
 Introduction (V0.73)

 v

Introduction1

When physicists bring fundamental particles into contact, the
process is not exactly mild. Only at very high energies do par-
ticles genuinely interact—and thereby reveal their secrets. The
encounter is violent, and the disclosure profound. Increasingly,
moreover, it is on the basis of those hard-won secrets, wrung
from destruction, that physics’ vaunted theories are founded.

My view of computing and philosophy is similar. Power-
ful secrets will emerge from their encounter—but only if they
collide at high energy, and at peril. To date, in my view, the
interaction has been too gentle. Intersecting at moderate ener-
gies, the fields have mostly bounced off each other—adjust-
ing their external trajectories, but largely remaining internally
intact. Nothing drastic enough has happened to undermine
their identities, reconfigure their role in the intellectual pan-
theon, or—what matters most for my purposes—force either
to expose its innermost mysteries. As a result, our eyes are not
yet open to some of the most fundamental insights on which
the future of both will depend.

 1 Engagement
It is not that computer science and philosophy are unacquaint-
ed. Computing grew out of logic, metamathematics, and other
philosophical projects, for starters—a fact still betrayed in its
technical vocabulary.2 Ever since the formal development of

1. Version 0.73 — February 20, 2012
2. Consider a sampling of computational notions: symbol, reference, iden-
tifier, language, syntax, semantics, evaluation, interpretation, etc. In their
technical use, these terms not only derive from logic and the philoso-
phy of language; they all also implicate the ‘meaning’ side of ‘meaning/
mechanism’ dialectic. They are semiotic, normative, or what philoso-

vi Indiscrete Affairs · I

computation almost a century ago, moreover, philosophical
treatises have been written on computation and computabil-
ity, logical frameworks used to analyse the semantics of a wide
range of computational system, and investigations conducted
on the intersections of programming and provability. Meth-
odological papers have also been published, documenting the
impact of computational practice on the philosophical enter-
prise, electronic journals and web-based resources set up to
facilitate philosophical discussion,3 etc. And substantively, in
what is at least arguably the most intense encounter, theorists
from both camps have expended effort exploring the idea that
we ourselves might be computers—i.e., investigating what is
widely known as the computational theory of mind (ctom).

Within these broad outlines, the specific intellectual pro-
file of discussion has varied, over time, as different topics have
moved into and receded from prominence. Initially, particu-
larly in the 1930s and 1940s, philosophical discussions of com-
putation were primarily conducted in the context of logic and
the philosophy of mathematics—e.g., in the work of Gödel,
Turing, Kleene, Gandy, and others. In the second half of the
century, after the 1950 publication of Turing’s “Computing Ma-
chinery and Intelligence,” and the emergence of artificial intel-
ligence (AI) and cognitive science, most philosophical analyses
emerged instead from within the philosophy of mind—in for
example the work of Dennett, Searle, Haugeland, and Fodor.

Even as the focus of philosophical engagement shifted
from mathematics to cognition, the originating connection
with logic remained in view. Logic’s influence on the ctom
was evident in discussions of the appropriateness of a logical

phers would call intentional notions, that is—a striking fact for a field
that many view as representing the triumph of the age of mechanism. In
connotation as well as meaning they are markedly different from such
physical notions as cause, force, locality, mass, impulse, impact, energy, mo-
mentum, and so on, as one might otherwise have expected for a project
so interested in machines.
3. «Ref http://philpapers.org, and bbs»

 Introduction (V0.73)

 vii

or logicist conception of cognition, for example—the idea on
which the first generation of computational theories of mind
were founded, amd the conception of artificial intelligence im-
mortalized in Haugeland’s label “good old-fashioned artificial
intelligence” or gofAI. This approach continued to attract
attention, in the face of increasingly strong opposing views,
throughout the 1980s. As regards the trio logic, computing, and
mind, in fact, it was widely assumed (though never by me)
that the first two, logic and computing, were intrinsically and
inextricably associated, and thus that to the extent that mind
was seen as not appropriately understood in terms of logic and
rational inference, then to that extent mind must not be com-
putational, either. Such presuppositions about the intrinsically
logical character of computing played a large role in arguments
throughout the 1990s for a shift from so-called “computation-
al” models of intelligence4 to a rash of dynamic, networked,
neuroscientific, situated, and social alternatives (cf. van Gelder,
Kelso, Edelman, Brooks, Suchman, and others).5

During the same period, though with a very different char-
acter, a more direct engagement between logic and computer
science developed which, rather than focusing on overarching
epistemological questions about the nature of knowing, took
up more detailed formal considerations of proof theory, the
“semantics”6 of programs, and the place of constructive and
intuitionist mathematics in theoretical computer science (cf.

4. “I say “so-called ‘computational’ models” because it is far from clear
that connectionist, dynamic, situated, and other networked propos-
als are in fact noncomputational. In fact I myself do not believe it. It is
striking, and far from irrelevant, that those who most strenuously argue
against computational models under this logicist conception of comput-
ing, such as van Gelder in philosophy and Edelman in medicine and
physiology («refs?»), are not computer scientists.
5. «Appropriate refs». These arguments would have been more forceful
and to the point, in my view, had they been framed as being opposing to
a “logicist” models of intelligence.
6. ‘Semantics’ in quotes for reasons explored in … «■■».

viii Indiscrete Affairs · I

Scott, Martin-Löf, Constable7).
Recently, a third area of mutual interest has come onto the

scene. Rather than vieweing each other indirectly through the
lenses of logic or mind, computing and philosophy have once
again rubbed up against each other, this time through a com-
mon interest in the notion of information. Whether the term
‘information’ names a common or even allied subject matter in
the various discourses in which it is increasingly theorized re-
mains a matter of debate (information is now a technical term
in at least economics, biology, physics, communication, sociol-
ogy, and media theory, as well as computing and philosophy).
Nevertheless, it is undeniable that, over the last decade or so,
the philosophy of information has risen sharply in theoretical
visibility, in part due to the targeted efforts of Luciano Floridi.

Even if information joins logic and mind as a topic of com-
mon interest to both computer science and philosophy, the
interaction between the two fields remains to that extent in-
direct—as well, in my view, as too modest. I find it especially
striking that, in spite of the undeniable impact of computa-
tional ideas on the world, ourselves, and our place within it—
i.e., in spite of the fact that we are unarguably living through
the development of a science and technology of immense
ontological and epistemological impact—the philosophy of
computation is not (yet?) a recognized area of specialization
within the philosophy of science. I know of only a handful
of philosophers, world-wide, who list “philosophy of comput-
ing” on their cvs—a situation vastly different from that in the
philosophy of mathematics, philosophy of physics, or, over the
last few decades, philosophy of biology.8

7. «ref, and comment on the title of, such papers as “Programs as Proofs,”
“Proofs as Programs,” etc.»
8. For reasons touched on below, I have reasons to doubt that a project
directly focused on computation should be treated as within the phi-
losophy of science—and more seriously, even that it would constitute
a legitimately delineated area of intellectual inquiry at all. But those
concerns are primarily intellectual, rather than political or historical. I

 Introduction (V0.73)

 ix

• • •

If philosophy’s interest in computing has been modest, com-
puting’s interest in philosophy has been even more limited.
When the interaction between the two fields is viewed from
the computational side, it is even more striking how much
logic has been the primary subject matter. Even AI, which one
might innocently imagine would have focused primarily on
philosophy of science (e.g., on theories of rational belief revi-
sion in the face of accumulating and sometimes contradictory
evidence) if it was going to turn to philosophy for inspiration
at all, or even on psychoanalytic theory if it were to cast its
view more widely, has largely restricted its attention to a rela-
tively traditional, rationalistic conception of logic.

But the strongest point of contact has been in the realm of
programs and programming languages—both substantively,
at the level of the programming language design itself, and also
metatheoretically, in the use of logical frameworks for analytic

still believe it is perplexing, and mostly unfortunate, how little direct
philosophical treatment a development of the magnitude of computing
has received in philosophical circles.

Note, too, that although there are some who would ground comput-
ing on a notion of information, and although as well there are those who
construe computing as “information processing” «ref Aos», the thesis
that we are computers is still called the computational theory of mind,
not the informational theory of mind. And the information-based ac-
counts of mental semantics, such as those based on Stamp, Dretske, etc.,
many of which subsequently morphed into teleo-informational versions
through reliance on evolutionarily based notions of biological function
to establish the informational links, are not particularly associated with
computation or the ctom. In the philosophy of mind, information and
computation remain substantially distinct; rather than viewing it as in-
formation processing, philosophers of mind mostly view computation in
terms of the substantially distinct notion of formal symbol manipula-
tion.

One of the primary briefs of Aos is to distinguish, and differentially
assess, these and other competing construals of computation.

x Indiscrete Affairs · I

purposes. On the design side, numerous early programming
languages took inspiration from the philosophical sides of log-
ic and mathematics—including, most famously, Lisp,9 one of
the most preëminent programming languages ever designed,
and for many years the lingua franca of artificial intelligence
(AI).10 Another celebrated example of direct architectural in-
fluence is Prolog,11 which formed the basis for the Japanese
“Fifth Generation Computer Systems” project during the
1980s.12 Beyond their use as the basis of linguistic design itself,
logical frameworks are widely used to analyse the so-called
“semantics” of programming languages, including for exam-
ple various forms and extensions of modal logic, which have
been pressed into service to analyse concurrent processes and
computational behaviour (e.g., in what is known as “dynamic
logic”13). Recently, too, the pervasive influence of logic has been
demonstrated in its use for the semantical model underlying
most of the infrastructure underlying the internet and world-
wide web, including owl, common logic, semantical analyses
of rdf, and proposals to orchestrate a “semantic web.”14

9. For: ‘lIst processing language.’ See «ref McCarthy», and Part B.
10. «Put in quotes from Alan Kay and others…where did I use those?»
11. ‘Prolog’ is short for “programming in logic—or, strictly, for program-
mation en logique, a name chosen by Philippe Roussel in France, who
worked with Alain Colmerauer on the creation of Prolog in the early
1970s.
12. During a trip to Japan in the late 1980s, I asked a number of comput-
er scientists and government officials involved with the Fifth Genera-
tion Programming Project why, if Japan felt it was appropriate to base
major computational development on the formalization of a philosophi-
cal conception of human rationality, and if the project had nationalistic
goals (which seemed evident), they had chosen to import, wholesale, a
conception of rationality imported from and so clearly associated with
the Anglo-American West, rather than to formalize historically Japa-
nese or Buddhist conceptions of the mind. It is perhaps needless to say
that the question was greeted with almost complete incomprehension.
13. «Refs»
14. One notable exception is Jean-Luc Girard’s linear logic, which en-

 Introduction (V0.73)

 xi

So the connections between philosophy and computation
are numerous. And yet, from the perspective of someone liv-
ing at or in the intersection of the two fields, it is difficult,
especially over time, to avoid feeling that the two fields col-
laborate in maintaining something of an abiding quietism as
regards their interaction. Consider for example the title of a
series of conferences that just recently celebrated its 25th anni-
versary: Computation and Philosophy.15 In one sense, this epi-
thet characterises my own work, of which some is collected in
these volumes. I, too, have tried to bring the fields together—
focusing on computing as primarily an empirical ground, and
drawing on philosophy especially for analytic frameworks and
methods. Yet it would be a mistake to characterize the rela-
tion between the disciplines manifested in the essays collected
here in terms of a simple conjunction. More violently—curious
phrasing for a committed pacifist, I know, but I believe the
description is (or anyway should be) accurate—my goal has
been to subject both fields to each other. In order to develop
an industrial-strength understanding of meaningful mecha-
nisms, I have increasingly found it important to bring the two
fields together with sufficient ferocity as to leave neither un-
scathed.

I do not consider a philosophical analysis of computing to
have more than scratched the surface of its subject matter, for
example, unless it leads to genuinely novel, intellectually chal-
lenging computational architectures. In my book, that is, the
merit of a philosophical analysis should be measured at least
in part, not simply by its adequacy in providing an account of
programming, but by the extent to which it leads programmers
to program differently. We are infants in the computational
realm, after all—mere alchemists, brewing up concoctions

joyed a period of popularity in theoretical computer science in the 1990s,
and which looks perverse to anyone classically trained—for example in
its failure to license the inference from p to p ⋀ p.
15. Emphasis on the conjunction added; see below.

xii Indiscrete Affairs · I

of marvelous but ad-hoc and (so I will argue) stunningly un-
theorized power. Sure enough, we can and should celebrate
the astonishing power of synthetic computational processes.
But if there is one moral I would like to demonstrate in these
volumes, it is this: no matter how impressive our handiwork
so far, especially from a practical point of view, the state of
our theoretical understanding of computing is still remarkably
inchoate—even confused. It is not that present-day practice
is unworthy of study. On the contrary, I think it deserves far
more philosophical attention and respect than it is normally
accorded. But studying it should make at least this much evi-
dent: computing needs help as much as it needs observation.

Mutatis mutandis, no analysis of computation has cut deep
enough, in my book, unless it unleashes reverberating philo-
sophical insights, and in the process undermines, reconfig-
ures—in some cases even wreaks havoc on—centuries-old
staples of philosophical analysis. This is a strong claim, sub-
stantiation of which is one of the long-term goals of the pa-
pers assembled here. While I cannot hope to make good on
it in this Introduction, it may still be worthwhile listing a few
simple examples, to convey a flavour.

First, one form of philosophical consequence that arises from
a serious examination of programs, processes, and computa-
tional practice has to do with such familiar (and paradigmati-
cally binary) distinctions as those between and among type
and token, use and mention, intension and extension, syntax and
semantics, analogue and digital, and abstract and concrete.16 No
one of these dichotomous typologies, it turns out, can do jus-
tice to computational practice—not only to the complexity of
practice, which is easy enough to demonstrate, if not ultimate-
ly all that interesting, but more significantly to the fundamen-
tal regularities on which that practice is based.

