore in thlll Jlllper. The diall!ct is dllfiner.! (in I SmIth 1;21) to 
include side·t!ffecLs. intcllslOlllll proccdul'p.s IthaL uo not 
nonnalise tlwir arr::umcnt.~). and a variety of other sometimes­
shunned propertills. in part tu show that I)ur semantic 
reconstruction is compatible With the full gamut 1)£ features 
round in real progrnmming languages. Recllrsion is handled 
with explicit fixed'point operators. 2·Li~p is an eminently 
usable dialect lit subsumes Scht!ml! but is ruore powerful. in 
part because of the metastructural access to closures). although 
It IS ruthlessly semantically strict. 

6. Self-Reference' in 2·Lisp· 

We turn now to matters oi ,elf.reference. 
Traditional Lisps providl! name:; (C.VAL and APPLY) for the 

primitive processor procedure~; the 2·Lisp analogues are 
NORMAL rSf and REDUCE. Ignori nil' for a moment context arguments 
~uch as envirrlnments and contil:uations, (UOR1~AL ISE • (. Z 3» 
deSignates the normal·rorm "tl'ucture to which (, Z 3) 

normalises. and therefore r~turn.q the handle . 5. Similarly. 
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Figure 9: The Category Structure of LISP IS Fig ure 10: The Category Structure of 2-LISP and J-LISP 

Figure 11: An Overview of2-Lisp 

We begin with the objects. Ignoring input/output 
caLegories such as characters. stTings, and streams. there are 
seven 2-Lisp structure types. as illustrated in Table 1. The 
numerals (notated as usual) and the two buolean constants 
(notated 'ST' and 'Sf') are unique (i.e.. canonical), atomic. 
nonnal-form designators of numbers and truth-values, 
respectively. Ruils (notated '[AI lIz ' .. A,],) deSignate sequences; 
they resemble standard Li:;p lists, but we distinr;;uish them from 
pairs in order to avoid category confusion. and give t.hem their 
own name. in order to avoid confusion with sequences (or 
vectors or tuples), which are normally taken to be platonic 
idenls. All "toms are used as variables (i.e., as context­
depemlent names); as a consequence. no atom is normal.form, 
and no atom will ev\!r be returned as the result of proce!lSing a 
structure (although a Je!:i;;nator of it may be). Pairs 
(sometimes also called rl'dl!.Tes, and notated '(At, Al)') designate 
thl! valul! of the function designated by the C,\R applied to the 
arguments designntcd by the CUR_ By taking the notational 
form '( AI Az '" A,), to abbreviate '( AI ' (Az Al ' .. A,)' instead of 
'(At (Az' ( ... (A, ' NIL) ... ) »', we preserve the standard look 
of Lisp program!l, without sacrificing category alignment. (Note_ 
that in 2-Lisp there is no distinguished atom 'ilL, and '()' is a 
lto/ationaL error - corresponding to no structural field element.} 
Cltlsurcs (notated '(CLOSURE: , .. }') are normal·form function 
designators; but they are not canonical. since it is not generally 
decidable whether two structures designate the same function. 
Finally, handles are uniqul! normal-form designators of all 
stTuctures: they are notated with a leading single quote mark 
(thus "A' notates the handle of the atom notated 'A', "(A, B)' 
notates the handle of the pair notated '(A, 8)', etc.). Because 
designation and simplification are orthogonal. quotation is a 
structural primitive, not a special procedure (although a QUOTE 
procedure is easy to define in 3-Lisp), 

We turn next to the functions (and use - to mean 
'normalises to'). There are the usunl arithmetic primitives (+. -, 
", and f). Identity bignified with.) is computable over the full 
semnntic Jomain except functions; thus (. 3 (+ I Z» - ST, but 
(. + (LAMBDA [X] (+ x Xl» will generate a processing error, even 
though it designates truth. The traditionally unmotivated 
difference between EQ and EQUAL turns out to be an expected 
difference in granularity between the identity flf mathematical 
sequences and their syntactic designators; thus: 

(. [I Z J) [I Z J) "'" ST 
(. '( I Z J) '[ 1 Z J) "'" SF 
(. (1 , J) '( 1 Z 3) "'" Sf 

(In the, last case flne structure desib'Tlates a sequence and one a 
raiL) .. 1ST, and RE,ST, are the CAR/1:DR analogues on sequences and' 
rails; thus, (1ST [10 ZO JO]) "'" 10; (REST (10 20 JO]) .. [ZO 30), 

CAR anJ COR are defined over pairs; thus (CAR '( A a» "'" 'A 
(because it designates A); and (COR ,( .. I Z» "" '[ 1 ,), The pair 
constructor is called PCONS (thus (peONS 'A 'a) => '( A a»; the 

corresponc!in~ cunstructors for atoms. rails, ;Ind closures are 
cnlled ACO.NS, RCONS, and CCONS. There are 11 primilive 
cna,'nctl)risr,lc predicates, j ior the internnl structural types 
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(ATOM, PA IR. RAIL, ilOOLEAN, Nur~ERAL. CLOSURE. and HAHDLE) and 4 for 
the extarnal typcs (NUMBER. TRUTH-VALUE, SEQUENCE, and FUNCTION). 
Thus: ' 

(NUMBER 3) - ST 
(NUMERAL '3) ,.. ST 
(NUMBER '3) - SF 
(FUflCTION +) - ST 
(FUlICTION '+) ~ SF 

Procedurnlly intensional IF and COND are defined as US1l:11: BLOCX 
(as in Scheme) is like standard Lillp's PROGN, BODY, PArTERN, and 
ENVIRONMENT are the three selector fUnctions on closures. 
Finally, functions are usually "dt!fined" (i.e., conveniently 
dl!signaL"d in a contexLually relative ..... ay) with structures of the 
form (l,IMIIDA SLNPlE ARGS BODY) (the keyword SIMPLE will be 
explained presently); thus (LAMBDA SIMPLE (X] (+ X Xl) returns a 
closure that designates a function that doubles numbers; 
« LAMBDA SIMPLE [X] (+ x x» 4) _ 4. 

2-L1SP is higher order, and therefore lexically scoped, llke 
the ii-calculus and Scheme. However, as mentioned earlier and 
illuntrated with the handles in the previuus paragraph. it is also 
metastructural, providing an explicit ability to name internal 
structures. 'l'wo primitive procedures, c:111ed UP and DOWN 
(usually notated with the arrows ',' and 'l')' help to mediate this 
metastructural hierarchy (there is othenvise no way to add or 
remove quotes; 'Z will normalise to . Z forever, never to z). 
Specifically, 'STRUC designatel\ the nonnal-form dcsignal:l:lr of the 
designation of STRUC; Le., 'STRUC dcsignatell what STRUC 
nonnalises to (therefore ,( + Z 3) - '5), Thus: 

(lAMBDA SIMPLE (X] X) designates a function, 
, (lAMBDA SIMPLE [X J X) designates a pair or redex, and 
-(LAMBDA SIMPLE [X] .X) designatcsa c!ollure. 

(Note that'" is call-by-valuc but not declaratively extensional,) 
Similarly, .STRue ciesignates the designation of the designation 
of STRue. providing the designation of STRue is in normal-form 
(therefore .', => '). .,STRUC is always equivalent to STRUC, in 
terms of '::loth designation and result; so is "STRue when it is 
defint!d, Thus if DOUBLE is bound to (the result of normalising) 
(I AMBO" [q (. x X», then (RODY DOUBLE) generates an error. 
since aODf is f!xtensional and DOUDLE designates a function, but 
(aooY -DOUBLE) will designate the pair (+ x X). 

TV(lf! De~i!!natinn Nor",n/ Callollical Notation 
!'Iumerals ;.(umbers Yes Yes - ciilfits 
1300lea05 TruLh- Values Yes Yes - ST or SF 
Handles' Structures Yes Yes' - • STRue 
Closures Functions Yes !'Io CCONS {closure} 
Ratls Sequences Some ;.(0 RCONS [STRue ... STRue 
Atoms (01) of Binding) ;.(0 - ACONS alplw.m~rics 
Pairs (Value of App.) ;.(0 - PCONS ( S TRue , S TRUe) 

Tuble 1: The 2-LISP(anci 3-USP) Categories 
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Figure 12: lyleta-Circular Processors 

(NORMALISE '(CAR '(A . a)l) -"A 

(NORMALISE (PCONS '. • [2 31» - • SF 
(REDUCE 'lST '[102030]) - '10. 

More genel':llly, the hasic idea is that <I>(lIORMALISE) • 'II. to be 
contrtulted with ·~P), which is approximately ,~. except that 
because • is a partial function we have '~(' • NORMALISE) • '11. 
Given these equations. the behaviour illustrated in the 
foregoing examples is forced by general semantical 
considerations. 