16. One could add to this list that between mind and body—but that is
a more complex issue.

 Introduction (V0.73)

 xiii

In one of the projects reported here, for example,17 I at-
tempted to “clean up” a spate of manifest use/mention con-
fusions that plague the design of Lisp. In the design of the
alternative I proposed, named 3Lisp, I aimed for, and believe
that I achieved, what from a classic philosophical perspective
would be considered a degree of theoretical elegance. When I
was done, however, to my considerable retrospective surprise,
I discovered that I had produced a language that, far from be-
ing unequivocally better than previous dialects, was in many
ways worse. Ultimately, what is wrong with 3Lisp is as or even
more interesting than what is right about it. I had achieved
philosophical clarity—or at least clarity in terms of currently
reigning philosophical norms—at a price of unusably fastidi-
ous baroqueness. Moreover, to up the ante, I also discovered,
as soon as I tried to give theoretical voice to this recognition,
that the reasons the results were intolerable did not find easy
expression within accepted conceptual frameworks. Theory
should be sobered.18

A second example. Philosophy is permeated with discussions
of what, in general terms, can be called issues of reduction: how
an analysis—or as I will say, “registration”—of a system at one
level of abstraction or idealization (or in terms of one ana-

17. The design of 3Lisp; see «ref chapters».
18. Moreover, as explored in the final paper in Volume I (“The Corre-
spondence Continuum,” ch. 11), the project also not only highlighted but
demonstrated the practical and theoretical infeasibility of maintaining
another familiar and allied somewhat higher-order binarism, between:
(i) a strict designational or referential hierarchy between signs (terms,
descriptions, sentences etc.) and what they signify, of the sort regularly
buttressed by strict use/mention distinctions; and (ii) a practice of pro-
miscuous but theoretically invisible modeling, as for example typified
in model theory and category theory, in which some entities are identi-
fied with others (typically: with entities considered to be isomorphic),
without those intentional relations (modeling being a form or species of
representation) being brought into theoretical view.

xiv Indiscrete Affairs · I

lytic or ontological or conceptual scheme) relates to another
analysis or registration of that self-same system at a different
level of abstraction or idealization (or in terms of a different
analytic or ontological or conceptual scheme). For example,
to consider the most familiar case: of how, assuming we are
not substance dualists, are we to understand the relations be-
tween and among the following three levels of understanding
the human mind: the psychological, the neurological, and the
biochemical.

Philosophers have developed distinctive technical vo-
cabulary to analyse and disentangle a variety of such issues,
including such notions as type- and token-reduction, local and
global supervenience, modularity, mereology,19 emergence, and
holism. For its part, computer science has developed theo-
ries and, more importantly, honed deep embodied practices
and intuitions,20 having to do with the very same or at least

19. Mereology because analyses of the part-whole structure are at least
referenced to, and perhaps constitutive of, the notion of a system’s being
intelligible (to put it epistemically) or constructed (to put it ontologi-
cally) at a variety of different levels of “graining,” abstraction, or idealiza-
tion. In the general case, whole/part distinctions at one level need not
correspond to whole/part distinctions at a subvening (philosophy) or
implementing (computer science) level. It is not only obvious but even
standard practice in computer science to develop implementations not
only in which individual token objects at one level are not implemented
by individual token objects at a lower level, but even (contrary to phi-
losophy’s conception of token reduction) where an individual event at a
higher level need not be implemented by anything registered as an event
at a lower level. How mereology and implementation relate, especially
with reference to dynamics, is not a topic that, so far as I know, has been
theorized in either field.
20. Computing being largely an embodied, engineering discipline, the
“forms of knowing” pervasive in and constitutive of computational ex-
pertise often run deeper and are more subtle than has been captured in
attempts to render them theoretically explicit. I comment in the text on
the fact that the philosophy of computing deserves more philosophical
attention than it has received to date, and that it might be considered
a subfield within the philosophy of science (though, as discussed in

 Introduction (V0.73)

 xv

closely related issues. Unsurprisingly, however, computer sci-
ence uses different vocabulary to talk about the issues, using
such terms as: implementation layers; black-box, grey-box, and
transparent abstraction; protocol stacks; abstract data types; in-
put/output specifications; application programming interfaces
(ApIs); modularity (again), and a plethora of other notions. Yet
to my knowledge no one has yet developed a careful analysis of
the relations, similarities, differences, contrasts, etc., between
these two traditions’ attempts to wrestle with an enduring
common problem.21

What matters about such a project, moreover, is that it
would involve far more than mere translation. The situation
is more reminiscent of the proverbial blind men and elephant.
The integrative task would not merely be to articulate the in-
sights of each in ways that the other could understand, but
to incorporate their respective partial understandings into a
deeper, more integrated account.

A third example, to show how a seemingly small and isolated
technical point can have substantial philosophical reverbera-
tions. In philosophical discourse it is common, if not ubiqui-
tous, to take seriously the distinction between things that are
“possible in principle,” even if they are hopelessly impractica-
ble, versus things that are impossible, as it is said, even in prin-
ciple. If a set of choices is finite, for example, then it is thought
that “in principle” they could all be examined, whereas if the
set is infinite, then exhaustive enumeration is taken to be out

Aos, its inherently intentional character may challenge this classifica-
tion). But there are also ways in which it should be considered a subfield
within the philosophy of engineering—another area that would be well
served by increased philosophical attention, because its epistemic profile
is different. At present, engineering and embodied practical knowledge
are more directly theorized within science and technology studies (sts),
as for example in the work of «refs».
21. For decades I have included this issue on an informal list—to use a
little Pennsylvania Dutch—of “doctoral theses needing written.”

xvi Indiscrete Affairs · I

of bound—and out of bounds in a way that is importantly
distinct, philosophically very different it is assumed, from the
way in which it is out of bounds to examine the set of all pos-
sible chess games (a finite number, estimated to be ~10120).

This difference between the “merely impracticable” and the
“impossible in principle” is taken to be of enormous epistemo-
logical and even ontological consequence—bearing, e.g., not
only on the question of whether the world is deterministic,
but also, if so, on whether, as some would have it, the truth
of that fact impinges on the possibility of free will, and the
like. The issue plays a role, too, on standard interpretations of
the philosophical impact of the Gödel incompleteness results,
Turing’s proofs of the unsolvability of certain problems, etc.

Programmers, to put it bluntly, see things differently. The
“absolute computability” results that captured philosophical
attention in the 1920s and 1930s, cited above, have given way,
not only in imaginative and practical importance, but also in
theoretical weight, to the so-called relative computability or
complexity22 results, having to do with the difficulty of doing
things—with just how hard it is, how hard it can be proved to
be, in fact, to accomplish certain tasks. Some of these results
are expressed in terms of what is called temporal order, in the
sense of how much time a problem would take to solve (more
generally: an algorithm would take to compute) as a function
of the size of its input.23 But even when the order is low or

22. See the discussion of complexity in fn. ■n, below.
23. Specifically, if the input is of size x, then the complexity order of an
algorithm can be understood with reference to the character of the larg-
est factor proportional to x in the equation stating the amount of time
that the algorithm would take to complete. Thus if the amount of time
is proportional to x itself (i.e., to the size of the input), the algorithm
is called linear; if proportional to x2, quadratic; if proportional to xn for
some integer n, polynomial; if proportional to ex, exponential, etc. (cont’d)

As many readers know, the most famous open problem in the area of
computational complexity theory is the as-yet unsolved issue of whether
p=Np—i.e., of whether the class of deterministic polynomial algorithms

 Introduction (V0.73)

 xvii

small—linear, or even finite—the amount of time can still
be astronomical (chess being the standard example, which as
mentioned is finite but still of a size transcending all practical
possibility). The bottom line is that some, even many, opera-
tions are simply “too hard” to carry out, in anything remotely
like the current universe.24

For programmers, that is, the difference between what is
practicable and what is impracticable is more important than
that between what is finite and what is infinite. To put it in
the plainest possible language: the difference between small
numbers and large numbers (where ‘large’ means ‘very large’) is
taken to be more important than between ‘large’ and infinite).
The philosophical significance of this fact, moreover, is that it
does not simply stem from programmers being an instrumen-
tal lot, focused on efficiency and pragmatics at the expense of
theoretical or conceptual depth. The issue cuts deeper. Mari-
nating in computational practice, in my experience, affects
one’s brain—leads one to a profound philosophical recogni-
tion that it is the distinction between what is practicable and
what is impracticable, rather than that between what is finite
and what is infinite, that is of theoretical, epistemological, and
ontological significance.

Philosophical habits die hard. Some readers will resist this
argument, claiming something along the following lines: that
the difference between what can and cannot be done in prin-

(algorithms whose temporal order, given input x, is proportional to xn
for some integer n) is equal to the class of non-deterministic polynomial
algorithms (very roughly, algorithms the correctness of whose answers
can be checked in polynomial time).
24. Complexity calculations of this sort are easy to find on the web.
Chess may be finite, but since the number of possible moves is estimated
to be on the order of 10123, the minimal unit of temporal variation ap-
proximately 10-35 seconds, the age of the universe about 1018 seconds,
and the number of subatomic particles on the order of 10-80, so the
maximum number of individual atomic vibrations since the beginning
of time is about 1035·18·80 = 10123.… «………»

xviii Indiscrete Affairs · I

ciple is more profound than that between what is and what is
not practical. But the very formulation of that reaction shows
that it exactly misses the point. What computationalists have
come to realize is that these are matters of principle. That is
the point of all those theorems. They are principles of practice.

The issue is ultimately one of dynamics. Computer sci-
entists, I believe it is fair to say, are among other things fun-
damentally interested in time. And although “computational
time” is sometimes theorized abstractly, there is no ambigu-
ity that it is real time—genuine temporality—that is at issue.
Husserl is at point.25 In philosophical discussions of comput-
ing, particularly in the context of the ctom, it is famously said
that computation is “medium independent,” in the sense that
it is deemed possible to implement any given computation on
an unbounded number of different physical substrates. But
no matter how arbitrary the details of the spatial and causal
mapping,26 the dimensionality of the mapping is in no sense ar-
bitrary: that computational time be implemented as real time
is absolute.27

Computational complexity theory is thus appropriately
understood, philosophically, as a theory of temporal princi-
ples. So if it can be proved, in a principled way, that doing α
would require billions of times more time than the universe
has existed, or is predicted to exist, then to a computationally
trained imagination α is impossible in principle—just as impos-
sible as if it would take an infinite amount of time. To assume,
as if it were an a prior God-given truth, that application of the

25. «ref Husserl, Vorlesungen zur Phänomenologie des inneren Zeitbe-
wusstseins (1928), translated as The Phenomenology of Internal Time Con-
sciousness, Indiana University (1964).»
26. And I am not convinced that they are that arbitrary. See Aos.
27. It is not possible to map the “temporal” dimension of a computation,
no matter how abstractly viewed, onto a spatial dimension of the under-
lying substrate, and still call the result a computation—e.g., by laying
out on paper the evolving state of a finite state controller. At best the
result would be called a model or a representation.

 Introduction (V0.73)

 xix

predicate “impossible in principle” requires abstracting away
from all issues of temporality comes across as the prejudice
of someone who is, to be blunt, temporally unprincipled. And
what kind of philosophical firm ground is that?

The issue does not stop there. A deep underlying theme of
the theoretical transition that computer science has ushered
in, from its origin in logic and the philosophy of mathematics
in the early 20th century, through the next hundred years, has
been a general shift from a focus on states and, as they have
classically been called, “state transitions,” towards a more direct
focus on process, temporality, and dynamics. Think of how we
used to theorize computations, thirty years ago, in terms of
memory, instructions, state transition functions, etc., and contrast
that to contemporary discussions, which are far more likely
to be theorized in terms of threads, forks, joins, agents, behav-
iour, processes, etc. The analogy with classical physics is hard to
miss. Surely the most important ontological insight in New-
tonian dynamics was the recognition that, at least in the meso-
scale physical world, what is regular and law-like, what repays
deep theoretical attention, is change, with state being deriva-
tive. From a purely physical point of view state is ontologically
no more than the accumulation of change over time through
law-like transitions.28 While it may not match our mundane
world view or “natural ontological attitude,” ontologically, how
things are is derivative; how things change, primary.

Strikingly, philosophical theorizations of mind, epistemol-
ogy, and logic have not made any such dynamical transition.
In logic, we still give theoretical primacy to truth, viewing it as
a normative predicate on states—what I elsewhere call a stati-

cal norm.29 The task of temporalizing it is left to the poets and
mystics—in their talk of “walking in truth,” their characterisa-

28. Change that started out from those infamously diabolical boundary
conditions.
29. ‘Statical’ because it is a norm on states—as opposed to static, which
would mean that the norm itself would not change.

xx Indiscrete Affairs · I

tion of “truth as a way.” Then, given a secure footing in such
a statical conception of truth, logic imposes an ontologically
and explanatorily derivative norm on change—on transitions
in proof theory, on moves taken by a theorem prover, on infer-
ence steps and inferences as a whole, etc.: that they be truth-
preserving. Soundness and completeness are the same; they are
derivatively defined, in terms of a prior conception of stati-
cal truth. Similarly in economics, when we talk about ‘utility
maximization,’ and elsewhere throughout reigning intellectual
regimes. In all these cases, the dynamical norms30 are deriva-
tively defined, in terms of what we take to be ontologically and
explanatorily primary statical norms.

In my estimation, computer science has not yet developed
very good theoretical machinery for talking about processes
and dynamics31—a topic I return to in §6. But one would miss
some of the most important facts about computing if one were
not to recognize how much of computational analysis has nev-
ertheless been shifted, torqued, and redeployed so as to move
our focus from states onto changes and behaviour, from the
static to the dynamic. The shift is not as manifest as it might
otherwise be, because often the theoretical machinery used to
effect this change is not superficially distinct; rather, classical
apparatus has been morphed and torqued to target behaviour.

One case deserves specal attention here. Throughout these
papers, I return again and again to the fact that, in computa-
tionalists’ hands, the notion of ‘semantics’ has been repurposed
to name the relation between programs and processes—i.e.,
the relation between static programs and the dynamic be-

30. That is: the norms on the dynamics, as opposed to dynamic norms,
which would be norms that change. See fn. ■n.
31. «Ref dynamic systems theory, and its upsurge in popularity in cog sci.
But that machinery is not only applicable only to continuous processes,
but also, more seriously, to processes that can be assessed in terms of a
numerically-valued measure property. Computational processes are not
only in general disjoint, discontinuous, discrete, etc., but measure prop-
erties are nowhere in view.»

 Introduction (V0.73)

 xxi

haviour that results from running or executing them—rather
than the relation between the computation and the world or
task domain that it would intuitively be taken to be about. The
latter relation—the relation that philosophers would probably
unquestioningly take to be the important semantic relation—
remains by and large untheorized. It is because of this repur-
posing, I believe, rather than any deeper metaphysical com-
mitments on computationalists’ part, that intuitionistic type
theory and constructive mathematics have grown so popular
in computational theorizing. How to deal with the omissions
and demerits of this practice I leave until later; for present
purposes, what is telling about these developments is how
they betray the theme currently in focus: an unadvertised and
as-yet inadequately theorized but nevertheless hugely impor-
tant shift towards bringing dynamics, process, and behaviour
onto theoretically center stage.

Return to the topic that brought us here: how a serious ex-
amination of computing might not just exploit philosophical
methods and insights, but affect philosophy itself. The three
examples I have cited are relatively simple: (i) the inadequacy
of numerous familiar but ultimately too-simple binarisms, (ii)
a potential reconceptualization of our understanding of re-
duction and implementation, and (iii) a shift towards a more
dynamic conception of principle and a granting of ontological
primacy to dynamics and process. Imagine what it would be
to bring these insights and adjustments into our understand-
ing of mind, just to take one obvious case. Suppose comput-
ing, once philosophically understood, could lead us to develop
analytic tools for understanding the ways in which the saying
affects the said. Suppose we constructed tools and techniques
for understanding implementation, particularly implementa-
tion of process, and could bring theoretical equipment to bear
on our understanding of the relation between consciousness,
mind, the personal and the subpersonal, and the relation of

xxii Indiscrete Affairs · I

all to the neuroscientific. Suppose we could develop a genu-
inely dynamical conception of norms, rather than defining the
norms on thinking (which after all is a process) derivatively in
terms of a statical conception of truth. And so on. This is what
I imagine would come from a serious philosophical investiga-
tion of computing. It would affect our understanding of what
mind is. The computational theory of mind would no longer
simply refer to the mind as computational, understood to mean
something like this: that cognition, roughly as presently un-
derstood, arises in or supervenes on a computational substrate.
Rather, and surely much more interestingly, it would suggest
something more like a theory of the computational mind.

Nor would mind, and the analytic philosophy of psychol-
ogy, be the only philosophical topics affected. A very quick
example. In a recent dissertation,32 Kevin Eldred conducted a
phenomenological analysis of the mode of being enjoyed by
avatars in the massively multi-player online game World of
Warcraft,® arguing: not only (i) that contemporary analyses
that view avatars as tools, prostheses, virtual bodies, fictional
agents, and a host of other familiar ontic possibilities largely
miss the point; but also (ii) that sustained serious play in such
communities is a genuine (not inauthentic) form of world-
disclosure, worthy of sustained phenomenological analysis;
and also—and this is where it gets interesting—(iii) that such
analysis not only illuminates the realms of online gaming, but
puts pressure back onto our understanding of phenomenology
itself. In particular, he raises the probing question of whether,
even if “death” in such online games is virtual rather than real,
authentic Being unto virtual death may not have implications
for Dasein different than, and perhaps in some ways more il-
luminating and instructive, than the classically theorized inau-
thentic Being towards real death.

It is not my purpose here to weigh in on this or any of the
other possibilities adduced above. The point is more general.

32. «ref»

 Introduction (V0.73)

 xxiii

Computing is not merely a medium, or a substrate, or a market
opportunity for philosophical reflection. The reconfiguration
of the age of mechanism and the materialization of the seman-
tic and normative constitutive of computational practice are
topics that should and will reverberate throughout philosophy
for centuries to come.

What about the other direction—the impact of philosophy
on computing? Again, the ctom is a useful foil in terms of
which to ask the question. On a schematic view of the thesis
as something like the equation “mind ≈ computing,” or “minds
⊂ computers,” one might imagine the impact to be symmetri-
cal, affecting our understanding of computing as much as our
understanding of mind. To my knowledge, however, that di-
rection of implication is rarely explored. In fact the thesis un-
derwriting the ctom is generally understood along something
like the following lines, I would hazard, with computation
taken as already theorized:

1. Theory-laden: Given that computing is as we think it
is—formal symbol manipulation, paradigmatically—
the mind is like that (is implemented as that, is to be
understood in terms of that, or whatever).

In my teaching, and for many years in my own research, I
have rejected this theory-laden reading in favour of something
more empirical and ostensive:

2. Ostensive: The mind is like computing (is imple-
mented as a computation, is to be understood in terms
of computing, etc.), whatever it is that computing is like.

The ostensive formulation makes the ctom doubly empirical,
a thesis about computers as well as about minds, by opening
the question of what computing is—the subject matter of
Aos, and, in my view, a stunningly open and as-yet unresolved
issue. But neither formulation brings forward a third issue, di-

xxiv Indiscrete Affairs · I

rectly pertinent to the question of the engagement between
computer science and philosophy:

3. Reflexive: What would computing be like, if comput-
ers were like minds?

In Turing’s original article, of course, the very notion of ‘com-
puting’ is characterised with reference to human activity (the
activity of “computers,” who in his day were people—mostly
female). In recent decades, I believe it is fair to say, the human
as a source of inspiration for the nature of computing does
not receive much attention, even if human activities provide
an inspiration for certain kinds of computational architecture.

Yet this third reading has also pervaded my own work, and
figures substantially in the papers in this volume—a reading,
that is, in which the impact flows from mind to computing
as well as from computing to mind. As already intimated, the
issue is especially pertinent to the issue of semantics. As ex-
plained in numerous ways throughout the following pages, my
take on semantics parts company with prevailing practice in
computer science; the present point is that it ties much more
directly into semantics as it is understood to be a property
of human language and thought. Both in this volume and in
the next,33 I not only take inspiration from the human case,
but in fact take the nature of representation and semantics
and the like to be paradigmatically as exemplified by people,
and then apply those understandings to the computational
case—assuming that, if computers represent, they must do at
least some kind of justice to the nature of representation as
exemplified by human activity. Similarly, my arguments about
the non-causal (non-effective) character of semantical proper-
ties such as that of “being referred to,” and my insistence on
theorizing what I call the “declarative import” of programming
languages, clearly derive from an understanding of the human
case.

33. See in particular “Representation and Registration,” in Vol. II.

 Introduction (V0.73)

 xxv

And so on, for a myriad other issues. And to return to the is-
sue with which this discussion started, having to do with the
character of engagement computer science and philosophy, I
am not saying that rapprochement would be easy—or even
suggesting that ‘rapprochement’ is the right word.34 The point
is merely this: if we are to get to any such future, the encounter
of the fields will need to be much more forceful than it has
been to date.

 2 Etiology
The essays collected here do not collectively present a stable
and rigorous theory of anything. As regards the founda-
tions of computer science and philosophy, they do not even
achieve fission, let alone fusion. Rather, they are presented as
something of an historical record, documenting one person’s
struggle, over several decades, to investigate a variety of issues
on which the two fields at a minimum overlap, on which they
have developed contrapuntal intimacies, and where possibili-
ties of deeper engagement are evident.

The papers in Volume I were primarily written between
1982 and 2002. I might say that they start out investigating
a variety of problems having to do with the ontology and se-
mantics of computing—though it should be admitted that
that is a relatively content-free claim. By ontology I basically
mean what computation is, and within the realm of seman-
tics include pretty much everything else: how it relates to the
world. Nevertheless, since the language in terms of which the
discourse is conducted includes both ontological and semanti-
cal terminology, that is the frame from which they are best
initially approached. A subset of the papers are devoted to an
analysis of what I called reflection—a computational architec-
ture in which systems are constituted with explicit reference to
ingredient self-descriptive theoretical models, in such a way as

34. See the sidebar on “Computer science as an empirical inquiry.” «???»

xxvi Indiscrete Affairs · I

to provide them with the capability of both “reasoning about”35
and modifying their own behaviour. As becomes evident in
the ensuing discussed, moreover, because of the self-descrip-
tive aspect,36 little about computing escapes the compass of
those reflective deliberations.

Accompanying each paper, I have included a short intro-
duction, in an attempt to provide some explanatory context.
These introductions—or “covers,” as I call them—are far from
neutral; they unapologetically reflect a particular (my own)
2012 perspective. As well as briefly indicating my current view
of each paper’s achievements, negative as well as positive, I say
a few words about how I would approach the issue were I to
tackle it today.

The papers in Volume II are by and large more recent, most
having been written in the first decade of this century. In con-
trast to those of Volume I, most are previously unpublished.
Though the first several focus on computation, and others
make use of computing as an example, the emphasis gradu-
ally shifts, so as to become more bluntly metaphysical. Still,
the distinction between Volumes I and II is more historical
than thematic. Some of the papers in the first Volume—es-
pecially including “Varieties of Self-Reference” and “The
Correspondence Continuum,” but also “The Semantics of
Clocks”—tackle subjects, such as self-knowledge, correspon-

35. Quotes because the system is not a reasoning system; see the intro-
duction to Section ■n.
36. See “Varieties of Self-Reference,” ch. 6 of Volume I, for an analysis
of why reflective self-description goes beyond the more philosophically
familiar topic of self-reference, as studied for example in logic («ref Bar-
wise The Liar»). The model of computational reflection is more related
to so-called reflection principles in logic, though the complexity of the
issue in the computational case, and I believe the interest as well, is con-
siderably higher, because of the critical inclusion of dynamics. From an
epistemic point of view, one might say that reflection has more to do
with an integrated combination of practical reasoning and self-knowl-
edge, rather than merely with self-reference.

 Introduction (V0.73)

 xxvii

dence, and the measurement of time, that, though critically
applicable to computational contexts, are in no way inherently
computational. And while some topics considered in Volume
II, such as that of non-conceptual content, may not look com-
putational on the surface, it will be evident on anything more
than a cursory reading that my analysis is deeply affected by
computational examples and experience.

In part to make sense of this range of topics, but more spe-
cifically to explicate the particular ways in which I approach
them, I want to make four general framing comments here.
As a set, the papers were written from within an intellectual
context that, though not explicitly addressed in any of them,
it will help to understand, not only in order to see how the
individual pieces fit together, but also to make evident how
they can be understood—especially in retrospect—to present
a coherently developing line of thought.

 3 Computing
I have been interested in the fundamental nature of comput-
ing for more than four decades.37 By as early as the mid-1970s,
I had come to believe that all existing theories of computing
are inadequate, and for very deep reasons: conceptually con-
fused, empirically awry, unable to do justice to what matters
about computational practice, and inappropriately fundamen-
talist in a variety of ways—e.g., the mathematical theory of
computing’s presupposition, rather than, at least in my view,
anything like a compelling demonstration that computation
should be treated as an abstract phenomenon, rather than as
something that is in any essential way concrete. At first, as
spelled out in more detail in the introduction to Section B, my
concerns were primarily focused on semantics—though over
time, as already mentioned, and as explained in more detail in
§6, below, my sense of the difficulties shifted to include more
challenging considerations of ontology and metaphysics.

37. Specifically, since November of 1968; see «ref o3».

xxviii Indiscrete Affairs · I

Overall, my efforts to take the measure of computing have
been conducted into two broad parallel, complementary paths.
Just one of the paths is presented in the papers collected here.
At least in comparison to the other, this first path is relatively
more focused and technical, and investigates specific issues—
reflection, correctness, semantics, programming languages, compu-
tational semantics, and so on—in ways that not only aim to
shed light on those topics in particular, but to do so in such a
way as to open up and deepen our understanding of computa-
tion at a more fundamental level. The second path, underly-
ing the first, has involved conducting a full-scale, systematic
investigation of the philosophical foundations of computing,
in an effort to develop more adequate theoretical understand-
ing, in terms of which not only the particular issues that I have
chosen to concentrate on in the first path, but computational
phenomena in general, can be more adequately framed.

Results from the second path are not included here. As has
been promised for more decades that I care to number, the in-
tent is to publish the efforts in that direction separately, under
the general title The Age of Significance (Aos).38 That work is
expected to comprise a series of volumes that wrestle with the
surprisingly wide variety of notions, issues, themes, assump-
tions, and claims on which our current understanding rests.
Metaphorically, the Aos volumes can be viewed as reports on
an effort undertaken in the basement (even sub-basement),
reworking the most basic assumptions and theoretical pre-
sumptions—in an attempt to work towards more adequate
footings.39 The projects in the first path, discussed here, have

38. They are being made available online as well as on paper; see http://
www.ageofsignificance.org
39. One of the aims of that project is to reinstate and revive fundamental
and foundational concerns, notwithstanding both modernist and post-
modernist allergies to metaphysical foundations. As already suggested
in ch. 2 of O3, I believe it is possible to take on the issue of founding
an account (and a vision of life) in the world, without running afoul
of the well-rehearsed and compelling flaws of previous “metaphysical”

 Introduction (V0.73)

 xxix

by and large been conducted at higher storeys. They address a
variety of phenomena not themselves necessarily or obviously
computational, though in ways that honour computational
understanding and practice.

In order to show how these higher-level papers should fit
into that longer-term, more systematic analysis, I have in-
cluded, as the first paper in this collection, a brief (and dense)
summary of the first phases of that underlying (“second path”)
investigation.40 For purposes of this Introduction, what mat-
ters about that paper is its main conclusion: that what starts
out as a search for a more adequate theory of computation
ultimately fails. The reason for the failure is not, I claim, that
because while a better theory of computing may someday be
brought forward by someone else, I myself have succeeded
neither in finding nor in developing such a thing. More seri-
ously, I claim that a more adequate theory will never be pos-
sible. We will never have an adequate theory of computing for
the simple reason that, contrary to what as far as I can tell is
almost unanimously otherwise believed,41 computation is not
a subject matter—not, as philosophers might say, a “natural
kind,” not the sort of thing of which a deep, penetrating, use-
ful theory will ever be developed. Rather than being like tigers,
or neutron stars, or possibly even democratic principles, com-
puters, in my view, are more like cars—objects of inestimable
practical value, but as regards theoretical reconstruction more
a madcap bricolage of parts and ideas and processes that re-
flect our best emerging sense of how to build powerful mean-
ingful machines, rather than anything of specific theoretical or
intellectual interest.

One of the briefs of the Aos series, as well as providing sup-

and foundational approaches. Not incidentally, some of the intuitions
as to how this can go have developed out of my experience in building
computational systems.
40. “The Foundations of Computing,” section A.
41. Philip Agre is a possible exception. «discuss»’

xxx Indiscrete Affairs · I

porting arguments and evidence for this “not a subject matter”
claim, is to argue, first appearances notwithstanding, that this
conclusion should be viewed as exhilaratingly positive, rather
than depressingly negative—that it should warm the heart
of even the most unregenerate computational triumphalist.
What it means is that computation should not be understood
as a specific, which is to say restricted, kind of thing42—digital
machine, formal symbol manipulator, information processor,
or anything else—but rather as an unrestricted laboratory in
which to explore issues of meaning and mechanism.

The implication of that conclusion for the issues explored
in these papers—reflection, self-reference, general correspon-
dence, semantics, time, etc.—is both straightforward and
strong. Appearances notwithstanding, to put it as simply as
possible, it means that the insights and architectures and chal-
lenges and solutions developed in the computational arena are
not specific or particular to the computational case, since there
is no “computational case” to be specific to, but are instead in-
sights, architectures, challenges and solutions about reflection,
self-reference, correspondence, semantics, etc., in general.