In any computational formalism able to model its own 
syntax and structures.G it is possible to construct what are 
commonly known as me/acireu/ar illterpreters. which we call 
1II(!/acirC;llar IJrucessors (or If CPs) - "meta" because they 
fJpl!rate on (and therefore terms within them designate) other 
formal structures. and "circular" becaUl!e they do not constitute 
a dl!finition of thl! processor. They are circular for two rear.ons. 
first. they have to he run by that processor in order to yil!ld 
any sort of bl!hnviour (since they lire prolfram.~. not processors. 
strictly). Sp.cond. thl! behaviour they would thereby engl!nder 
can hl! known only if une know!; bl!forehund what the prot'essor 
t!flCS. (Standurd tcchni4ues of lixed poin~. furthermore. are of 
no hulp in discharging this circularity. because this kind of 
modelling is a kind of sl!lf-mention. whereas recursive 
delilliti.ons m'e more self-use.) Nonetheless. such processors are 
pedagogicnlly illuminating. and play a critical role in the 
Jllvelopment of procedural reflection. 

The roll! I)f MCr~ is illustrated in Figurll 12. showing how. 
if WI.! ever replncp. P in Figure 1 with a process that results from 
P processing the melacircular processor MCr. it wquld still 
corrl!ctly engender the behaviour of any overall prog1'llm_ 
'fakIng proce"ses to be functions from structures onto behaviour 
(whatevllr behaviour is - functions from initial to final states. 
say). and culling thll primitive processor P. we should be able to 
prove that rlMCr) "" P. where by'",,' we menn behaviourally 
t!quivalent ill some approprinte ~ense. Thf! equivalence is. of 
course. a ;;iobal "'lui valence: by and large the primitive 
processor anti the processor r£?sulti ng from the explicit runnjng 
of thl! Mcr cannot be arbitrarily mixed. [f a variable is bound 
by thu underlyint: processor P. It will not be able to be looked up 
by the metncircular code. for "xample. ::iimilarly. if the 
metacircular processor encounter,; : control-structure primitive. 
such as a ruROW or a QUI T. it wi.! not cause the metacircular 
processor it.<;elf to exit prematurely. or to terminate. The point. 
rather. is thnt if an entire computation is run by the process 
that results irom the expliCIt processing of the MC? by P. the 
rllsults will !.Ill thl! same (modulo time) as if that entire 
compu'tation had belln carried out directly by P. ),tcps are not 

_ causally connected with the systems they modeL 
. The reason that we' cannot. mix code for the underlying 

processor and code for the MCI' and the reason t.hat we ignored 
context argument.q in the detillltions above both have to do with 
the slate of the processor P. [n 'IP.I·y simple sy~tl!ms (unordered 
re\vrite rule systemR. for example. and hardware architectures 
that put even the program counter into a memory location). the 
proceSl'lor has no internal .. ;tnte. in the sense that it is in an 
identical configuration at every "click point" during the running 
of a pro~ram (i.e .. all information i~ recorded expliCitly in the 

,;tructllntl f1~ld). But in more ~olI\plex circumstances. there is 
always tl certain amount of st.'He tu the processor thnt affects its 
behaviour with r~spect to any particular emoeddt:d fragment of 
code. In writing an Mer onl! mu~t demonstrate. more or less 
explicitly. how the prnces.~or .. ;tate affects rhe r:>rocessing of 
object-level structures. By "more or leSll explicitly" we mean 
that the designer of the MC? has options: the state can be 
represented in explicit structures that nre passed around as 
arguments within the processor. or it can be absorbed into the 
state of the processor running the MCP. (I will say that a 
property or feature of an object language is absorbed in a 
metalanguage or theory just in case the metatheory uses the 
very same property to explain or describe the property of the 
object language. Thus conjunction is absorbed in standard 
model theories of first-order logics. because the semantics of 
P 1\ Q is explained simply by conjoining the explanation of P and 
Q - specifically. ia such a formula as: 'p 1\ Q' is true just in 
case 'p' is true and 'Q' is true.) 

The state· of a processor for a recursively-embedded 
functional language, of which Lisp is an example. is typically 
represented in an environment and a continuation. both in 
MCPs and in the standard metatheoretic accounts. (Note that 
these are notions that arise in the thl!ory of Lisp. not in Lisp 
itself: except in self-referential or self-modelling dialects. use.r 
programs don't traffic in such entities.) :\10st MC?s make the 
environment explicit. The control part of the state. however. 
encoded in a continuation. must also be made explicit. in order 
to ~xplain non-standard control operations. but in many MCPs 
(such all in [),(cCarthy 1\)651 and Steell.! and SUR.'1man·s versions 
for Scheme Isee for Ilxamplc [Sussman and Steele 19;8b1). it is 
absorbed. Two versiomi of the Z-Lisp metncircular processor, one 
absorbing and one making I!xplicit the continuation structure. 
are prestmtlld in Figures 13 and 14. Notl!. however. that in both 
cases the uuderlying agency or Ullilllct is not reilied: it remains 
entirely absorbed hy the processor of. the MC? We have no 
mechanism to desigrinte a proces!! (ns opposed to »tructures). 
and no method of ohtaining causal acce!lS to an independent 
locus of active ngl!ncy (~he reuson. of course. being that we have 
no theory of what a process is). 

7. Procedural Rel1ection and 3-Lisp 

Given the melOlcirr.ular processors defined ahove. 3-Lisp can 
be non-effectively dllfined in a series of "t<1ps. first. imngine a 
dialect of 2·l.isp. called Z-Lisp/l. where IIsel' programs were not 
run directly by the primitive procl!ssor. but by that processor 
running a copy of an Mcr. :-le:o:t. imng-ine 2-Lispl2. in which the 
MCP in turn was not run hy the primitive processor. but was 
run by the primitive proce~!lor running another copy of the MCP. 
i!:tc. 3-Lisp is essentially 2·Lisp/co. P.XCl!pt that the MCP is 
changed ill 11 critir.al way in order to provide the proper 
cunnl!ction bt:tw('en levels. .,-j .;. p. in other words. is what wc 
call a re{7f!cliul! (ower. deliner! u.... an inlinite numher of copies of 
an MCP-like program. run at the "top" by an (inlinitely nellt) 
processor. The claim thut J-Lisp is well-founded is the claim 
that the limit exists. ;)l'l n-co. of 2·Lisp/n. 

We will look at the ruvised MCP pre~ently. hut soml! 
general propertil!s of this towllr architecture can he pointed out 
lirst. A rough ideu of the levds of processing is given in Figure 
15: at aach lo;vp.l the proccs..or code is processed by an active 
process that interacts with It (locally and serially. as usuul). hut 
ench processor is in turn composed of a structurul f1eld fragment 
in turn processed by.:1 retlecti ve processor on top of it. The 
impliet! infi'nite 'regress 'is not prolliematic. and the' architecture 
can be ~fficiently realised. since only a linite amount Qf 
information IS o;ncoded in all but a f1nite number of the bottom 
levels. 

There are two wavs to think about ret1ection. On the one 
hand. one can think of there being a primitive and noticeable 
rp.{7er:liul! act. which causeR the processor to ~hift levels rather 
markedly (this is the explanation that best coheres with some of 
our pre· theoretic mtultions about reilective thinking in the 
sense of contemplation). On the other hand. the explanation 
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(define READ-HORMAL!SE-PRINT 
(lambda simpla [any stream] 

(bloCk (prompt&roply (normalisd (prompt&rend stroam) ~nY) 

stream) 
• (read-normalise-print on'/ stream»» 

(define NORMALISE 
(lambda simplo [struc allY] 

(cond [(n?rmal struc) struc] 
[(atom struc) (binding strue any)] 
(rail struc) (normalise-rail struc any)] 
(pair struc) (reduce (carstruc) (cdrstruc) anv)]») 

(define REDUCE 
(lambda simple (proc ergs anv] 

(let ([proc! (normal is. proc any)]] 
(selectq (procedure-type proc!) 

(simpl. (let [[ergs! (nOrmallse ergs any)]] 
(if (primitiv. proc!) 

(reduce-primitive-simpl. 
proc! argsl any) 

( •• pand-closure proc! argsl»)] 
(Intensional (if (primitive proc!) 

(r.duce-primitive-Inta~sion.l 
proc! tllrgs anv) 

(e.pand-closur8 proc! targs»] 
[macro (normalise ( •• pand-closure proc! tergs) 

any»~]»~»~ 
(define NORMALISE-RAIL 

(lambda simple [rail anv] 
( if (amp ty ra i I ) 

( rcons) 
(prep (normal is. (1st rail) any) 

(normalise-rail (rast rail) anv»») 
(define EXPAND-CLOSURE 

(lambda simpla [proc! argsl] 
(normalisa (body proc!) 