Needless to say, this conclusion considerably ups the ante
on the point made at the outset: that a philosophically tren-
chant account of computing should have an impact on phi-
losophy—not just be of philosophical interest or importance,
but actually affect philosophical analysis itself. If I am right that
computation is not special—not a natural kind, not a subject
matter worthy of study per se, not a subject matter of which a
satisfying or penetrating theory will ever be developed—then,
as just suggested, studies of any phenomena in the computa-
tional realm, be they self-reference, reflection, semantics, etc.,
or any other topic that I myself have not pursued, are no less
than studies of self-reference, reflection, semantics, etc. tout
court. Fusion is thus a better metaphor than fission (and any-

42. I.e., ‘specific’ in the literal sense of constituting a species, subordinate
to some higher order genus.

 Introduction (V0.73)

 xxxi

way the released energy is higher). Philosophical insight and
computational understanding do not just bear on each other;
they should be merged—forged into a single account that in-
corporates what is best in both, rather than remaining at a safe
and self-preserving distance. Hence the sentiment hinted at
above: projects in philosophy and computation, philosophy of
computation, computational philosophy, and the like, should
not be applauded. They should be replaced.

Two immediate comments, to deflect misunderstanding.
First, it is not my intent to exaggerate present achievements. I
make no claim that contemporary computer science has devel-
oped insights relevant to—or, rather, part of—moral theory,
or political philosophy, or aesthetics. At least not yet. But if, as
suggested above, and as argued in Aos, computational practice
is indeed best understood as an unrestricted laboratory for
the exploration of meaningful material systems, then we are
virtually destined to encroach on such territory in due course.
The issue is not simply that we will someday develop technical
systems about which ethical issues arise. That has been true
for a long time already (what is the appropriate ethical stance
to take towards failures in mandated medical systems—or
towards avatars, or the people “behind” them, that commit
crimes in massive social virtual worlds?43). Rather, only blind-

43. Consider another example. Beginning in the 1970s and 1980s, au-
tomobile manufacturers introduced computerized braking systems
(known as ‘ABs,’ from the German Antiblockiersystem), which can de-
tect skidding and control the braking force of each wheel separately, and
which for that and other reasons are better than any person can be in
slowing a car down rapidly. Their wide-spread introduction demonstra-
bly saved human lives (though, ironically, there is also some evidence
that people drive just that much faster to maintain the same death rate
as before. «ref») The curious ethical fact is that, whereas the number of
deaths per, say, 100,000 miles of driving is reduced, the systems will in-
evitably occasionally fail, and although they are designed to be as failsafe
as possible, and to devolve to regular braking if they do fail, some failure
and even human death due to malfunction is inevitable. Moreover, the

xxxii Indiscrete Affairs · I

ness to the magnitude of impending domestication of the
physical substrate of human life by computing, genetic engi-
neering, nanotechnology, and their combination—only rank
human chauvinism—would deny that that we will eventually,
and perhaps sooner than society is ready for, build systems
that are themselves loci of ethical responsibility, such as machines
that can make their own aesthetic judgments, machines that
should be punished, or at least censured, when they do things
that are wrong, machines that it will be unethical to unplug or
bring to a halt, machines, to put it in philosophical terminol-
ogy, with autonomous and original intentionality (or at least
as partially autonomous and original as our own).

Second, and relatedly, some people will insist that the com-
putational realm will at best give us empirical evidence for this,
practical experience of that, and so on, without impinging on
transcendental, normative, or other “genuinely philosophi-
cal” considerations. How they know this, especially a priori,
escapes me, I confess—that is, how they know, a priori, that
computational engagement is somehow restricted to the realm
of the empirical. As much could be argued for our children,
or our texts. “But computers are just machines!,” someone will
argue. Really? Have they done a controlled test?

Eschewing dualism is strong stuff. And don’t forget the

small number of people who are hurt or die due to their malfunction
will almost certainly be different from the people whose lives are saved
in virtue of their introduction.
If a limousine driver “fails,” in such a way as to cause a fatal accident, we
are liable to blame the driver. If an ABs system fails, we may say that we
“blame the braking system,” but the system is not subjected to ethical
censure. “It was just a breakdown of a physical system,” we might ar-
gue. As neuroscience proceeds, we are destined not only to understand
the brain and its role in choreographing behaviour better, but to have a
detailed understanding of the neurological substrates of unethical be-
haviour. So the driver, too, will be “subject of a breakdown of a physical
system.” … [[is this worthwhile? … perhaps not]]

 Introduction (V0.73)

 xxxiii

Maharal of Prague.44 Yes, we are in, of, and about the world—
but so too are our creations. Any proposed argument that the
way we humans are in the world necessarily differs from the
way that computers are (and will be) in the world requires an
account of what it is to be a computer. And an account of what
it is to be a computer is exactly that which, I argue, we do not,
and will not, have. Dasein is being unto death? And computers
do not die? Well, someday we may not die, either. Dasein will
have to catch up.

At least as this is being written, many will find talk of such
developments to be the stuff of science fiction—or, worse,
culpably imperialist, or pathetically shallow. I trust it is clear
that, as regards the depth of the human condition, the profun-
dity of philosophical reflection, and the gravity of the stakes,
my sympathies lie with such critics. It is on the innocence and
containability of the technological that I differ. It can hardly
be recommended that Asimov’s laws of robotics be considered
in graduate courses on value theory. But given the relentless
pace of computational development, it is inevitable that we
will soon start to build, if we are not building already, systems
and devices and processes to which substantial, not superficial,
normative and ethical considerations apply. And think about
biology. It was not that long ago that it would have seemed
reductively profane to suggest that altruism, or fidelity, or pro-
clivities for truth-telling could be illuminated by biological
analysis, or, for that matter, hosted in “merely biological” crea-
tures. To dream that computing will stay safely impounded in
a machinic stockade will soon seem equally quaint.

 4 Terminology
The status of computing as a laboratory rather than subject

44. Rabbi Judah Loew ben Bezalel, the late 16th century chief rabbi of
Prague, who (at least since the story was popularized and likely invented
in 19th c. German literature) is alleged to have created a Golem.

xxxiv Indiscrete Affairs · I

matter is the first issue to keep in mind while reading these
papers. It leads to a second, which bedevils the papers col-
lected here: that of theoretical vocabulary. As is again explored
in more detail in Aos, where some of the historical threads
are disentangled, the various fields and disciplines that study
the general category of what, as already indicated, I in general
characterize as meaningful mechanisms—including at least
computer science, philosophy, psychology, linguistics, artificial
intelligence, and cognitive science—are distinguished by us-
ing a large number of common terms and concepts, but alas
in multiplicitous ways, with diverse meanings, connotations,
and implications.

The problem is well-known, and cuts deep. It is evident
even to a beginning student that such terms as concept, function,
symbol, meaning, reference, interpretation, identifier, procedure,
process, argument, value, object, number, ontology, and a spate of
others are differentially understood by theorists of different
stripes. So long as literatures remain disciplinarily confined,
confusion can be locally minimized, even if divides between
and among disciplines are thereby deepened. But the termino-
logical overlap raises problems for interdisciplinary and mul-
timethodological conversations in general,45 and is certainly
an issue in these volumes. Virtually all of the technical terms
I employ will be differently understood by different readers,
depending on their intellectual and disciplinary background.46
Moreover, the problem is not just limited to large-scale no-
tions, as an example will illustrate. Though it seems surprising
in retrospect, it was only after working closely for two years
with the logician Jon Barwise, including on some relatively
technical construction projects, that we discovered that the
seemingly confined, technical notion of binding a variable was
differently understood in logic and computing.47 Moreover, as

45. «ref “The End of Meth”»
46. «quote “ontology is hot” ad in a London paper»
47. «explain: ‘bound by’ and ‘bound to’; and ∆s on “whether it is bound”.

 Introduction (V0.73)

 xxxv

detailed in the introduction to section c, and presaged in the
next section of this Introduction, even when the overt mean-
ings of a term are disambiguated between disciplinary con-
texts, issues of assumption, connotation, methodological bias,
normative standard, etc., remain lurking in the background,
waiting to sew confusion and misunderstanding.

In my teaching, as well as mentioning this terminological
problem explicitly, I sometimes distribute an informal crib
sheet, consisting of a matrix with a dozen or more terms on
rows, crossed with half a dozen fields in columns, with each
entry containing a brief synopsis of how that term is used in
that field. But just being aware of the problem, and knowing a
single sentence about the differences, is not enough to ensure
clear communication, since (as in the case of the crib sheet)
the problem recurses when one tries to explain what a word
means, or how it is being used. When linguistic or termino-
logical confusion engenders misunderstanding and cultural
clash, that is, semantic ascent is not a guaranteed route to reso-
lution.48 One does not thereby gain access to a shared “meta-
lingua franca,” an unambiguous common ground, in terms
of which to explicate differences—a stable meta-level where
both parties can adopt a unitary shared perspective in terms of
which to survey the multiplicitous distinctions below.49 In my
experience, semantic descent works better: substantive engage-
ment with examples. Not just adversion to examples, either,
though that may be of some help, but examples need to be
pointed to with language, and so can misfire. Shared concrete
practical engagement with examples is more reliable—invita-
tions to the lab, collaboration on mutual normatively-laden

And then go on, in a second ¶, to talk about the Lisp, Language, and
Literature course at Stanford, and my suggestion that cslI start a tech-
nical term library.»
48. «Ref BHs “The Microdynamics of Incommensurability.”»
49. «cite BHs»

xxxvi Indiscrete Affairs · I

projects, working together in the trenches, and over dinner.50

In the essays included here, I have tried to be as intuitive
and clear about the use of terms as I can, but I have no il-
lusion that difficulties will not arise. They certainly arose, in
computer science, in response to the 3Lisp papers I wrote in
the 1980s, some of which are included here in Part B. For the
record, it is perhaps worth saying that the primary disciplin-
ary practices I have written out from are computer science,
logic, philosophy, artificial intelligence, and cognitive science.
Psychology and linguistics have been less central in my think-
ing, and my vocabulary is unlikely to reflect their biases. And
no one has ever confused me with, or taken me for, a social or
cultural theorist of any stripe.

One task I have undertaken, in the introduction to each
section and individual paper, is to add explanatory footnotes
in some of the places where I am aware that confusion may
arise from perspectival differences in vocabulary. I have also
indicated, in those introductions, some of the places within
the papers themselves where terminological missteps are most
likely. But as always, these comments reflect just one person’s
(in fact: the same person’s) view. Readers may want to make
their own annotations, as they make their way through.

 5 Mechanism
A third issue permeating these papers has to do with the no-
tion of mechanism, and with the role of mechanistic explana-
tion. Two considerations bring mechanical or mechanistic is-
sues to the fore in computational investigations generally, and
especially those of the sort presented here.

50. The issue is hugely complicated by different metaphysical views—
whether readers are Platonists, formalists, intuitionists, nominalists,
constructivists, etc. The problem is that whereas those terms are com-
mon knowledge in philosophy, one cannot necessarily advert to them
in discussions in artificial intelligence and computer science—though
adherents of these and other metaphysical positions are as distributively
exemplified as in any other arena.

 Introduction (V0.73)

 xxxvii

 5a Effective computability
To start with, it is universally agreed that computation has
something to do with mechanism—with what can be done,
with what is effective, with what behaviour it is possible to
construct a device to exhibit. That agreement is only pre-
lude to a raft of questions: (i) whether the relevant notion of
a mechanism should be treated abstractly or concretely; (ii)
how time should be handled—ignored, treated topologically
or metrically, or something else; (iii) whether computing is
restricted to formal mechanisms, or to digital mechanisms, or
to both—or whether it includes, at an appropriately abstract
level of abstraction, mechanisms of any stripe; (iv) whether it
is adequate, in giving an analysis of a computational process
or device, merely to characterise a mechanism’s input-output
behaviour, or whether one should or must refer to internal
(causal?) ingredients—and even then, whether those ingre-
dients should, recursively, be characterised in input-output
behavioural fashion—i.e., to illustrate a terminological issue
of the sort discussed in the previous section, whether those
ingredients should be treated in ways that in philosophy of
mind, but definitely not in computer science, would be called
functional, rather than in terms of material constitution; and
(v) whether mechanisms should be functionally or constitu-
tively characterised, however that difference is made out. And
so on and so forth. And underlying them all is the background
issue of what it even is to be mechanical in the first place—a
question that takes one back at least to Newton’s discussions,
in the Scholium, of what he took to be the non-mechanical
character of gravity.

Yet in spite of this cornucopia of views, it remains a durable
truth that, somehow or other, in ways that it is incumbent on
a theory both to demonstrate and to explain, concerns with
the mechanical or the mechanistic are invariably at the cen-
ter of the computational question. Think of the most highly
regarded mathematical theory in all of computer science: it is
called a theory of effective computability. As already suggested,

xxxviii Indiscrete Affairs · I

I have troubles with the second of those two words, but none
whatsoever with the first.

It is common, in fact, for computational sophisticates to
think of computer science as something like the epitome of
our understanding of mechanism—the apex of a tradition
reaching back to at least the beginning of the Scientific Revo-
lution. Challenging that characterisation is the additional fact
that computing can also be taken, as we have already seen, to
incorporate large swaths of logic, reaching all the way back to
Aristotle, which brings other issues into play—especially con-
siderations of meaning, reason, rationality, and mathematics.
But if we just maintain focus on the effective, which anyway is
likely the preference of most computer scientists, many would
take the development of computing to represent something
like a triumphant consolidation of the mechanist philosophy.

 5b Blanket Mechanism
A second consideration brings the topic of mechanism to the
fore in these pages, wider than anything recognized as spe-
cifically computational, and thus of special interest here: the
methodological (rather than substantive) presumption that
good scientific explanation must be causal explanation. I will
leave general discussion of this methodological commitment
to another occasion;51 for present purposes it is enough to
say that, especially among scientists, but in many quarters of
philosophy as well, a commitment to causal or “mechanistic”
explanation is remarkably widespread. Especially among con-
temporary students, that “explanation” means causal explana-
tion seems to be assumed virtually a priori.

The juxtaposition of the these two facts—the substantive
one, that issues of effectiveness and mechanism are and should
take a central or even defining role in the computational realm,
and the methodological one, currently espoused by so many
people, that causal or mechanistic explanation is an unquali-

51. «ref Aos»

 Introduction (V0.73)

 xxxix

fied good—leads to a phenomenon that for discussion I will
call blanket mechanism: an often implicit but nevertheless
resolute tendency to assume, in discussions of computing,
that the entire theoretical discourse should be restricted to what
is mechanical or effective.52 It is almost as if, in the face of these
paired considerations, the embrace of mechanism transcends
both ontological thesis and methodological commitment to be-
come a wholesale and engulfing governing metaphysical norm.

Blanket mechanism is nothing I support. Perhaps because
I have never embraced it, I had no idea, when the papers in
these volumes were written, how widespread blanket mecha-
nism has become, especially among computer scientists. One
reason I did not appreciate the fact has to do with the issue
discussed in the previous section: that of vocabulary. In spite
of the centrality of the effective and mechanical in the contem-
porary computational imaginary, it is striking, as already men-
tioned, that the technical terminology of computer science
was overwhelmingly taken from logic—as evident in such
still-familiar notions as symbol, reference, identifier, semantics,
(programming) language, interpretation, etc. And in those logi-
cal traditions, especially in their historical guise, those notions
lie squarely on the meaning side of the meaning/mechanism
dialectic.