(bind (pattern proc!) 
args! 
(environment prOcl»» 

Figure 1.1: A Non-CulIlinl.lali/JII-P'Issing l-LlS!' MCP 

gh:cn in lhe (lrevious parngrnph leads one to think of an infinite _ 
number of levels of rellective proces.'1ors, each implementing the 
one below.7 On such n view it is not coherent either to ask at 
which level the tower is running, or to ask how many retlcctive 
levels are running: in some sense they nrc all running at once. 
Exactly the same situation obtains when you use an editor 
implemented in APL. It is not as if the editor and the APL 
interpreter are both running together, either side-ny-side or 
illl.lependently; rather, the one. being interior to the other, 
supplies the anima ur agency of lhe· outer one. To put this 
another way. when you implement one process in another 
process. you might want to sn.y that you have two different 
prOCIl5sell. hut you don't ha'le concurrency; it is more a 
part/whole kind of relation, It is just this sense in which the 
hi!(her levels in our retlective hierarchy are nlways running: 

'euch of lhem is in some sense within the processor at the level 
below. so that it can thereby engender it. We will not take a 
[lrincipled view on which account - a single locus of agency 
stepping belwcen levels, or an inlinite hierarchy of 
,imultaneous processor.; - is correct, since they turn out to be 
behaviourally (.·quivalent. (The simultaneous infinite tower of 
lev!!ls is often the hetter way to ilndel'stnml processes. whereall 
a shifting-level viewpoint i,; sOOlctime!l the better way to 
understnnd programs.) 

a-Lisp, all we SOlid. is an infinite reflective tower based on 
2·Lisp. The code at each level is likp. the continulltion'passing 2-. 
Lisp M(;P. of Figure l~. but extended to provide a mechanism 

. whereby the Ll.ser·s prowam can gain ac~e~s to fully articulated 
descriptions uf lhut program's operations ilnd structures (thus 
extended. lind lot:ated in a rel1ecti ve tower. we call this code the 
)·Lisp r",1t'elll'e [1rtJe,!s.mr). One gains this accesl! hy uliing what 
arc call",d re/lectiue prnceriures - procedures that, when 
invokl!d. al'e run not at the level at which the invocation 
occurred. hut one levp.I higher. ::It the level of the rctlective 
proccslior running the progmm. given as ::Irguments those 
.itructures bein~ passed orollnd in the retlective processor. 

(define READ-NORMALISE-PRINT 
(lambda simple [eny strea,n1 

(norm~liso (prompt&read streum) env 
(lambda simple [rasult] 

(block (prompt&raply result stream) 
(read-normalise-print eny stream»))))) 

(define NORHALISE 
(lambda simple (strc anv cant] 

(cond (normal struc) (cont stre)] 
[(atom strc) (cont (binding strc env»] 
[(rail SVc) (normalise-rail struc anv cont)] 
[(pair sere) (reduce (car strc) (cdr nrc) anv cant)]» 

(d8fin. REDUCE 
(lambda simple [proc ~rgs any cont] 

(normalisa proc env 
(lambda simple (proc!] 

(selectq (procedure-type procl) 
[Simple 

(normalisa args anv 
(lambda simple (args!] 

(if (primitive proc!) 
(reduce-primitive-simple 

proc! args! any cont) 
(axpand-closure proc! argsl cant»»] 

[intensional 
(if (primitive proc!) 

(reduce-primitive-intensional 
proc! targs env cont) 

(expand-closure proc! targs cont»] 
[macro (axpand-closure proc! targs 

(lambda simple (reSult] 
(normalise result anv cont»)]»»» 

(define NORMALISE-RAIL 
(lambda simple (rail tnv cont] 

(;r (empty rail) 
(cont (rcons» 
(norma I I S. (I H ra i1) env 

(lambda simple [first!] 
(normalisa-rail (rast rail) env 

( lambda s imp Ie [rest! 1 
(cant (prep first! rest!»»»») 

(define EXPAND-CLOSURE 
(lambda simple [proc! args! cont] 

(normal ise (body proc!) 
(bInd (pattern proc!) argsl (env, proc!» 
cant» ) 

Figure 14: ,\ Contill/lotion-Passing Z-LISP MCP 

Rellective procedures ::Ire tlssentially analogues uf subroutines to 
be run "in the implementation". except that they are in the 
lI.'lme dialect as that being impll!mented. and can use all the 
power of the implemented language in carrying out their 
function (e.g., ren~ctiv(! procedures can thl!mselves use retlei:tive 
procedures. without limit). There is not a tower of different 
languagell - there is. ~ single dinlect (J-Lisp) all the way up. 

~ __________________ ~L~.I Cod 

Figure 15: The j-LlSP Reflectil:e Tower 
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Rather. there is a towllr of processors. necessary because there 
is diLTerent processor state at each rellective leveL 

Some simple examples will illustrate. Ret1cctive 
procedures arc "detincd" (in the sense we described earlier) 
using tile form (LAMBDA REFLECT ARGS BOOY), where ARGS -

typically the rail [ARGS EW COnT] - is a pattern that should 
match a 3·eiement ullsignator of. respectively, the argument 
structure at the point of call, the environment, and the 
continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 
working delinition of Scheme's CATCH. Though simple, these 
definitions would he impol!Sible in a traditional language, since 
they make crucial access to the full processor state at point of 
call. ~ote also that although TfIROW and CATCI! deal explicitly 
with continuations. the code that uses them need know nothing 
about such subtleties, j,Iore complex routines, such as utilities 
to abort or redefine calls already in process, are almost as 
simple, In addition, the reflection mechanism is so powerful 
that many traditional primitives can be defined; LAMBDA, IF, and 
QUOTE arc all non'primitive (user) definitions in )-Lisp, again 
illustrated in' the im;ert. There is also a simplistic break 
package, to illustrate the use of the reflective machinery for 
dehugging purposes. It is noteworthy tllat no retlective 
procedures need be primitive; even LAMBDA can bl! built up from 
scratch. 

The importance of these exampl!!s com!!s from the fact thllt 
they are causally connecwd in -th!! right way, and will thl!refore 

run in the syst.em in which they detined. r:lther than being 
model., of another system. And, since reflective procedures are 
fully integrated into the system design (their names are not 
treated as special keywords), they can be passed around in the 
normal higher·order way, There is also a :lense in which 3-Lisp 
is ~impler tha~ 2·Lisp. as well as being more powerful; there 
are fewer primitive~, and 3-Lisp provides much rr,ore compact 
ways of dealing' with a variety of intensional issues (like 
macros). 

8. The a-Lisp Reflective Processor 

3-Lisp can be understood only with a close inspection of the 
3-Lisp reflective processor (Figure 11), the promised modification 
of the continuation-passing 2-Lisp metacircular processor 
mcntionl.'fi above. NORMALISE (line 1) takes an structure, 
environment, and continuation. returning the structure 
unchanged (Le .. sending it to thl! continuation) if it is in normal 
torm, looking up the binding if it is an atom, normalising the 
elements if it is a rail (110RMALISE-RArL is l-Lisp's tail-recursive 
continuation·passing analogue of Lisp l.5's EVllS). and otherwise 
reducing the CMt (procedure) with the CDR (:lrguments). REOUCE 
lline 1) first normalises the procedure, with a continuation (c­
PROC!) that checks to see whether it is reflective (by convention, 
we US!! exclamation point suffixes on atom names used as 
variables to designate ""rmal form structures). If it is not 
reflective. c·pnoc! normalise:; the arguments, with a 
continuation that .!Ither expands the closure (lines 23-25) if the 

Figure i6: Programming in3-Lisp: 

Fur ilIustl'ation, we will look a~ a handful of simple 3-Lisp 
programs, The first merely calls the continuation with the 
numeral 3; thus it is ,;cmuntically identical to the simple 
numeral: . 