Because I was interested in representation and semantics,
and because from both historical and philosophical view-
points these mainstays of computational jargon are semantical
or intentional terms, I innocently assumed that, in computa-
tional discourse, they retained their semantical meaning.53 But
I was wrong. What has happened over the last fifty years, as I

52. I am intentionally not weighing in on the obvious question of wheth-
er I take blanket mechanism to be a metaphysical or a methodological
commitment. … «expand»
53. «Footnote on ‘semantic’ vs. ‘semantical’. “Semantic meaning” would be
redundant; but ‘semantical meaning’ is not.»

xl Indiscrete Affairs · I

have already suggested, mention in passing at several points in
these pages, and explain in more detail in Aos, is that, under
the aegis of a tacit, unquestioned submission to blanket mech-
anism, all those words have been re-interpreted or given new
meanings, in ways that convert them into names for mechani-
cal or mechanically explicable phenomena and relations.54

This is one of those statements that is likely to mean dif-
ferent things to different readers, and to provoke different
reactions.55 And that is the point. One of the most sobering
realizations I have come to, over the last several decades, is
how profoundly differences in interpretation and perspective
on these issues have blocked communication and impeding
understanding. So the issues are worth spelling out in a bit of
detail. With luck, a bit of effort clarifying the issues here will
aid in understanding the papers to follow.

 5c Logic
Classically, it was never assumed that what is real or exists is
restricted to what is mechanical or effective (effectively reach-
able, effectively constructible, etc.). For a particularly relevant
case, consider Turing’s original proof, in his original 1937–8
paper, of the limits of what can be effectively computed. In a
nutshell, the proof has the following structure. Let F be the set
of all mathematical functions, and E the set of functions that
can be effectively computed by a machine. Then what Turing
proved is that the set of computable functions is strictly smaller
than the set of functions: E ⊂ F. That is: to say that there are

54. As some readers will immediately suspect, advertence to mechanical
explanation to understand relationality is particularly problematic. See
Aos.
55. “It is just false to say that interpretation is mechanical!,” a philoso-
pher might exclaim. “Interpretation is the semantical phenomenon par
excellence.” “Of course semantics is causal!” a programmer might say.
“Don’t you remember Newell: ‘access to the object…is the essence of
designation’. Don’t you realize that we are scientists!” «Newell and Simon
1975, p. 116»

 Introduction (V0.73)

 xli

function than cannot be computed is to say that there are ele-
ments of F that are not elements of E.

For this claim and proof to make sense, the set F must be
taken to be perfectly and unproblematically real. In fact the
very idea that some functions cannot be computed requires
that those non-computable functions be metaphysically first-
class. As first-class metaphysical entities, they exemplify nu-
merous properties, one of which is the (again, perfectly real)
property of not being able to be computed by mechanical means.
Thus consider Turing’s negative resolution of the halting
problem—i.e., his proof that it is impossible to construct an
effective procedure to decide whether an arbitrary machine Mi
will halt on an arbitrary input Iij. From the point of view of
the proof, there is nothing metaphysically problematic about
whether Mi will halt on Iij. Either it will or it will not. There is
a determinate fact of the matter, a fact that is metaphysically
secure—a fact that would be manifest to an omniscient God.
All that Turing proved is that, as creatures made of clay, we
cannot have a general algorithm for determining what fact that
fact is.56

Thirty years ago, I would have taken these points to be so
elementary as to not have been worth including in a text such
as this (if not in fact outright insulting). What I have been
struck by, in the interim, is how pervasive the idea has be-
come, particularly among students in cognitive science as well
as computer science, that if something is not computable it is
thereby somehow metaphysically deficient—may not exist, may
not be a secure denizen of the pantheon, something like that. I
am not sure, if one were sympathetic to such a view, how—or

56. To “determine what fact a fact is” is more often described as “deciding
the fact—i.e., deciding whether Mi will halt on Iij. To “decide” a fact, or
to “decide whether a fact is true or false” has to do with representing it
in some way—typically, it in terms of such canonical names as True or
False (T or F, or $T or $F in 2/3Lisp, etc.). See Aos—especially Volume
III.

xlii Indiscrete Affairs · I

even whether—one could express the fundamental comput-
ability limits. But however that story might go, the success of
computation has apparently led to, or anyway this has been
my experience teaching over the last several decades, an up-
surge in the number of strong metaphysical (not just method-
ological) constructivists, nominalists, formalists, and other
stripes of mechanist appeal.57

Needless to say, not being a blanket mechanist, I do not believe
that theoretical discourse must or even should restrict itself to
the mechanical or effective, should limit itself to painting pic-
tures on the mechanical wall of the cave. Nor, at least in the
usual meanings of the term, am I a strong metaphysical con-
structivist (“social constructivism” is a different thing). These
facts are crucial to understand, in reading the ensuing papers.

Consider in particular the semantical framework I devel-
oped for 2Lisp and 3Lisp, based in large part on my under-
standing of classical logic, and discussed in the papers in Part
B. In accord with a classical approach, though the framing is
my own, I viewed (and continue to view) logic as consisting
fundamentally of a half dozen ingredients:

1. A syntactic domain S, of expressions;
2. A semantic domain D;
3. An interpretation function I mapping S into D;
4. Two relations on S:

a. Derivability (⊢): syntactically or formally defined;
and

b. Entailment (⊨): defined in terms of I and a se-
mantic consequence relation on D; and

57. Note that this has nothing to do with social constructivists: those
who believe that categories, or types, or objects themselves, are in whole
or in part the result of human projects or understandings. One can
perfectly well be—in some ways I myself am—a social constructivist
without endorsing the idea that, for something to exist, it must be com-
putable.

 Introduction (V0.73)

 xliii

5. A norm, placing conditions on how the whole system
is tied together.

The domains, relations and norm are depicted in figure 1; a bit
more detail is provided in the sidebar on pages xliv–xlv. Again,
at this schematic level, I take this structure to be elementary. I
also assumed, when I wrote the papers included in these vol-
umes, that at least in overall character it was something on
which everyone would agree, and thus did not need introduc-
tion or explanation.58

As soon became evident, however, that was an illegitimate
assumption, at least in computer science.59 To see why, we

need to answer the following critical question: which of the
domains S and D, and which of the relations ⊢, I, and ⊨, are as-
sumed to be subject to mechanical constraint?

To make the question precise, note that “being mechani-
cal” or “being effective” is a higher-order property—i.e., is not
something defined on objects or properties or relations in ex-
tension, but, like being causal (another higher-order property,
which effectiveness certainly resembles), defined over proper-

58. I am ignoring, for these purpose, the issue of whether one models
one or more of these domains or relations mathematically; see “The
Correspondence Continuum,” Chapter ■n.
59. See the introduction to Part B.

Figure 1 — Logic, schematically

xliv Indiscrete Affairs · I

Logic
As summarized in the text, I understand a system of formal logic to
consist of two domains, three relations, and a norm:

1. Domains:
a. A syntactic domain S,† consisting of a set of expressions or

formulae σi, written or constructed in a formal, recursively-
specified, compositional language, where formal, as well as
meaning precise, unambiguous, determinate, and a number
of other things, is taken to imply that the syntactic prop-
erties of the expressions are defined without regards to the
semantic interpretation (I, below); and

b. A semantic domain D, whose structure is subject to no a prio-
ri constraints whatsoever, though for the logic to be interest-
ing D will usually have a structure relevant to the interpreta-
tion of the expressions in S. It is common to take D to be a
set of possible worlds, of which one—the so-called standard
interpretation—is assumed to be the real (actual) world, and
where worlds are taken to consist of a set of objects, proper-
ties, relations, facts and/or propositions, possibly states of
affairs (objects exemplifying properties and standing in rela-
tions), etc.—i.e., to exemplify that which in §6 I call classical
ontology.

2. Relations:
a. A derivability relation, ⊢, instances of which hold between

one or more expressions σ1, σ2 … σj of S and another element
σ* of S;

b. An interpretation function I, maps elements of S onto ele-
ments of D; and

c. An entailment relation, ⊨, instances of which, like ⊢, hold of
one or more expressions σ1, σ2 … σ of S and another element
σ* of S, just in case, in the semantic domain D, the interpre-
tation I(σ*) is a semantic consequence of the interpretations
I(σ1), I(σ2) … I(σk). A standard notion of semantic conse-
quence is that I(σ*) be true in every possible world in which
the interpretations I(σ1), I(σ2) … I(σk) are all true.

 Introduction (V0.73)

 xlv

Thus in a particular case ‘mAN(socrAtes)’, ‘∀x mAN(x) ⊃ mortAl(x)’,
and ‘mortAl(socrAtes)’ might be elements of the syntactic domain S
(call them σ1, σ2, and σ3, respectively). And, crucially, the real historical
person we call Socrates would be an element of the semantic domain
S, along with the abstract properties of being a man and being mortal,
and various facts about who exists, who is a man, who is mortal, etc.
(with ‘socrAtes’ mapped by I onto Socrates, ‘mAN’ onto the property
of being a man, and ‘mortAl’ onto the property of being mortal). Thus,
since in all worlds in which the interpretation I(σ1) and I(σ2) are both
true, so as well is the interpretation I(σ3), then we would say that σ1
and σ2 entail σ3, or as it is written, σ1 ∧ σ2 ⊨ σ3 (i.e., in any world in
which Socrates is a man and all men are mortal, Socrates is mortal). In
addition—a separate fact—σ3 can be formally derived from σ1 and σ2,
written σ1 ∧ σ2 ⊢ σ3.

I have said that there is also a norm. The point is simple: one defines
a logic in which it is presumed that what is derivable should be what
is true or entailed. Although one could formally define spectacularly
many logical variants in which the derivability relation parted company
completely with the entailment relation, one would not. In typical math-
ematical treatments, one simply defines soundness (that what is deriv-
able is entailed) and completeness (that what is entailed is derivable) as
abstract properties of the system, and then tries to prove them true, or
anyway demonstrates that the system is sound (else it will be discarded
or redefined, or anyway dissed), and attempts to see whether it is com-
plete. While on the surface these practices may not look normative, in
point of fact, I believe, they are manifestly norm-driven.

Fundamentally, the norm has the following structure:
 «Name»: What can be done, effectively, should honour the seman-
tic, which in general will not be effective. [[possibly increase re pauci-
ty of effective, reach of semantic—towards the Representational
Mandate?]]

In my view, this same norm motivates computing, and human thought.‡

†The names S, D, and I in this exposition are my own, as is the use of σ (σ1, σ2, σi,
etc.); the symbols ‘⊢’ and ‘⊨’ are standard.
‡For more details see “Representation and Registration,” ch. ■n of Volume II.

xlvi Indiscrete Affairs · I

ties in intension, states of affairs, or what some philosophers
call “tropes”: objects exemplifying properties, as typically de-
noted by the use of gerundial phrase in English, such as being a
mesoscale projectile, or weighing 120 pounds. Thus a pulse on an
electrical line may be effective (capable of turning on a switch,
say), but not merely in virtue of being an identifiable object—
say, being the pulse named ‘pulse723’, or being “the pulse referred
to in this paragraph”—but because of being an electrical pulse
of a certain voltage. As the object that it is, the pulse I am call-
ing pulse723

60
 will exemplify an indeterminate number of other

properties as well, such as perhaps occurring exactly four bil-
lion seconds after Alexander Graham Bell cried “Mr. Watson,
come here! I want to see you!”, or being the pulse that I was hop-
ing we would see be emitted by a pulse generator this after-
noon in the lab, or being the pulse under discussion in these
pages, etc. Its being effective at turning on the switch, however,
results from its exemplification of the former property, not
from its exemplification of any of the latter ones.

The question on the table, therefore, is about what proper-
ties in a system of formal logic are required to be effective or
mechanical—and/or, which may be the same question, what
relations required to be effectively “computable,” in the stan-
dard sense. And given the foregoing preliminaries, on at least
on the default realist position, I take it that in classical logic
the answers would be taken to be unambiguous:61

60. There is no problem using the name, so long as we know that the
pulse’s efficacy as a pulse does not derive from being so named.
61. It is not as if there is a universally accepted definition of exactly what
it is to be a logical system, and someone might object that they could de-
fine a system of logic in which the syntactic properties were not effective,
or derivability was not computable, etc. But if one takes leave of these
constraints, it becomes possible to vitiate all standard logical results. For
example, one can violate Gödel’s incompleteness results for arithmetic
by defining the property of being true in the standard interpretation to
be a syntactic property (at which point it becomes trivial to define an
axiomatisation that is sound and complete).

 Introduction (V0.73)

 xlvii

1. Syntax must be effective, in the sense that the exem-
plification of syntactic properties by expressions in S
must be effective (for example: it must be mechanically
determinable whether or not an arbitrary expression
σi exemplifies an arbitrary syntactic property Sj); and

2. Derivability must be effective, in the sense that the rela-
tion ⊢ must be effectively computable.

If one were to define a “logic” that violated either of these two
principles, it would thereby be evacuated of intellectual sub-
stance and all theoretical interest. For example, suppose one
were to stipulate “true in the standard interpretation” to be a
syntactic property of arithmetic sentences, and to claim that β
could be derived (⊢) from α just in case β is true in any world
in which α is true. Then, contrary to Gödel, common sense,
and all that is right and good, one would perforce immediately
have a sound and complete axiomatization of arithmetic.62
That is, to put it bluntly, in the development of a logic, to vio-
late either of the above properties is to cheat.63

On the other hand—and this is what matters to my stance
against blanket mechanism—there is no reason whatsoever
that the other elements be required to be effective, or be re-
stricted to the realm of mechanism:64

1. The semantic domain D itself (i.e., the exemplification
of properties by objects in D denoted by expressions
in S); or

62. «…???…»
63. The implicit rules in logic and various allied technical subjects, con-
travention of which constitutes cheating, are a gold mine of insights
about what is genuinely going on under the surface. In Aos I explore the
conditions on what is known as a “reasonable encoding” as a device to
probe the metaphysical presuppositions and fundamental subject mat-
ters of computability theory. See especially Aos Vol. III, and also ch. 1 of
the present volume, “The Foundations of Computing.”
64. «Except refer to Earman.»

xlviii Indiscrete Affairs · I

Reference
Semantics, especially in logic, is often thought about primarily in terms
of truth—the semantic value, it is claimed, of sentences and claims. But
reference, in my view, is equally if not more important (notwithstanding
Frege’s insistence that reference serve as the handmaiden of truth): the
semantic value of names, noun phrases or terms. Roughly, the refer-
ence relation is what holds between a name, such as ‘Stravinsky,’ and the
person so named (the Russian-born composer who died in 1971)—or
between the thought processes of a lover and the person whom they
love, be they immediately in the vicinity or a thousand miles away.
What reference makes evident, but in fact is equally if less blatantly
true of sentences, is that semantics involves relations between linguistic
or symbolic items or expressions and a wider world.