(define THREE 
,( lambda reflect [[] env can't] 

(cant '3»)) 
Thus (threu) => 3; (+ 11 (three») ~ 14. The next example is an 
intensional (lredicate. true if and only if its argument (which 
must be a variable) is hound in the current context: 

(define BOUnD 
(lambda reflect [[varl env cant] 

(If (bound-in-env var any) 
(cant 'n) 
(cont 'SF)))) 

or equivalently 
(def ine DOUHD 
. (l.mb~a reflqct [[var] Bnv contI 

(cant '(bound-in-anv var env)))) 
Thus (LEr [£1 3J] (BOUIJO Xl) = sr, wherea,; (OOUNO X) => SF in 
the ~lobal context, The follOWing quits the computation, by 
di5cardin~ the continuutiun ;lUd simply "rI!turning": 

(define QUIT 
(lambda reflect [[I env cont] 

'QUIT!) ) 

There arc a variety of wal'~ to implement a rtlRow/cArCH pair, 
the following detine:! the version u:;~d in Scheme: 
(define SCHEME-CATCH 

(lambda reflect [[laq ~odyJ cHch-env CHen-cant] 
(norma I I se booJy 

(bind lag 
,( lamOda reflect [(ans.er] thro.-anv tnrow-cont] 

(nonnal isc .1nSIl'9" throw"env catcn-cont)) 
catcn-anv) 

catch,cont)) ) 
For ' e~ample: 

(let [[x I]) 
(. 2 (scheme-catch punt 

(oJ (I~ ("(' xl) 
(punt 15) 
(. l I))))))) 

would designate 5eventeen :lnd return the numeral 17. 

[n .uidition. the refle~tion meChnl1lRm IS ';0 powerful that 
many traditional flrlmitives enn h~ deti11et!: L~I,:nOA. tr. Jnn QUOTE 
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are all non-primitive (u:>er) definitions in 3-Lisp, with the 
following definitions: 

{ de f i n8 LAMBDA . 
(lambda reflect ([kind pallern bodyJ env cant] 

(cont (ccons kind 'onv pattern body»» 
(derlne IF 

(lambda r.flect [[pr~mis. then 8lsa] ~nv contI 
(no ..... IIs. prlltllistl anv 

(lambda simple [pr"",l:e'] 
(no ..... I1s. (of Ipremlse! then el$l) env cant»») 

(olerln. QUOTE 
(lambda reflect [[arg] env cant] (cant 'arg») 

Some comments. First, the definition of L .... O.t just given is of 
course circular; a non-circular but eLTllctive version is given in 
Smith and des Rivieres (19341; the one giv!!n in the text, if 
exe<:uted in 3-Lisp, lVould leave the definition unchanged. except 
that it is an innocent lie; in real 3·Lisp kind is a procedure that 
is called with the arguments and environment, allowing the 
definition of (lamDda macro .,. ), etc. CCONS is a closure 
constructor that uses SIMPLE and REFUCT to tag the closures for 
recognition by the reflective processor dl!scribed in fiCction 6. H 
is an extellsionai conditional. that normalises all of its 
an\uments; the definition IJf IF defines the standard interu;ional 
version that normalislls only one of the second two, depending 
on the result of normalising th!! first. Finally, the definition Qf 
QUOTE will yield (QUOrE A) ,.. 'A. 

Finally, we have .J. trivial break package, with E~V and 
CONr bound in the break '!nvironment for the user to see, and 
RFTUHN bound to a procedure that' wdl normalise its argument 
:Ind pnss that out as the re~ult of the cnll to BREAK; 

(de'lne BREAI( 
(lon,Dd. reflect ((~rg] .ny cant] 

(blOCk (print arg primary-stream) 
, ' '( read-rinrma lise-print -)'). 

(bind" ['env .env] 
('cant .cont] 
['r.turn r(lambda reflect ([a'ZJ eZ cll 

(norma I is. aZ .Z cant))] 
.nv) 

primary-stream)))) 
If '/illwed 'as models of control constructs in a language being 
Implemented, thllse uelinitions wdl look innocuous; what is 
important to remember is that they work in the very language 
in which they are defined. 
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(def1ne REAO-NORMAL!SE-PRINT 
(lambda simple [anv stream] 

(bloCk (prompt&roply (normallsd (prompt&read stroam) ~nv) 

stream) 
• (read-normalise-print on'/ stream»» 

(define NORMALISE 
(lambda simplo [stvuc euv] 

(cond [(n?rmal struc) struc:] 
[(atom struc) (binding struc env)] 
[(rail struc) (normalise-rall strue anv)] 
[(pair struc) (reduca (earstruc) (cdrstruc) env»») 

(deflna REOUCE 
(lambda simple [proc args anv] 

(let (eproc! (normallsa proc snv)]] 
(selac:tq (procedure-type procl) 

(simple (let [[args! (normalise args Gnv)]] 
(if (primitive proc:l) 

(reduce-primltlve-simpl. 
procl argsl .nv) 

(expand-closure procl argsl»)] 
[Intensional (If (primitlvQ procl) 

(reduce-primitive-Intensional 
proc! targs .nv) 

(expand-closure proc! 'args»] 
[macro (nonnalise (expand-closure proc:! 'argl) 

anv II ]llll 
(define NORMALISE-RAIL 

(lambda simple (rail env] 
(if (empty rail) 

. (rcons) 
(prep (normalise (1st rail) env) 

(nonna I I se- ra il (res t ra 11) anv llll) 
(~efine EXPAND-CLOSURE 

(lambda simple [proc! argsl] 
(norma I ise (body proc!) 

(bind (pattern proc!) 
args! 
( env I ronmen t p roc I llll 

Figure 1,1: A Non-Colllinualillll-Przssing Z-LISP MCP 

~h:ell in ~he previous pllrugrnph leads one to think. of an infinite _ 
number of levels of rel1ective processors. each implementing the 
one below.7 On such n view it is not coherent either to ask at 
which level the tower is running. or to ask holY many retlcctive 
levels are running: in some sense they :ue all running at once. 
Exactly the same situatiun obtains when you use an editor 
implemented in APL. It is nut as if the editor and the APL 
interpreter are both running together. either side-by-side or 
independently; rather. the one. being interior to the other. 
>iuppJies the anima or agency of the outer one. To put this 
another way, when yuu implement one process in another 
process. you might want to 5."\y that you have two different 
prOCeS5eR. hut you don't ha'le concurrency; it is more a 
part/whole kind of relation·. It is just this sense in which the 
hi{.\her levels in our rel1ective hierarchy nre always running: 
each of ~hem is in some ~ense within the proCl'ssor at the level 
below, so that it can thereby engender it. We will not take a 
principled view on which nccoullt - n single lOCUli of agency 
·;tepping be~\Veen levels. or an inlinitl! hierarchy of 
~imllltnneous processors - is correct. since they turn out to be 
behaviourally Il(!uivalent. (The simultaneous infinite tower of 
levels is often the better way to understand processes, IVherellll 
a shilling· level viewpoint is ~oml!time!l the better way to 
understnnd programs.) 

a-Lisp. as we salll. ill an infinite reflective tower based on 
2·Lisp. The code nt each level is likp. the continuation-paRsing 2-
Lisp ·I.:ICP. of .Figure 14. but extenried to provide a . mechanism 
whereby the user's program can gain acce~s to fully articulated 
dc~criptions of that program's operations and ~tructures (thus 
extended. (Illd lo,=nted in a rellecti ve tower. we call this code the 
J·Lisp 1'I,/7t'ctwe pm('f!S,mr). One :;:::Iins this access by using whnt 
arc called re/ll!ctiue prnCl!rilires - procedures that. when 
invoked, arc run not at the lev!!l I1t which thl! invocation 
occurn·d. hut one level higher, at the level of the reflective 
processor running the program. <liven as arguments those 
.itructures bein~ pn:;sed around in the retlcctive processor. 

(derine REAO-HORHALISE-PRIHT 
(lambda simpla [any stream) 

(normalise (prompt&read streum) env 
(lamb~a simple [result] 

(block (prompt&reply result stream) 
(read-normal ise-print anv Hream»»» 

(define NORMALISE 
(lambda simple (strc anv cont] 

(cond [(normal struc) (cant strc)] 
[(atom strc) (cant (binding stre any»~] 
[(rail strc) (normalise-rail strue ellv cant)] 
[(pair strc) (reduce (car strc) (cdr nrc) Qnv cant)]» 

(define REDUCE 
(lambda simple [proc ~rgs env cont] 

(normalise proc env 
(I ambda s imp I. [proc!] 

(selectq (procodure-type procl) 
(simple 

(normalise args anv 
(lambda simple [args!] 

(if (primitive proc!) 
(reduce-primitive-simple 

proc! args! Qnv contI 
(expand-elosure proc! argsl contI»~)] 

[intenSional 
(if (primitive procl) 

(raduce-primitlve-intensional 
proc! 'args anv cant) 

(expand-closure proc! 'args cont»] 
[macro (expand-closure proc! targs 

(lambda simple [result] 
(normalise result anv cant»)]»»» 

(define NORMALISE-RAIL 
(lambda simple [rail anv cont] 

(if (empty rail) 
(con t (rcons» 
(norma I ise (I st rs ill Gnv 

(lambda simple [first!] 
(normalise-rail (rest rail) anv 

( 1 ambda s imp I a [res t! ] 
( con t (p rep rt rst! res t! ) ) » » » ) 

(derine EXPAND-CLOSURE 
(lambda simple [proc! args! cont] 

(normalise (body proc!) 
(bind (putern proc!) argsl (anv procf» 
cont) » 

Figure 14: 1\ Conlillflation-PassinJl1-LISP MCP 

Reflective procedures are Ilssentially analogues uf subroutines to 
be run "in the implementlltion", except that they are in the 
snme dialect as thnt being implemented. and can use all the 
power of the implemented Innguage in carrying out their 
function (e.g .. rctlt!ctive procedures cnn thtlmselvcs use rel1ective 
proclldurcs. without limit). Thllre is not ::I tower I)f different 
languat;:eR - there is a $ingle dinlcct (]-Lisp) all the way up_ 

~ __________________ ~L~~a~I~~~v 

Figure 15; The j·LlS? Re/7ectice Tawer 
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Ruther. there is a tow!)r of p,ocessors. np.ce~sary because there 
is different processor state at each rel1ective level. 

Some simple examples will illustrate. Re11cctive 
procedures :lre "delined" (in the sense we described earlier) 
using tHe form (LAMBDA REFLECT ARGS BODY), where ARGS -

typically the rail [ARGS ENV CONT] - is a pattern that should 
match a 3-element designator of. respectively, the argument 
structure at the point of call. the environment, and the 
continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 
working delinition of Scheme's CATCH. Though simple, these 
definitions would he impossible in a traditional language, since 
they make crucial access to the full processor state at point of 
call. ~ ote also that although THROW and CATCH deal explicitly 
with continuations. the code that uses them need know nothing 
about such subtleties. More complex routines., such as utilities 
to abort or redefine calls already in process, are almost as 
simple. rn addition. the reflection mechanism is so powerful 
that many traditional primitives can be defined; LAMBDA, IF, and 
QUOTE arc all non-primitive (user) definitions in 3-Lisp, again 
illustrated in' the inRert. There is also a simplistic break 
package, to illustrate the use of the reflective machinery for 
dehugging purposes, It is noteworthy that no reflective 
procedures need be primitive; even LAMBDA can be built up from 
scratch. 

The importance of these examples comes from the fact thllt 
they arc causally connected in -the right way. and will therefore 

run in the syst.em in which they delined. r:lther than being 
model:; of another system. And, since reflective procedures are 
fully integrated into the system design (their names !ire not 
treated as special keywords), they can be passed around in the 
normal higher-order way. There is :llso a 3ense in which J-Lisp 
is 5impier than 2·Lisp. as well as being more powerful; there 
:lre fewer primitive!'. :.lnd 3-Lisp provides much IT.ore compact 
ways of dealing' with a variety of intensional issues (like 
macros). 

S. The a-Lisp Reflective Pl'ocessor 

3-Lisp can be understood only with a close inspection of the 
)-Lisp reflective prOCli!ssor (Figure 17), the promised modification 
of the continuation-passing 2-Lisp metacircular processor 
mentionl.>d above. NORMALISE (line 7) takes an structure, 
environment, and continuation. returning the structure 
unchanged (i.e .• sending it to the continuation) if it is in normal 
form. looking up the binding if it is an :ltom, normalising the 
elements if it is a rail (flORMALISE-RAIL is )-Lisp's tail-recursive 
continuation-passing analogue of Lisp 1.5's EVLlS). and otherwise 
(educing the C.\R (procedure) with the CDR (arguments). REDUCE 
(line lJ) nr!lt normalises the procedure, with a continuation (e. 
['ROC!) that checks to see whether it is reflective (by convention, 
we use exclamation point suffixes on atom names u~d as 
variables to designate nrJrmnl form structures). rf it is not 
reflective. C,[,I!OC! normalise:; the !ll'gument:i, with a 
continuatilm that !lither expands the closure Clines 23 - 25) if the 

Figure 16: Programming in3-Lisp: 

Fur illustration. we will look ilt n h:lnrlful of simple 3-Lisp 
program:;. The n~t merely calls the continuation with the 
numeral 3; thus it is scmantically identical to the simple 
numeral: ' 

(der ine THREE 
(lambda reffect ([] anv ~ont] 

(cont '3» l 
Thus (three) = 3; (+ II (three)) ~ 14, The next example is an 
intensional predicate, true if and only if its arlitumllnt (which 
must be a variable) is hound in the current context: 

(define BOunD 
(I.mbda roflect [(v.r] anv cont] 

(Ir (bound-in-.ny var onv) 
(cant 'STl 
(cont 'SF»)) 

or equivnlently 
(def Ine DOUNO 
, (Iamb~a raflqct ([var] qny cant] 

(cont r(bound-in-env var env»)) 
Thus (LET ([X 3)] (1l0u/1O X) = sr, whereas (OOUNO X) _ Sf in 
the I;lounl context, The follOWIng quits the computation, by 
discarding the continuatiun nnd simply "returning": 

(deflno QUIT 
( I amboa re r lec t ((] env COIIt] 

'QUIT!) ) 
There :lre a variety of wn)'s to implement a r"ROW/CATCH pair; 
the following define" the version u~ed in Scheme; 
(define SCHEME-CATCH 

(lambd. rerla.Cl [(tag ~ody) catch-env C3tCh-contf 
(norma I I se bally 

(bind taq 
,( I.mbela reflact ([.nsw"r) throw-env throw-cont] 

(normal iso ~n5.er throw-env catcn-cont)) 
catch-env) 

ClltCh~cont) ) 
For example: 

(let ([. III 
(. Z (schema-catcn punt 

(')(/4(1((·.1) 

(punt 15) 
(- • I»))) 

would designate seventeen ;"lnd return the numeral 17, 
[n .u:!dition. the r()rle~tion :nechaniRm IS so powerful that 

many traditional prlmitive~ c:ln he detillct!: LA/·mOA, If, ::mn QUOTE 
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are all non-primitive (u~";!r) d~nniLions in 3-Lisp, with the 
following definitions: 

(def ine LAll8DA 
(lambd4 reflect ((kind pattern bOdy] env cont] 

(cont (ceons kind 'ony pattern bOdy)))) 
(define IF 

(lambda reflect ((pr~mis. then ,IS8] ~ny cont] 
(normal Is. premise enw 

(lambda simple (prOMI:.f] 
(normaltse (of Lpremise! then 81se) eny cantlll» 

(~ertn. QUOTE 
(lambda r.flect ((ar9J eny cant] (cant rarglll 

Some comments. First. the definition of L ... na just given is of 
course circular; a non-eircuiar but efl'l;!ctive version is given in 
Smith and des Rivieres [19H<1); the one givl!n in the text, if 
exe~utcd in 3.Li~p, would leave the definition ullchanged. except 
that it is an innocent lie; in real 3-Lisp kind is a procedure that 
is called with the arguments and environment. allowing the 
definition of (I amDlla macro '" ), etc. CCONS is a closure 
constructor that uses SIMPLE nnd REFUCT to tng the closures for 
recognition by the reflective processor described in section 6, EF 
is :In exte'lsional conditional. th:lt normalillell :lll of its 
:lrguments; the delinition Ilf If defines the standard intensional 
version that normalises only one of the second two. depending 
on the result of normalising the first. Finally, the definition of 
QUOTE will yield (QUOTE A) ==- 'A. 