What matters in discussions of the relation between blanket mecha-
nism and critical mechanism is that semantics, in the sense that under-
lies reference, is not an effective relation. Semantics is not an activity;
nothing happens in order to connect an utterance of ‘Stravinsky’ with
the long-dead composer. By analogy, consider the property of being the
tallest person in Milwaukee, or being one hundred miles from Vancou-
ver, or having a hairdo reminiscent of Lyle Lovett’s. Such properties are
not effective processes; they merely obtain—they hold, from time to time,
in this or that location, of this or that entity.

Sometimes, in teaching introductory cognitive science, I explain to
students that from time to time they exemplify the property of being
thought about—by their friends, their parents, their teachers. But noth-
ing effective happens, in or on or around them, that can be detected,
when this property is exemplified. At one moment they are “thought
about”; at another, they are not. Yet no engineer will ever build a device
(an iPhone app, say) that can detect the fact—since no discriminable
effective signal distinguishes the two cases.

In response, a surprising number of students, under the spell of
what I am calling blanket mechanism, start to deny that they have been
referred to, after all. Because being referred to cannot be detected, it
must not happen, they reason.

… Talk about “speed of logic”, ref Church at cslI, etc. …

 Introduction (V0.73)

 xlix

2. The interpretation function I; or

3. The entailment relation ⊨.

In fact it would be perverse to assume that any of the last of
these three entities was subject to effectiveness constraints.65
Logic is undeniably powerful, on the one hand, and also strik-
ingly, and famously, limited, on the other—and interesting be-
cause of both the source of the power and the reason for the
limitation. And both arise, metaphysically, from the same fact:
by restricting oneself to the effective or mechanical, one can
achieve extraordinary results as regards reasoning and proof
about a much, much wider world—specifically, a world that is
not so restricted.

In contrast to the blanket variety, I will use the term critical

mechanism to label recognition of this fact that although S
and ⊢ are required to be subject to constraints or effective-
ness or mechanism, D, I, and ⊨ are not so restricted—or more
generally, the recognition that although thinking and reason-
ing must, in an appropriate sense, be mechanistically imple-
mented, it is nevertheless no part of an overarching physicalist
worldview to require that the world itself, or semantics (i.e.,
the world reasoned or thought about) be subject to such con-
straints of mechanism, effectiveness, or computability.66 I take

65. See the sidebar on reference.
66. To assume that physicalism implies blanket mechanism is simply
a mistake. Among other things, it runs roughshod over differences be-
tween what is global and what is local, and presumes the strongest sort
of type reductionism (cf. Fodor’s discussion of the “Special Sciences”—
«ref»). But even aside from those issues, consider relativistic strictures
against travel faster than the speed of light, and think about the proper-
ty of being referred to. As noted on page ■n, Andromeda can be thought
about today, in virtue of an action we take here on earth, even if it would
take 2.6 millions years for an effective signal to travel from here to there.
Or even more simply: consider the property of being 2.6 millions years
from Andromeda. That is a real property exemplified by the world, but
it is not an effective property. No one could make a switch turn on in

l Indiscrete Affairs · I

Evolution
In the debate with Daniel Dennett reprinted in Volume II, an issue
comes up about why, in On the Origin of Objects and “Rehabilitating
Representation,”† I did not discuss evolution. The discussion there il-
lustrates a divergence of views that resembles, if it is not in fact, that
being drawn here between blanket and critical mechanism. If I under-
stand him, Dennett believes not only (i) that phenomena such as hu-
man representation evolved though processes of natural selection, but
also (ii) that, perhaps because of that fact, they are to be explained in
evolutionary terms.

I believe (i) as well. I do not endorse Intelligent Design; I do not
think that our capacities are magic. But as I say in those pages, just
because evolution is the way in which our representational capacities
arose does not mean that is what representational capacities are. Rath-
er, I believe that representation is a way of being that is possible, in
the world—and that evolution, as it has in so many other cases, came
across it (presumably at random), and, because it conferred such a stun-
ning advantage on creatures, exploited it hugely.

The relation to blanket mechanism is as follows. It may be (presum-
ably is) that evolution is the mechanism by which we came to be as we
are, just as our brains (and bodies and societies) embody a mechanism
with which we understand the world—and just as a calculator, too, em-
bodies a mechanism, one that responds to the structures and patterns
of various numerals and buttons and other internal effective configu-

critical mechanism to be the view that historically motivated
and underlay the development of logic, at least in the main.67
Critical mechanism is also close to my own picture of what
the world is like, overall, and of the place of mechanism (or the
effective) within it.

To deflect potential misunderstanding, I should say that I

virtue of its instantiation.
67. «cite formalism and strict mathematical constructivism as a possible
counterexample; but not intuitionism»

 Introduction (V0.73)

 li

am by no means a naïve realist, as will be briefly discussed in
the next section, and anyway is evident from my On the Origin
of Objects.68 So I am not embracing the default realist position
alluded to above. Rather, in embracing critical mechanism I
am saying that there is something deeply right and hugely im-
portant about a realist reading of logic. To say what it is that is
right about it, in ways compatible with my own metaphysical

68. «Ref?»

rations so as to produce arithmetically intelligible behaviour. That is:
there is an account of how the calculator works; there is an account of
how we work; there is an historical account of how evolution worked.
But just as a mechanical account of how a calculator works is just half
of an account of it as a calculator, and not, as it happens, the half that
explains how what the calculator does is arithmetic—and just as a syn-
tactical account of how a theorem prover works is just half of an ac-
count of it as a theorem prover, and again, not an account of how it is
that what the theorem prover proves are theorems—so too the causal
account of the human brain and body, and the evolutionary account of
human biology, are just half accounts of us. But in all of these cases, be-
cause the systems in question are intentional, the mechanistic accounts
say, perhaps even explain, how the system in question works, but they
do not explain what the systems are, or what they do full bore. Answer-
ing those questions requires adversion to semantics—and semantics in
turn requires adversion outside the realm of mechanism. The fact is
clear, and well recognized, in the case of calculators and theorem prov-
ers. So too, in my view, in both aspects of the human case. An account
of the fact that we think requires adversion to more than the brain. And
an account of how we got here requires adversion outside of the (syn-
tactic, or at least mechanical) realm of evolutionary selection.
†An earlier version of “Representation and Registration,” also included in Volume
II.

lii Indiscrete Affairs · I

position,69 I will employ terminology in the way I used it in
that book: using ontology to name the world-as-registered—i.e.,
to name the objects, properties, relations, states of affairs, etc.,
that we intelligibly find to be in or to constitute the world—
and metaphysics to name that which we so find intelligible. In
these terms, I take the metaphysical world to be vast, unutter-
ably large, defiant of description, and drenched in that which
we register as an infinite number of object and properties and
relations and the like. The ontological world—the metaphysi-
cal world as registered—I will take, at least for present pur-
poses, to consist of the plenitude of objects, properties, rela-
tions, types, facts, and other denizens of reality in terms of
which we find the metaphysical world intelligible.

Given this distinction, the point about the mechanical or
effective is this: of the still-surpassing abundance of ontologi-
cal richness in the world (even if that pales in comparison with
that which it registers), only a tiny subset—a subset of measure
zero, to use the set theorists’ phrase—meets the conditions of
being mechanical or effective. Or to put it in plain language: al-
most nothing is effective. Being the shirt my grandmother sewed
for me, being a thousand miles from Abilene, being about to
receive a letter from my long-lost friend Akiko—none of these
things are effective, none are of the sort that could be harnessed
to turn on an electric switch. And to take another example rel-
evant to the essays in this volume: so too is being referred to not
an effective property.70 It is especially true that being referred
to right now is not effective (Andromeda, for example, at this
very moment enjoys the property of being so referred to, at
least in thought, since I am thinking about it, in spite of being
more than two million light years away—and in spite of the
fact that no evidence of the fact that that it is currently being
thought could reach Andromeda until two million years in the
future). In fact it is metaphysically astonishing, to say nothing

69. «Refer to vocabulary discussions in Aos—radical, reactionary, etc.»
70. Again, cf. the sidebar on reference, p. ■n.

 Introduction (V0.73)

 liii

of being deucedly lucky, that anything is effective—that it is in
virtue of the exemplification of any property that anything can
have any causal consequence whatsoever.

The astonishing paucity of the causal or effective, I take
it, establishes a ferocious challenge for humans, for logic, and
for computation. It is a challenge that ultimately derives from
physics.71 If anything is to happen, it must happen, as we often
say, causally—must happen in virtue of the exemplification of
causal, or mechanical, or effective properties (which may all be
the same, may be different; I am speaking at a very high level of
abstraction for the moment, and anyway no one quite knows
what the differences are, if any). This is just a blunt, inescap-
able fact about what the world is like. Fundamental physics is
an account of what can happen at the microscopically small
level. It may be—I will have much more to say about this in
due course—that computer science is relevant to an analysis
of what can happen at arbitrary levels of abstraction, at arbi-
trary levels of grain. We are not yet sure, because we do not yet
know what computer science is. We do not know, that is, once
we let go of the conceit that the ‘c’ word names a theoretically
interesting, delineated subject matter or natural kind, and in-
corporate its insights into our general intellectual world view,
what those insights will turn out, all this long while, to have
been about. But however that issue about computer science
goes, the following is the bottom line: what happens does so
in virtue of the mechanical or effective, but what is the case is
stupefyingly larger.

Moreover, if I can put it this way, the challenge of know-
ing—of reasoning, of computing, of being able to think—de-

71. I am not a straightforward physicalist, either—even of the weak-
est form so far articulated: global supervenience. But just as I believe
that there is something profoundly right about realism, which must be
preserved in any more constructivist or embodied alternative, so too I
believe that there is something both incredibly sobering and yet surpass-
ingly powerful about physicalism, which must also be, if not preserved,
then at least done justice to in any successor or alternative account.

liv Indiscrete Affairs · I

rives from the discrepancy between the vanishingly small and
restricted subset of the world that is mechanical or effective,
and the vastly larger world of, to channel Wittgenstein, that
which is the case. Knowing has to happen, reasoning has to
happen—we do not come blessed with divinely instilled com-
prehensive knowledge. What we humans have succeeded in
learning, by evolutionary and then societal means, is how to
exploit that which is mechanistic in ourselves, and in our en-
vironment, in ways that allow us to stand in referential (if not
always reverential) relation to the world as a whole. An ability
to appreciate the magnitude of this achievement is what I take
to be so important about critical mechanism. It is also what I
take formal logic to be a magnificent first stab at explaining.
And this, too, is what computing is a radically more complex
practice exploring. That it is metaphysically possible at all, as
I have already said, is both amazing and fortuitous.72 That hu-
mans have evolved so as to be able to do it is undoubtedly our
most staggering achievement. That we are slowly coming to
understand what it involves, and, Golem-like, in systems of
our own devising, are starting to construct synthetic instances
of it—well, let me just say that that is what I think it is that
makes computing important. It is a sign that we are entering a
new stage of development of unutterable historic consequence.

As should be obvious, these are all points on which the
blanket mechanist is sentenced to blindness: that this is the
nature of knowledge, the challenge of being, the importance
of logic, the character of computing. Blanket mechanism as-
sumes that the world is restricted to the effective. Critical
mechanism leaves the world whole and vast, and realizes that
all that is so restricted is what happens, in a very particular and
limited sense of what happens.

72. There is an anthropic principle worth a pint: what the chances are—
what the requirements are—that the universe provide the capability for
creatures made of clay to know it.

 Introduction (V0.73)

 lv

These volumes are not a metaphysical defense of critical
mechanism, nor a systematic account of the nature of com-
puting or reasoning in its terms. They are merely a collection
of papers that are small steps en route to such a story. But the
papers were knowingly, if implicitly, written within the over-
arching framework of a critically mechanical viewpoint. Be-
cause of this, the individual moves I make in them—down to
the most intricate details of 3Lisp programming—can only be
understood against its strictures. Blanket mechanists, I know,
found 3Lisp inscrutable when it was first introduced—and
will likely still find it inscrutable today. I only hope that these
few introductory remarks will help to make its architecture,
and the concerns of the other papers in these volumes more
broadly, just that little bit more comprehensible.

 6 Metaphysics
Fourth and finally, a word about a gradual shift in the topics
these papers address, starting in this volume and continuing
through Volume II. As explained above, I started out in the
1980s with a relatively restricted focus on the nature of com-
puting and the semantics of computational programs and pro-
cesses. Gradually, the concerns evolved to include unrestricted
issues in semantics and ontology. This shift from an inquiry
into the foundations of a particular “science” into a full-blown
metaphysical investigation had already started to take place
before I came to the “laboratory, not subject matter” conclu-
sion about computing discussed above in §3. In order to do
justice to real-world computing—what in o3 and Aos I call
computation in the wild—I was more and more driven to con-
sider the nature of the world in which computing is found,
and to which it relates.

In the first instance that focus grew out of straightforward
semantical requirements. If programs or processes are to be
theorized as intentional—as signifying, representing, model-
ing, or simulating or in some other way as being “about” the

lvi Indiscrete Affairs · I

world—then, in order for relations between the two to be
brought into account, one needs a theoretical framework for
talking about the world towards which they are directed.73
But as usual, what initially came into view through an interest
in semantics soon broadened into a more general concern. In
what becomes a pervasive pattern in these pages, the broaden-
ing takes place in three discernible stages. First, because the
variety of types of semantic relation between computational
process and task domains to be analysed seemed almost arbi-
trarily unrestricted, doing justice to the richness of practice re-

73. See the sidebar on “The Semantics of Programs and Processes” on
pp. lvi–lvii.

The Semantics of Programs and Processes
Not everyone takes programs to be about the world. As explained in
some detail in Part B, it is standard in computer science to take the
subject matter of programs, taken as semantic entities subject to se-
mantic interpretation, to be the computational process or behaviour that
results from executing them—a view that in this volume I refer to as a
“specificational” view of programs. The approach adopted in 3Lisp, and
on which the model of reflection presented in the chapters of Part B is
founded, differs in taking the semantic domain of the program to be the
task domain over which the behaviour is defined—an approach that I
instead call an “ingredient” view of programs.