Finally, we have a trivial break package, with ElIV and 
CONT bound in the hreak ~n\'ironment for the user to see, :lnd 
RfTUHN bound to a procedure that· will normalise its argument 
and pass that out :lS the rc~ult of the call to BREAK: 

(derlne BREAl 
(ldnobda reflect ([.rg] .nv cont] 

(blOCk (print arg pr.,mary-struiIJ!I) 
(read·-nl);'';'a I no-print' "n· 

(bind· ('env 'eny] 
('cont Tcont] 
('raturn r(lamDda reflect ((aZ) eZ cl] 

(no,..,aIIS8 aZ eZ cont»} 
9nv) 

primary-stream») 
[f 'I\ewed 'as models of control constructs in a language being 
Implemented. these definitions will look innocuous; what is 
important to remember is that ~hey work in ~he very language 
in which they are defined, 
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..... (der ine ~EAD-NORMALISE-i'RIHT 
2 ........... (lamOda simple [l.vel env strealD] 
;) ................. (normal ise (pr~."pt&read level stream) env 

....................... (lamOda simple [result) :ContlnuQtlonC.REI'LY 
5 ............................ (bloCk (prompt&reply result level stream) 
6 ............................................... (road-normalise-print level env stream»»))) 

..... (define NORMALISE 
8 ........... (lambda simple [strue env cant] 
9 ................. (cond [(normal strue) (cant struc)] 

lO ............................ [(atom strue) (cant (binding struc env»] 
II ............................ [(ratl strue) (normalise-rail strue onv cant)] 
l2 ............................ [(pair .true) (reduca (car nruc) (cdr strue) on. cant)]»)) 
l3 ..... (define REDUCE 
l4 ........... (lambda simple [proe args env cant] 
l5 .......... , ...... (normalise proc anv 
l6 ................ _ ..... (lambda simple [proc!] ; Continuation C.PROC! 
l7 ..... _...................... (if (reflective procl) 
l8 .......................... _ .......... (Hd.-reflect procl) arqs env cant) 
19 ....................................... (norma lise args env 
20 .............................................. ( lambda 5 Imp I e [args I ] ; Cantinuac.ion C·ARGS! 
21 ............. _................................. (If (primit ive proe!) 
22 .......................................................... (eont '(l-proc! . ~argsl» 
:l3 .......................................................... (normalise (body procl) 
24 .................................................................................. (bind (pattern proe!) args! (environOlent proc!» 
25 ............................................................ _ .......... _..... cant»»»») 
26 ..... (def lne NORMALISE-RAIL 
27 ........... (lambda simple [rail onv cont] 
28 ................. (if (empty rail) 
29 .......................... (cant (reons) 
30 .......................... (normal.lse (1st rail) eny 
31 ................................ (lambda simple (flrstl] :CantlnuaLianC·FIRST! 
32 ....................................... (norma I i se- ra II (res t ra i I) eny 
13 .............................................. (I ambda 5 imp I. [res t! ] : Continuation C.R~;ST! 
34 .................................................... (cant (prep first! rest! »»»») 

Figure 17: The J-Lisp R effective Processor. 

I'rocl!dur~ is non'flrimitlve, or 111se directly' exccuting it if it is 
flrill1itivp. (line 22). 

Considl1r (REDUCE '. :[X 3J ENV (D), for elComple, where X is 
hl'lllnd to the nUOlef:l1 2 and • to the primitive addition closure 
in ENV. At the point of line 22, PROe! will de5ignate thot 
pdmitive c!05ure, and AHGS! will deSignate the normal· form rail 
t2 31. Since additiun is primitive. we must simply do the 
addition. (PIlOC! . ARGS!) WOlI't work. ber.allse PROe! ond ARGSI 

are at the wronr: luvel: they designate ~tructures. not functions 
or arguments. So. for a brief moment, we de-reference them 
(with I). do the addition. and then regain our meto-structural 
viewpoint with the,.R If the procedure is reflective. however. it 
is (as ~hown in line 18 of Figure 17) coiled directly, not 
pror.essed. and given the obvious three orguments (ARGS. ENY. 
and CONT) that are heing passed around. The ~(DE-REFlECT 

PROC!) is merely a mechanism to purify the reflective procedure 
,0 that it doesn't retlect ngoin. and to de· reference it to be at 
tht! right level (we wont to usc. not mention. the procedure that 
is designatlld by "ROC!). .:-Iotl1 that line 18 is the only place that 
l'ul1ective procedures r.an ever be called: this is why they must 
always be prepared to acct!pt I1xoctly those three arguments. 

Line Il! is the essence of 3·Liilp: It alone l'ngenders the full 
retlective- tower. for it says that somt! parts of the object 
language - the coue proces~ed by thill program - are called 
directly in this proqram. It i~ ;,IS if an objllct ll'vel fragment 
'.'It!re included directly in the meta InnguaJ:;e. which rai~e>l the 
411'!~ti'ln I)f who IS proce~slll~ thl! meta langua!;e. The 3·Lisp 
claim is that an exactly cqulvalent rllfl~ctive processor can be 
pl'ocessing this codt!. without vicious threat of infinite ascent. 

,\ r~J1t)cti~'e procedu"" in sum. arrives in ·the tmddle of the 
pro,·p.~sor cuntext. It is. honGed cllvirunment ,lOd continuation 
!:lI'ucture· that dt!siqnatl! the proce~sing of the code below It, but 
.t is run in a' different cuntext. WIth It:; I)wn (implicit) 
envlrunment :lIId contlnuation. which in turn IS represented in 
5tl'Uctnres passed J.ruund by the proceSSOr one level above it. 
Thus it is 1;:1 ven c;,lusal acce~s to the state I)r th~ process that 
w;:s :n Jll'oqress (answl!rtn~ one of uur initial requirl!ments). and 
;t can of r.ourse call~l! nnv effect it wants. sill~e .t nas complete 
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,ICr.Il!~~ to all future pl'ocessillij of th:lt code. Furthermore. it has 
a 5:.tle place to stand. where it will not conflict WiUl the code 
being run below it. 

Thesp. variolls protocols iIl",strata a general point. As 
mentioned at the outset. part of designin~ an adequate 
retlective archiwcture involves 0 trade-off between being so 
connected that one ilteps all over oneself (as in traditional 
implementations of debugbrjn~ utili tie:;). and so disconnected (as 
with metacirculof processors) thot one hOli no effective access to 
what is g?ing on. The 3-Lisp tower. we are suggesting. provides 
just tht! right balance between these two extremes, solving the 
problem of vantage point as well as of causal connection. 

The 3·Lisp reflective processor unifies three traditionally 
indepenrlent capabilities in Lisp: the ~lCplicit availability of EVAL 
and APrl Y. the ability to ~upport millacircular flrocessors. and 
eXfllicit "perations (Iikt! :'vtaclisp's RETfUN and Intt!r1isp's FnETuRN) 

for dcbli~ging purposes. It is 3tl"lking that the latter facilitil!ll 
arc reqUIred in traditional dialt!cls, in spite of the presence of 
the former. especially since they depend crucially on 
implement:ltion deto'li!:;. violating porfability and other natural 
aesthet.lcs. In 3-LISP, in contrast. all informaLion about the 
~tate I)f the processor is iully avullable within the language. 

9. The Threat of Infinity, and a Finite Implementation 

Thl! ;~rgument as to why ::I·Lisp is finite is complex in 
detail. but simple in outline and In substance. Basically. one' 
shows that tht! relll1ctl ve processor is fully toil· recursive. in two 
senses: a) It runs programs tad·recursively, in that it does not 
budd up records of st:lte ior programs across procedure calls 
(only on argument passing), and b) i.t itself .. is fully tail­
recursi ve. in' the se~st! thut all re'cursive calls within it (except 
for ulllmport:lnt ;ubrolltine~) occur in tuil·recursive positi'on. 
The r~l1cctlve processor. can be executed by a'simple finite state 
machine. In particular. It can run 'tself without using any ~tate 
at ail. Once the limltinq behaViour of an infimte tower of 
COpll!S of this processor is determined. therefore. that entire 
cha.n of procc~sors can he slmuioted by another state machine. 
of complexlt? oniy moderately :;reotcr than that I)f the reflective 
processor Itself. (It IS an IOterestl'ng open research question 
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whether thnt "implementing" proceSHOr c:m be algorithmically 
derivcd from the reflective pl'oce~sor code.) ,\ full copy of such 
an implementing processor - about 50 lines of 2·Lisp - is 
provided in :Smith l1nd de>! Rivieres 19841: a more substantive 
d~scul!sion of tractability will appear in [Smith forthcoming]. 

10. Conclusions and :'tloruls 

Fundamentally, the use of Lisp as a language in which to 
explore semantics and reflection is of no great consequence; the 
ideas should hold in any similar circumscance. We chose Lisp 
because it is familiar, because it has rudimentary self­
referential capabilities, and because there is a standard 
procedural self-theory (continuation-passing metacircular 
·'interpreters"). Work has begun, however, on deSigning 
reflective dialects of D. side-etTect·free Lisp and of Prolog, and on 
studying D. reflective version of the A-calculus (the last being an 
obvious candidate for a mathematical study of reflection). 

. Furthermore, the technique we used in defining 3-Lisp can 
be generalised rather directly to these other languages. In 
order to construct a reflective dialect one needs a) to formulate 
a theory of the language analogous to the metacircular 
processor descriptions we have examined, b) to embed this 
theory within the language. and c) to connect the theory with 
the underlying language in a causally connected way, as we did 
in line 18 of the reflective processor. by providing mflective 
procedures invocable in the. object langunge but run in the 
processor. It remains, of course, to implement the resulting 
infinite tower. a discussion of general techniques is presented in 
lue~Rivilirell, forthcoming]. 