If one adopts the more traditional specificational view, one might
label the relation I was interested in, between the computation and the
(typically external) world or task domain, as process semantics, in the
sense of being the semantics of the semantics of the program-viewed-
as-specification. As usual, however, one confronts the terminological is-
sues discussed in §4. In computer science, the term ‘process semantics’
is used to denote theoretical models of the behaviour of typically parallel
and/or communicating systems. Why this is called ‘semantics’ escapes
me, though one can understand it as being an analysis of the semantics

 Introduction (V0.73)

 lvii

quired broadening the analysis from computational semantics in
particular (i.e., as if, given a reliable general notion of semantics,
the task was to discern the nature of the computational spe-
cies) to semantics in general. Setting specifically computational
considerations aside, therefore, I was drawn to investigate, in
the general case, fundamental notions of reference, representa-
tion, meaning, content, specification, instruction, and the like.
Second, it became increasingly clear that semantics is far from
the only place metaphysical challenges arise. As suggested in
the “ontological wall” phrasing of chapter 1, doing justice to the
nuances of computational phenomena themselves also out-
strips the capacities of received frameworks. Quite apart from

of programs for parallel and/or communicating processes. The point,
though, is that what is mathematically constructed, as is typical of
model-theoretic technique, are structures that correspond to the com-
putational behaviour itself—not to any world or task domain towards
which that process is directed, or that the process is in any sense “about.”

The fact that computer science has ‘used up’ semantical vocabulary
to talk about “computationally internal” relations is presumably what
led Allen Newell, once the importance of the relation to the world was
brought to the fore, to dub a view of programs that does treat real-
world relations as “The Knowledge Level.” †

However one labels it, that was the relation I was targeting, in ana-
lysing the semantics of computing: the relation to the external world,
to the real-world task domain that computational processes are about,
to the world about which “data” structures contain data So having a
workable framework in which to talk about the world was theoretically
requisite.
† The term was introduced in Newell’s Presidential Address to the American As-
sociation for Artificial Intelligence (AAAI) in 1980. (Cf. also my own reply to that
paper, written while I was still a graduate student (Smith 1981). «say something
about it»

lviii Indiscrete Affairs · I

issues of what computations signify,74 in other words, simply
describing the programs and structures and processes that do
signifying led me into full-fledged ontological investigations.75
And then the third: studying computational reflection (the
topic of the parts in Part B) brings the two topics together, in
concentrated form.

The change in focus from computing to metaphysics, reflected
especially in the last two papers in the first volume76 and most
of those in the second, involves not just a shift in subject mat-
ter, but also the mounting of a critique. In particular, two stan-
dard, related background metaphysical themes come under
increasing fire—themes that I had unquestioningly assumed
at the beginnings of my investigations:

1. What for discussion I will call classical ontology: the
world as imagined in the traditional image of discrete
objects arrayed in (what at least philosophers would
assume to be) the usual way: exemplifying properties,
standing in relations, grouped together in sets and
states of affairs— possibly with positive and negative

74. As should be obvious (from o3 and elsewhere), I do not believe in
any such presumptuous ontological/representational divide. The point
is only that even if one were to endorse such a strategy, the ontologi-
cal structure of computing itself—what programs are, what makes one
program one and not two, the nature of data structures, how to analyse
implementation relations, etc., demand more than what classical ontol-
ogy can provide.
75. The details of the inadequacy of classical token-type (or class-in-
stance) frameworks to accommodate the complexity of real-world iden-
tity conditions and layers of abstraction are not much explored in the
papers in these Volumes. Some discussion of a more flexible alternative
lurk in the pages of o3; see for example section «ref layers of particular-
ity».
76. “Linguistic and Computational Semantics” and “The Correspon-
dence Continuum,” chs. 10 and 11 of Volume I.

 Introduction (V0.73)

 lix

polarities,77 etc.

2. Something like a correspondence theory of seman-
tics, in which representations are taken to correspond,
in a relatively straightforward compositional way, to
the states of affairs in the world they are about, along
roughly the lines of Wittgenstein’s famous “picture
theory” of language or semantics.78

Both themes are entirely familiar Both are almost universally
assumed in model-theoretic and other formal analyses of the
semantics of logical formalism. And both, I argue in these
papers, are inadequate bases on which to explain real-world
computing.

Now it may seem perverse, in these first few decades of the
twenty-first century, to spend any time at all developing a cri-

77. E.g., a state of affairs consisting of objects α, β, and γ, with α exem-
plifying the positive property of being a chair, β of being a table, γ of
being a cup, and γ also exemplifying the negative property of not being
on β.
78. The idea is not that thoughts or representations are necessarily like
pictures in the mundane (illustrative, two-dimensional) sense of that
word, but rather that words correspondence, piecewise, to facts or prop-
ositions in the way in which (mundane) pictures are thought to cor-
respond, piecewise, to the situations they depict. Rather—setting aside
myriad nuances, complications, and exceptions—the idea is roughly this:
complex terms (referring expressions) are taken to represent ontological
entities or states of affairs, directly or indirectly, according to a scheme
in which the represented ontological structure is systematically specified
in terms of the grammatical structure of the representing complex, with
each component of the grammatical structure recursively representing a
corresponding component of the represented ontological structure, ac-
cording to a recursive application of the same overall scheme.

In many correspondence theories facts or states of affairs are taken as
the truth-makers for sentences or propositions, where truth serves as
the over-arching norm in terms of which the semantics is framed. But
correspondence theories are not restricted to sentential representational
schemes; term arithmetic can be given a correspondence-theoretic se-
mantic account, even if it does not support the making of claims.

lx Indiscrete Affairs · I

tique of what looks for all the world like an excessively familiar
pastiche of naïve realism, context-independent semantics, etc.
That picture of the world, something it may not be too dis-
tracting to call modernist, has been so thoroughly subjected to
withering attack, over what is now many decades, that some
readers may doubt that it any longer deserves serious atten-
tion. It may seem especially absurd to criticize the classical
picture in the ways that I do here—especially in “The Corre-
spondence Continuum,” the final paper of Volume I.

The concern has some merit. I myself sometimes feel, when
trying to explain the labyrinthian contours of the argument
in that paper, as if I am leading the reader on a tortuous path,
hacking a rough-hewn trail through dense thicket with ma-
chete and crowbar, only to emerge at the end into a clearing
that, lo and behold, is not only already well populated, but
could have been much more easily reached by a perfectly ser-
viceable road—a well-used road of long standing, which trav-
els via an alternative, and much easier, route.

But I do not think the situation is that simple. And it is that
which warrants a word of explanation here.

It was once an informal truism that computer science was—
perhaps among other things—a study of complexity. That
description was widely bruited in the 1970s and 1980s, in the
corridors of computer science and artificial intelligence labora-
tories, prior to the development of a number of more specific
subjects eponymously labeled as “complexity theory.” Over the
last decade or two, in particular, the term ‘complexity theory’
has come to have two specific uses. First, it is used for what is
also called the “theory of complex systems”—a theory based
on self-organizing processes, complex adaptive systems, etc.,
emerging in part from what was once called chaos theory, was
soon relabeled non-linear dynamics, and now pretty much
goes by the label “dynamics,” and which theorizes attractors,
criticality, bifurcations, and so on—as made famous not only

 Introduction (V0.73)

 lxi

in popular science writing79 but also by an upsurge in inter-
est in such self-organizing systems widely associated with the
Santa Fe Institute. Second, as mentioned in §2, above, within
computer science the term ‘complexity theory’ is also used to
name a mathematical enterprise also called “computational
complexity theory,” equally technical, and briefly discussed
above, which studies the “difficulty” of running algorithms. But
independent of and prior to these more technical studies, the
more general use arose out of a simpler recognition: not only
that computer systems are or at least can be stunningly com-
plex in mundane terms,80 but also that expertise in computa-
tional matters involves developing expertise in understanding,
building, managing, and theorizing systems of such complex-
ity. This image was among other things advanced in Simon’s
groundbreaking The Sciences of the Artificial,81 in which the no-

79. «Refer to Gleick’s book»
80. While detailed calculations are otiose, it is fair to say that current
computational processes have computationally relevant features span-
ning more than a dozen decimal orders of magnitude in both space and
time. The switching time of contemporary processors is on the order of
ten picoseconds (10-11 seconds), and the runs of discrete programs—
i.e., programs designed to start and then stop, rather than continuing
processes, such as the internet and web sites—are measured in up to
days, (105–106 seconds). This yields a temporal range of events of in-
terest to computer scientists of ~1016. Spatially, prototype circuits have
been sampled on ~10-8 meter processes (minimum feature size of about
ten nanometers), and server farms built occupying large buildings of,
say, ~102 meters linear dimension, for a one-dimensional span of ~1010,
or in the relevant two dimensions, ~1020.

In saying that these dimensions are “computationally relevant” I mean
that structures and events at this range of scales are all analysed in com-
putational terms or exhibit computational regularities, rather than,
say, merely being physically analysed—e.g., in physical or biological
terms in ways that subserve processes that neurological or psychological
in nature (subject to neurological or psychological regularities).
81. Simon, Herbert, The Sciences of the Artificial, mIt Press, 1969; third
edition 1996. Complexity was a major theme of this work, as reflected in
the titles of the last two chapters: “Alternative Views of Complexity” and

lxii Indiscrete Affairs · I

tion of complexity plays an especially prominent role.
So computational phenomena are complex. In addition,

and again among other things, computer science is also an en-
gineering discipline. Systems are built; programs written; pro-
cesses materially unleashed. It is not enough, within the con-
text of such an engineering practice, for accepted theoretical
frameworks merely to be descriptive—not enough for them
to characterize their subject matters in broad brush terms.
Rather, frameworks adequate for backing engineering must be
specified in sufficiently precise detail to enable complex, concrete
construction. The complex, concrete actuality of real-world
computational systems is a fact of extraordinary methodologi-
cal import, whose theoretical importance cannot be overem-
phasized. It plays an important role even in my more founda-
tional Aos work, by for example buttressing arguments that,
in computational guise, notions of syntax and form, far from
being abstract in the way in which Searle imagines in both
of his arguments against the possibility of genuine artificial
intelligence,82 are on the contrary fundamentally concrete—
grounded in very real physical constraints. But the actuality
of computation also bears on the present issue, of the two-
pronged critique of classical ontology and correspondence
theories of semantics.

The point can be formulated in terms of a striking opposi-
tion. On the one hand is the widespread critique of the clas-
sical or modernist view already mentioned, which for discus-
sion I will loosely here call the discursive critique, which has
been widely advanced over the last hundred years in quarters
as diverse as Wittgensteinian philosophy, Heideggerian phe-
nomenology, poststructuralism, cultural theory, feminist epis-
temology, situated cognitive science, and science studies. At
the same time, strikingly, and over roughly the very same hun-
dred years, a stunningly complex technical infrastructure has

“The Architecture of Complexity: Hierarchic Systems.”
82. «ref».

 Introduction (V0.73)

 lxiii

developed (to use the term ‘infrastructure’ broadly, e.g., in the
sense of Star & Bowker83), marinating contemporary life in a
world of computation, information, communication technolo-
gies. Yet, I believe it is fair to say—and this is what commands
attention—the discursive critique has to date had little to no
effect on the development of that infrastructure, at least not
on the theoretical frameworks that underlie its foundational
constructions. From the point of view of the plumbing, it is
as if a century of discursive philosophy never happened. The
semantic web, contemporary specification languages, metade-
scription frameworks, and the like, all remain formulated in
entirely classical or modernist terms.

This discrepancy generates the following obvious ques-
tion: Why has the discursive critique had so little influence on
contemporary technical infrastructure? And, less obviously but
perhaps more revealingly: Are computationalists—program-
mers, engineers, computational theorists, etc.—immune to its con-
siderations?

A flood of possible answers come to mind, whose sheer vari-
ety, let alone relative importance, are difficult to assess. Thus
consider one potential factor that some will cite: conservative
market forces, based on underlying neo-liberal assumptions
of contemporary capitalism. There is likely something right
about this. It is certainly true that, as yet another consequence
of being actual, our contemporary socio-technical infrastruc-
ture has grown inextricably enmeshed in powerful networks of
finance, power, politics, vested interests, and the like. It is also
my experience that a majority of working programmers feel
that the our embeddedness in this infrastructure is already so
deep as to make discontinuous or even disruptive change im-
possible. The only route forward, such people argue, is via slow
incremental adjustment, subject to the double constraints of
commercial viability and state sanction. Sure enough, it will

83. «ref Sorting Things Out».

lxiv Indiscrete Affairs · I

be admitted, there was a time, in the heyday of Silicon Valley
during the 1970s and 1980s, when the whole heady affair was
up in the air—but that time is no longer.

I confess that I am unclear on how deep this argument pen-
etrates, however. Even if discontinuous changes are unlikely, it
would be absurd to deny that profound change not only re-
mains possible, but is taking place on our very watch. As is
increasingly widely decried, consolidating financial interests,
nationalist agendas, and other large-scale political forces ap-
pear to be gaining an inexorable (and hugely worrying) grip
on matters of control, surveillance, privacy, autonomy, intel-
lectual property, freedom of speech, and the like.84 “Informa-
tion wants to be free!,” Steward Brand famously said, less
than thirty years ago85—at a time when the internet was com-
monly viewed as being an almost deterministic instigator of
increased democracy. Yet today rising cybercrime, government
surveillance, abrogrations of privacy, etc., make such naïve or
perhaps libertarian optimism seem almost quaint. I am far
from being a political or social theorist, but one would be a
fool not to recognize the continuing power of socio-political
and economic influences.

Yet these changes seem almost eerily unrelated to the ques-
tion at hand, of why considerations from the discursive cri-
tiques have not penetrated the theoretical scaffolding underly-
ing our technical infrastructure—at least not in evident ways.
As has already been mentioned, not only presently existing
but even emerging new standards for identifying resources on
the web—urls, urIs, document object identifiers (doIs), etc.,
plus owl, rdf, and other description languages and frame-
works—are all based on, or at least compatible with, what is
known as “common logic,” a relatively weak fragment of clas-
sical first-order logic, understood in ways that directly reflect

84. «refs; Diebert? Castells? Benkler?»
85. «ref; and acknowledge that its fame derives from John Perry Barlow’s
quotation»

 Introduction (V0.73)

 lxv

what I have identified as our two modernist presumptions.

I believe there are deeper reasons why the discursive critique
has yet to exert a decisive influence on the technical under-
pinnings of computing—reasons that relate to why it remains
important to analyse the modernist approach in a level of
technical detail to which, to my knowledge, it has never been
subjected.

The first has to do with the relentless specificity and wealth
of analytic detail that needs to be explicitly articulated in or-
der for us to see how to move forward towards a practicable
alternative. No matter how successful they may seem on their
own terms, nothing in any of the existing discursive critiques
has been worked out at anything even approximately the level
of precision and thoroughness that would be required to un-
derlie systematic computational synthesis. Even though from
some perspectives one might view the fact as unfortunate, it is
nevertheless no accident that computing itself, and computer
science’s entire edifice of concomitant theoretical scaffolding,
emerged from the Anglo-American philosophical and meta-
mathematical tradition—rather, say, than from pragmatist
semantics, continental philosophy, or any other interpretive,
literary, or discursive tradition. The technical demands of pro-
viding an intellectually comprehensible conceptual schema in
terms of which to construct systems with millions or billions
of interacting constituents are immense—vastly greater, in my
experience, than those without programming experience gen-
erally realize. Even technical prowess in philosophy and logic
do not prepare one for this insight. Think of various axiomat-
izations of modal and deviant logics, such as s5 or ■n, which
typically consist at most a dozen axioms, and compare them
to programs consisting of millions lines of c++.86 The differ-
ences are great enough as to constitute a difference in kind,

86. See “A Hundred Billion Lines of c++,” included here as Chapter 8
of Volume I.

lxvi Indiscrete Affairs · I

not merely in quantity or degree. This is why , in teaching I
regularly claim that no one has written a program until they
have written a program at least 20,000 lines long.87

That then is the first point: modernism will reign as the
foundational theory of computing, in my view, until someone
provides an alternative that is capable of serving as a frame-
work for this order of detailed, concrete, synthetic construc-
tion. Nothing in the discursive critiques has yet approached
that status. From a programmer’s perspective, phenomeno-
logical or Wittgensteinian or poststructural or feminist cri-
tiques seem unremittingly metatheoretic—disquisitions on
the character a better theoretical edifice would have, rather
than such a theoretical edifice itself.

The second reason for conducting a detailed analysis may be
more interesting. One thing that emerges, from close inspec-
tion, is that contemporary practice is far less modernist than
one might expect, given the state of reigning theoretical frame-
works.88 Discursive critics will not be surprised, but it is again
the details that matter. In fact—and this is one of the most
important themes pervading these papers, something of a ma-
jor plot line, though it does not receive explicit attention ex-
cept in the introduction to the last paper in Volume I—many
of the oddities, missteps, and confusions that I “diagnose” in
these papers, including the fundamental semantical “errors” of
which I accuse Lisp, can be more charitably (and ultimately, I
believe, more fairly) understood as efforts, on the part of pro-

87. Novels, series of novels, whole literatures—these are literary con-
structs, which discursive traditions analyse, to which phenomenological
analyses may be deemed appropriate. Perhaps, some day, we will have
technical scaffolding in place so that one can construct programs in ways
analogous to how we currently write novels. To get there, though, we
are going to have to develop infrastructure with complexity approaching
that of the human brain—to say nothing of understanding how such
infrastructure works.
88. «Ref Latour’s We Have Never Been Modern»

 Introduction (V0.73)

 lxvii

grammers saddled with modernist scaffolding, to sidestep the
inadequacies of that very framework, in order to accommo-
date some of the very sorts of phenomenon that have been so
forcefully brought to our attention by the discursive critique.

Compositional semantics is a case in point, to which it is
instructive to devote a moment’s attention.

The originating intuition behind the idea of compositional
semantics was roughly this: a complex representation, such as
a sentence, can be semantically interpreted “piece-wise,” with
nouns denoting objects in the domain of discourse (the sub-
ject matter being talked about), adjectives and verbs denot-
ing properties, etc. So in the sentence “My Bernese knocked
over the table again,” the term ‘My Bernese’ would denote a
dog, ‘the table’ a table, ‘knocked over’ a dynamic interaction be-
tween them, etc.; and the whole complex sentence would be
true (would “denote the truth,” if one’s theoretical predilections
run Fregean) just in case the denoted dog did in fact interact
in the signified way with the denoted table. That is: composi-
tional semantics, in its originating framing, was decisively an
instance of a correspondence-theoretic approach.

Programming languages are universally interpreted (se-
mantically89) in terms of compositional semantics. On the
other hand, most programming languages contain constructs
that defy any simple conception of correspondence. Consider
a construction such as (ABORT!), the execution of which causes
the entire program in which it occurs simply to come to a
crashing halt—or the slightly more complex (RETURN α), struc-
tured in such a way that the value of α is returned, not simply
as the value of the particular expression within which it oc-
curs, but returned as the value, again, of the entire encompass-
ing process in the course of which execution of the particular
expression was triggered.

Ever ingenious, computational theorists have devised com-

89. «As discussed in …, the term ‘interpretation’ is used in computer sci-
ence for … »

lxviii Indiscrete Affairs · I

plex ways to preserve compositionality so as to accommodate
disruptive or “non-local” constructs of this sort. The funda-
mental move is to abandon the idea that the “denotation” of
any particular element, or at least what the semantic inter-
pretation function maps the element onto, is what, intuitively,
that construct stands for or names. By doing this, it is straight-
forward—for example by using what computer scientists call
a “continuation-passing” semantical model—to arrange things
so that effectively arbitrary long-distance, non-local semantical
facts can be accommodated. For example, in the 1980s, when
explaining 3Lisp to the late Jon Barwise, I devised a variant
of the λ-calculus extended with a special operator ‘✶', so that,
modulo some subtleties,90 the term ‘✶' would be the result of
normalizing any complex expression, no matter how large, in
which that form occurred.91

The point generalizes. If any theory or account θ can be
given about the interpretation of whole texts—be that theory
context-dependent, invoking consistency instead of corre-
spondence as the fundamental semantic norm, customizing
interpretation by the contingent circumstances of the reader
or particularities of history, incorporating holistic facts about
discursive context, or whatever—then a “compositional” se-
mantics for the individual terms within the text can still be
constructed such that the interpretation of the whole text will
be as specified by θ. Suppose in particular that τ is a text in
a functional language Σ92 comprising expressions of various

90. «discuss: required β-reduction, implicated order of processing,
thereby violating the Church-Rosser theorem, etc.»
91. Thus, for example, in this variant the normal-form of the following
λ-expression would be the identity function λx.x.
92. One can of course imagine more complex (i.e., non-functional) syn-
tax as well, but semantics is the present issue. A similar technique could
also be applied to the grammar, making the issue of whether any expres-
sion or even sub-expression is grammatically a holistic function of the
text as a whole. (There have been computer languages which, as it is
said, “cannot be parsed except at runtime,” and which therefore cannot

 Introduction (V0.73)

 lxix

types σ (σ1, σ2, etc.) assembled in according with grammati-
cal rules of the form σi → σi0(σi1, σi2, … σiki), with appropriate
equivalences established among the various σij so as to support
any desired recursion. By assumption, we take θ to be a theory
of the interpretation of texts as a whole. And finally, to be dra-
matic, suppose we include the “escape” rule discussed above: σ
→ eject(σ’), for arbitrary types σ and σ’ . Then a compositional
semantics for Σ, which we might call CΣ, can be defined as fol-
lows:

1) whole texts: [[τ]]θ

2) complexes: [[σi0(σi1, σi2, … σiki)]] =
 λx . ([[σi0]] (λy0.([[σi1]] (λy1. ([[σi2]] (λy2 . …
 ([[σiki]] (λyk . x(⌜y0(y1, y2, … yiki)⌝)))…))))

3) escape: [[eject(σ)]] = λx . [[σ]]θ

4) atoms: [[ρ]] = ρ

As is evident, CΣ is essentially vacuous. All it does is to step
through the text, emitting the value of the eject operator if
there is one,93 and otherwise passing the entire text, uninter-
preted and as a whole, to the holistic textual interpretation
function θ (which, for all this theory cares, might as well be
one particular individual’s feminist analysis of political insinu-
ations applicable only to Emily Dickenson’s poems).

What’s the point? There are four.

First, it is essential to recognize that, once a principle of direct
correspondence is set aside, mapping terms (nouns and noun
phrases) in the language under investigation onto the objects
in the task domain that they intuitively “refer to,” etc., then

be compiled, such as for example teco, the language in which the still-
popular emAcs editor was first written, as well as the first versions of
Smalltalk.)
93. Strictly, it emits the value of the first eject construction that does
not contain another eject construction within its argument.

lxx Indiscrete Affairs · I

nothing can be concluded about the nature of a semantical
theory from the mere fact that it is compositionally specified.
And note that direct correspondence is violated even by the
classical strategy of introducing a sense/reference distinction,
or one between intension and extension, and constructing a
semantics in which terms are in the first instance assigned
“meanings” (senses or intensions) rather than “referents.” It is
not only, once direct correspondence is set aside, that one can
no longer conclude that the theory is compositional in any in-
tuitive sense, or that it is genuinely committed to anything like
a correspondence-theoretic semantical approach; it does not
even follow that the semantical realm in terms of which θ in-
terprets texts need be in any way classical (formed of classical
ontology).94

Second, what the example illustrates is that, as long as a
modernist framework is sufficiently powerful, then if one is
willing to set aside some of the framework’s default but in-
formal and hence usually unenforced and often not explicitly
articulated presuppositions, it often turns out that one can
“code up” or “implement” any theory one wants on top of the
framework—thereby deftly sidestepping its modernist as-
sumptions to any extent that one pleases. This illustrates at
extraordinarily important point that often arises in contexts
where computing and semantics are both at issue: if language
L1 has semantics Σ1, and language L2 semantics Σ2, and Σ2 is
in some way incompatible with Σ1, then although one can-
not translate L1 into L2 in a meaning-preserving way (literally:
cannot translate expressions σ1i of L1 into expressions σ2j of L2
with the same meaning), it is often nevertheless possible to

94. I am not saying that analyses of the semantics of natural language
framed in terms of sense and reference are not intuitively correspon-
dence-theoretic. What it is, “intuitively,” to be a correspondence theory
is not that well defined. All I am claiming is that whether the semantics
meets this (informal) criterion cannot be deduced merely from the fact
that the semantical rules are framed in compositional form, as for ex-
ample they are in CΣ.

 Introduction (V0.73)

 lxxi

implement L1 in L2 (or in a purely descriptive case, describe L1
in L2), thereby ducking the restrictions of L2 so as to allow one
to preserve Σ1.95

Third, the example illustrates a feature that is generally
characteristic of such “encoding” approaches. It is not just that
the semantical machinery96 is typically not used, in such prac-
tices, to map linguistic ingredients onto simple objects in what
would intuitively count as the domain of interpretation; what
it is used to map them onto is often a realm of functions that
take as arguments simple or abstract structures built out of the
expressions themselves. Note how similar this this practice is to
the use of term models in logic, a practice on which prudence
suggests I not comment here.97 Suffice it to say that program-
ming language semantics employs exactly this kind of coding
trick to give mathematical expression to very substantial forms
of non-locality, non-functionality (computational analogues
of what logicians would think of as non-transparent refer-
ence), and the like.

95. There is nothing uniquely computational about the case. A declara-
tive or logical analogue would be to describe L1 in L2, rather than trans-
lating expressions in the former in the latter. Linguistic ascent, quota-
tion, etc., are typically more marked, in declarative contexts, however,
than implementation is marked in computational ones. On the contrary,
promiscuous implementation is virtually ubiquitous in computational
practice, making anything other than purely behavioural semantics the-
oretical challenging.
96. In this example, the so-called semantical brackets ‘[[’ and ‘]]’ … «???»
97. One comment I cannot resist. As one might predict, given the dis-
cussion in the text, I in general view the use of term models as being
as much of a “cheat” as the content-free compositional theory laid out
above.

The late Jon Barwise, mentioned earlier (a preëminent logician, edi-
tor of the Handbook of Mathematical Logic, and co-author, with John
Etchemendy, of the popular logic textbook Language, Proof and Logic)
used to say that, if anyone claimed to have shown that any logic whatso-
ever, other than an essentially trivial one, was complete, then they had
almost certainly cheated—probably by using term models.

lxxii Indiscrete Affairs · I

Fourth and finally, to draw out an issue related to previous
sections, it should also be apparent how handily the pressures
and predilections of blanket mechanism are served by deploy-
ing modernist machinery in this way. The semantic commit-
ments of the modernist framework are cleverly ducked; all
that the modernist machinery is used for is to “implement”
complex behavioural patterns. Step by step, advertently or in-
advertently, semantical issues, or at least semantical vocabulary
and machinery, are drawn deeper and deeper into the clutches of
engulfing mechanism (§5).

This is meant to be an introduction, not a detailed analysis.
Many more things could be said: the considerations adduced
above address the issue of correspondence-theoretic semanti-
cal analyses, for example; they do nothing to seriously broach
the topic of classical ontology and presumptions of intrinsic
identity. But I will leave that and other issues to the papers
that follow, to the introductions to the individual sections, and
to future work.

For now, I will close with just one more observation—a
third reason pertaining to the apparent lack of influence of the
discursive critique on the theoretical and practical frameworks
underlying contemporary infrastructure. While I have made
no systematic investigation, and am certainly in possession of
no hard evidence, it is my sense that contemporary program-
mers are far more aware than external observers might guess
of fundamental problems or at least inadequacies in currently
available modernist techno-theoretical frameworks. In terms
of philosophical predilection, in fact, their sympathies may lie
largely or even wholly with the discursive critique. But that,
at least so far, is where the matter ends—because of the fact
that that is what is widespread: a critique. What is lacking is
an alternative: a positive, technically-developed framework, ca-
pable of underlying the construction, from bottom to top, of
systems with millions and billions of parts.

 Introduction (V0.73)

 lxxiii

The grip of the modernist machinery will not be loosened,
in sum, by more critique, or by opening up communication
channels between the humanities and the sciences and engi-
neering—by requiring programmers to obtain degrees in dis-
cursive traditions, for example, or even take courses in science
and technology studies. Rather, what we need to do is to de-
velop viable alternatives that, recognizing the sting of the cri-
tique, show us how to build. Moreover, those alternatives must
be explicitly formulated (pace, or rather embracing, the alter-
native understanding of what explicit formulation comes to).
So long as they stay discursive, and retain the form of critique,
I do not believe that the discursive traditions can do much
more than they already have. In their own terms, in fact, one
could declare the critiques a success; that is why mounting yet
another critical analysis will seem, to some readers, perverse.
What we need is a sufficiently detailed analysis to open up the
possibility of construction. At present, in fact, if I had to sum-
marize the current situation, I would say that what practice
has done—what practice is doing—is: (i) to implement com-
plex systems, whose behaviour and structures are more in line
with phenomenological and poststructural sensibilities than
they are with classical modernism; but (ii) to implement them
within classical, modernist machinery, since that is all that is
on offer. This situation contributes to the rather alchemical
state in which we find ourselves.

And so we stumble forward—stuck in a bit of a quandary.
To leap forward, to unleash radical progress, we need to forge
alternative foundations. These pages by no means accomplish
that lofty goal—though helping to move us along in that di-
rection has certainly been their constant motivation. Perhaps
they can at least serve as a point of reference on what develop-
ing such an alternative will entail.

lxxiv Indiscrete Affairs · I