It is partiy a consequence of using Lisp that we have used 
non·datn-abstracted represent"ltions of functions and 
environments; this facilitates side-Ilffects to processor structures 
without introducing unfamiliar machinery. It is clear that 
environments could be readily abstracted, although it would 
remain open LO decide what modifying operations would be 
supported (changing bindings is one. but one might wish to 
excise bindings completely, splice new ones in, etc.). In 
standard A-calculus·based metatheory there arc no side elTeets 
(and no notion of proce!lsing); environment designatol's must 
therefore be passed around ("I.hreaded") in order to model 
environment side effects. It ~hould be simple to define a side­
Ilffect-free version of 3-Lisp with an environment.threuding 
rellective processor. and then to define Sf rQ and other such 
routines as r~nective procedures. Similarly. we assume in 3-
Lisp thnt the main structurnl field is simply visible from all 
code: one could deline an alternative dialect in which the field, 
too. was threaded through the proces.'!Or as an explicit 
argument. as in st..'1ndard met.'1theory .. 

The reprt:sentation of procedures as closures is troublesome 
findecrl. closures are failures. in the senile that they encode far 
more informnLion than 1V0uid be required to identify a function 
in intension: the problem ileing that we don't yet know what a 
function In intension might he.). :l-Lisp unarguably providell far 
too fine·grained (Le.. metastructural) llCCl'SS to function 
ucsignators. including continuations. and the like. Given an 
ahstract notion of proccdure. It would be natural to deline a 
rllilective dialect that used nh~tract structures to encode 
proc,edures, and then to define relicctive access in such terms. 
We did not follow this diredion hl!re only to avoid taking on 
another very difficult problem. but we will move in this 
diredion in future work. 

These conlliderntions all illustrate a general point: in 
designing u· ru!1ectlve processor. onr. can chool!e to bring into 
view ·more·· or ·less of 'tIlll state' of thl! underlyi ng proceS!!. It is 
all n question of what you want to make t!xplicit. and what you 
want to absorb. a-Lisp. .as currently defined. reilies the 
environment and continu.aLion. making ~xplicit ·what was 
implicit flne level below. It absorbs the structural field (and 
pnrtly absorbs the global environment); as mentioned t!nrlier. it 
completl!ly absorbs the animating <lgency of the whole 
computation. If one defines a I'cllective processor based on a 
metacircular procc~sor that also ahsorbs the ruoresentation of 
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control (Le., like the Me? in Figure 13, which uses the control 
structu~e of the processor to encode the control structure of the 
code bemg processed), then reflective procedures could not atTeet 
the control structure. In any real application. it would need to 
be. dete:mined just what parts of the underlying dialect required 
relficatlOn. One could perhaps provide a dialect in which a 
reflective procedure could specify. with- respect to a very geaeral 
theory, what aspects it wanted to get explicit access to. Then 
operations. for example, that needed only environment access 
like BOUND. could avoid having to traffic in continuations. ' 

A Iinal point. I have talked throughout about semantics 
but have pre~ented no mathematical semantical accounts of an; 
of .these dlalect:'. To do so for 2-Lisp is relatively 
straIghtforward (see Smith (forthcoming]), but I have not yet 
worked out the appropriate seman tical equations to describe 3-
Lisp. It would be simple to model such equations on the 
implementation mentioned in section 9, but to do 50 would be a 
failure: rather. one should instead take the definition of 3-Lisp 
in terms of the infinite virtual tower (Le., take the limit of 2. 
Lisp/n), and then prove that the implementation strategies of 
section 9 are correct. This awaits further work. In addition, I 
want to explore what it would be to deal explicitly, in the 
semantical account. with the anima or agency, and with the 
questions of causal connection, that are so crucial to the success 
of any reflective architecture. These various tasks will require 
an even more radical reformulation of semantics than has been 
considered here. 
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Notes 

I. See (Doyle 19801. (Weyrauch 19801. (Oen_reth and. Lea" 19801. aDd 
(Bawi 19831. 

:l. In lhe dialects we conalder. the metaslruclural capabililY mu", be provided 
by prtmllive quolauon mechaniSms. aa appalled lO merely by being able to 

model or d .. lgnale .yntn - sonl.lhlnlf virtually any clliculus ean do. 
u>lng GOdel numbertnrr. ror e.umple - ror realOne of cauoal eonneeUOIL 

3. ~fO'l programming lan~uaReo. ,uch as rortran and AIIIOI 60. ore neither 
higher·order nOr m"",.uuCf.urol: lhe A·calculus IS lhe lint but nOl thtt 
"""'nd. wher .... 1.IHp 1.5 15 the ... ond bUl not lhe liMit (dynamic scoping i. 
a .onl .. luol prolocol lhal. couph.! with the meUl'SlJ'UCtural raciliti ... 
partially .1I0ws Li,p 1.5 to campen ..... for lhe raCL lhat it ia only lirl~ 

order). At len ... some Incarnallon. or Schema. on lhe other hand. are both 
(.Ilhough Scheme's m.,aslruclur>1 "Ow .... are limited). ,\. ·we will ...... 2· 
L,.p .lnd ~.I.i.p OM! very delin'l.l\' both melaslructural ond hlgher-order. 

l. r"or 1Ao'hnL we might call dtdarauur lanlJu&1qes. I here i!i it natural account of 
the relauonNhlp b4!lween hOli[UUiUC expre!S.Slon-c and In .. the-world desiltfl8tiona 

thot need not mnke crucull rp(erencfI to IS!'Ues of rroce~unng (to which we 
WIll turn In a momt!nt). It IS ror .,uc:h Idn!;Ua~e!. In partIcular. that the 
campolilLion ttt-O. wnlch we mll(nl r3Jl "" . would he formulated. And !.bil. 
(or obv1ous rl!o~n~. l!'i what I~ tY\11e:\Hy ,tudicd In mathematlcaJ model 
lheory dnd 101;"1C. :nnC1! lh~ fields do not denl In any cruCIal way With the 
Jctlve use of the lanR'ua~es they "udy. Thu •. for example. "'. In logic 
would he the Interpretauon runeLlo" of standard modal theory. [n what we 
wdl call l'ompulallonal lanquagtffi.. on the other hand. question. of 
proct!:'5lIlng do OlrIH. 

S. The 'mng .! QUOII 'IC)' notates a 5Uucture lhnl d."lJnatel .nother 
~lructure that In lurn could be notated wllh the ~lnnll 'tIC'. The stnng. 
··.BC .. •. on the oUter hitlnd. no~a·t.eI a strUcture t'hat des'gnates the stnng 

"ac' directly_ 
6. Virtually any lanlJUal1e. or cou ..... ha. the requllile power lo do thll kind 

or modellin~_ In. lan~ua~e Wllh mc",·.truclural ablliti... lhe meta. 
clrcuiar proce~r c::tn repre~nt projp"aml for the .\ICP a.s Ihrm3f/un -
lh,s ... Iways done ,n L .. p .\ICP, - bUl we nl!1!d not deline·lhat to be an 
e!'l~nt1ul property. The term 'mt!'taclr'Cular procetuwJi I!I by no meana 
::Jlrlctlv ri~n ned. .lnd there .ue vanous constratntJi that one mr"ht or might 
not PUt on IL. ~y r:!enerol approach has nee" to Vlew ;us metacln:ular any 
non"cOIuh311y ('onnctted model of 01 calculus ..."thtn Itself: t.hul the 3 .. Lilp 
reOective prnce!l'sor IS ItUl meUl,clrcular. hecause It dOlts have the requasate 
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causal connections. and therefort! an e ...... ntlal part of the 3-U8P 
ari:Hitecture. 

7. CurIously. there ,are .. /so intuition, about contemplative thinkini. wbere 
one i. both detached and yet directly present. that lit more with thie view. 

S. One way to unde"'tand thi. is tAl realize that the renective prOCllJlSOr simply 
:lskti Its proceSliOt to do dny primitives that it enCDuntel'!. I.e .• it pa.saea 
re.ponsibilit\" up to the processor running it. In other words. eac!! time 
one level U:ies cl prJmitivt'. its processor runs around ~euing everything up_ 
linslly reaching the poinL at which it must .imply do the primitive action. 
whereupon it asks its own processor for help. But of cnurse the proceuor 
runnine that procellSOr will also come racini towards the edp of the same 
clifT, and will similarly duck responsibility, handioll" the primilive up yet 
another level. In fact every primitive ever e",c<:uted i8 hnnded all the way 
La the LOP of the ttlwer. There i. a magic moment, when the thing actually 
happen •• and then the .nswer liiters ail U,e wily back down tAl the level 
that ,wrwd the whole procedure. !t i. as if the deus a mllcilina. livini 11' 
the top of the Lower. sends a lightning bolt down tAl some level or other, 
ollce .very intervening level ge~ appropriately lined up (rather like the 
SUII. ~t the stonch~nl!e and pyramid •• reaching down through 11 loog tunnel 
,IL just one purticulnr mumont <luring tha yenr). Except, of coune, that 
nOLhin!l' ever happens. ulUmately, except primitiv..s. In other words the 
~nnbling ,'geney. which must now down from the top of the tower. consiata 
of an 1l1lillltC!lv den:Je sari('S of l.hese lightninJf bolts. with ~omethinK Uke 
IO""c of the ones that reach each level being allowed through to the level 
below. ,\II inlinitely fast. 
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Standard Procedure Index 

Page 

.\.S 59,80 
tS 59,80 
(-E I E2 ···EI<) 45,80 
(+ NI N2 ... Nd 46,80 
(- NI N2 ... Nd 46,80 
(- NI N2 ... Nd 46,81 
( .. NI N2) 48, 77 
(I NI N2) 46,80 
« NI N2 ... Nit) 47,81 
«- NI N2 .. , Nit) 47,81 
(> NI N2 ... Nd 47,81 
(>- NI N2 ... Nt> 47,81 
(1+ N) 47, 77 
(1- N) 47, 77 
(1ST VEC) 39, 75 
(2ND VEC) 39, 75 
(3RD VEC) 39, 75 
(4TH VEC) 39, 75 
(5TH VEC) 39, 75 
(6TH VEC) 39, 75 
(ABS N) 47, 77 
(ACONS) 43,80 
(AND EI E2 ... Et> 57, 79 
(AND-HELPER ARGS ENV CONT) 66,79 
(APPEND VI V2) 40, 76 
(APPEND- VI v2 ... VI<) 41, 76 
(ATOM E) 44, 78 
(BIND PATTERN ARGS ENV) 52, 72 
(BINDING VAR ENV) 52, 72 
(BLOCK CI C2 ... .£i.) 54, 74 
(BLOCK-HELPER CLAUSES ENV CONT) 66, 74 
(BODY CLOSURE) 43,80 
(BOOLEAN E) 44, 78 
(CAR PAIR) 36,80 
(CATCH C) 54, 75 
(CCONS KIND DEF-ENV PATTERN BODY) 42,80 
(CDR PAIR) 36,80 
(CHARACTER E) 44, 78 
(CHARACTER-STRING E) 45, 78 
(CHARAT E) 44, 78 
(CLOSURE E) 44, 78 
(CONCATENATE R1 R2) 40, 76 
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(COND [PI f.J.] ... [Pk fl]) _________________ 54, 74 
(COND-HELPER ARGS ENV CONT) 66, 74 
(COPY-VECTOR VEC) 40,76 
(DE-REFLECT CLOSURE) 43,72 
(DEFINE LABEL FUN) 49,73 
(DELAY C) 55, 75 
(00 [[VARI ~NITI NEXTd ... [VARk INITk NEXTd] 

[[EXIT-TEST 1 RETURN 1 ] ••• [EXIT-TEST j RETURNJ]] 
BODY) ____________________________ 56,74 

(DOUBLE VEC) 38,75 
(DOWN S) 59,80 
(EDIT PROCNAME) 60. 80 
(EDITDEF PROCNAME) 60,81 
(EF PREM ci C2) 54,80 
(EMPTY VEC) 38.80 
(ENVIRONMENT CLOSURE) 42, 78 
(ENVIRONMENT-DESIGNATOR CLOSURE) 42.80 
(EVEN N) 47,77 
(EXTERNAL E) 45,78 
(EXTERNALIZE S) 62, 79 . 
(FOOT VEC) 38.75 
(FORCE C) 55,75 
(FUNCTION E) 44,78 
GLOBAL 65 
(HANDLE E) 44,78 
(10 E) 63,78 
(10· EI E2 ... Ed 63,78 
(IF PREM f.J. fz) 54,74 
(INDEX ELEMENT VECTOR) 41,76 
(INPUT STREAM) 61,81 
(INTERNAL E) 45, 78 . 
(INTERNALIZE STIlING) 62,79 
(ISOMORPHIC EI E2 ) 45,76 
(LAMBDA TYPE PAT BODY) 50,72 
(LENGTH VEC) 37,80 
(LET [[PI Ed '" [Pk Ed] BODY) 52,73 
(LETREC [[VI E1 ] ... [Vk EkJ] BODY) 53,73 
(LETSEQ [[PI EI] ... [Pk Ed] BODY) 53,73 
(LOAD fILENAME) 60,80 
(LOAOFILE FILENAME) 60,81 
(MACRO DEF-ENV PAT BODY) 51,73 
(",ACRO-EXPANDER FUN) 63, 78 . 

. (MAP FUN ,VI Vz .. ; vkl' 40, 76 
(MAX NI Nz ... Nk ) 47,77 
(MEMBER E VEC). 39,75 
(MIN NI N2 ... Nk ) 47,77 
(NEGATIVE N) 48, 78 
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(NEWLINE STREAM) ____________________ 61. 79 
(NON-NEGATIVE N) 48, 78 
(rIORMAL S) 65. 72 
(NORMAL-RAIL RAIL) 65,72 
(NORMALIZE EXP ENV CONT) Cover, 64. 71 
(NORMALIZE-RAIL RAIL ENV CONT) Cover, 64, 71 
(NOT E) 57,79 
(NTH N VEC) 37,80 
(NUMBER E) 44.78 
(NUMERAL E) 44,78 
(ODD N) 47, 77 
(OR El Ez ••. Ed 57.79 
(OR-HELPER ARGS ENV CONT) 66,79 
(OUTPUT S STREAM) 61,81 
(PAIR E) 44,78 
(PATTERN CLOSURE) 43,80 
(PCONS SI S2) 36, 80 
(POP STACK) 42, 77 
(POSITIVE N) 48,78 
(PREP E VEC) 37,80 
(PRIMITIVE CLOSURE) 65,72 
PRIMITIVE-CLOSURES 65, 72 
(PRINT S STREAM) 62,79 
(PRINT-STRING STRING STREAM) 62,79 
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(PROCEDURE-TYPE CLOSURE) 42,80 
(PROMPT&REAO N STREAM) 61,80 
(PROMPT&REPLY ANSWER N STREAM) 61,80 
PRIMARY-STREAM 61 
(PUSH ELEMENT STACK) 41,77 
(QUOTE EXP) 63. 78 
(RAIL E) 44,78 " 

(RCONS SI S2 ... Sk) 36,80 
(READ STREAM) 62,79 
(READ-NORMALIZE-PRINT LEVEL ENV STREAM) Cover, 64, 71 
(REBIND VAR BIND ENV) 51,73 
(REDUCE PROC ARGS E NV CONT) Cover, 64. 71 
(REFERENT EXP ENV) 59.78 
(REFLECT DEF-ENV PAT BODY) 50,72 
(REFLECT! DF.F-ENV PAT BODY) 50,73 
(REFLECTIFY FUN) 43,73 
(REFLECTIVE CLOSURE) 43.72 
(REMAINDER Nl Nz). 46.77 

.(REPLACE SI S2) 57,80 
(REST·VEC) 39,75 
(REVERSE VEC) 41,77 
(RPLACA PAIR NEW-CAR) 58,79 
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(RPLACD PAIR NEW-CDR) __________________ 58,79 
(RPLACN N RAIL NEW-ELEMENT) 58,78 
(RPLACT N RAIL NEW-TAIL) 58,78 
(SCONS El E2 ~ .. Ed 37,80 
(SELECT INDEX [Ml fl.] ... [Mk fl.]) 56,74 
(SElECTQ INDEX [Ml fl.] ... [Mk fl.]) 56, 75 
(SEQUENCE E) 44,78 
(SET VAR BINDING) 51,73 
(SETREF VAR BINDING) 52,73 
(SIMPLE DEF-ENV PAT BODY) 50,72 
(STREAM E) 44,78 
(STREAMER E) 44,78 
(TAIL N VEC) 38,80 
(THROW C) 55, 75 
(TRUTH-VALUE E) 44.78 
(TYPE A) 44,80 
(UNIT VEC) 38, 75 
(UP 5) 59.80 
(VECTOR E) 44,78 
(VECTOR-CONSTRUCTOR TEMPLATE) 39,76 
(VERSION) 60,80 
(XCONS 51 52 '" 5k) 36, '76-
(Y-OPERATOR FUN) 49,73 
(Y·-OPERATOR Fl F2 ... Fk ) 49.73 
(ZERO N) 48.78 
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