The Implementation of Procedurally Reflective
Languages

Jim des Riviéres and Brian Cantwell Smith
July 1984

Intelligent Systems Laboratory
ISL-4

Corporate Accession P84-00070

© Copyright Association for Computing Machinery, Inc. 1984, All rights reserved. Printed with permission.

XERDX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

The Implementation of Procedurally Reflective Languages

Jim des Riviéres and Brian Cantwell Smith

Abstract: In a procedurally reflective programming language, all programs are executed not
through the agency of a primitive and inaccessible interpreter, but rather by the explicit
running of a program that represents that interpreter. In the corresponding virtual machine,
therefore, there are an infinite number of levels at which programs are processed, all
simultaneously active. It is therefore a substantial question to show whether, and why, a
reflective language is computationally tractable. We answer this question by showing how to
produce an efficient implementation of a procedurally reflective language, based on the
notion of a level-shifting processor. A series of general techniques, which should be
applicable to reflective variants of any standard applicative or imperative programming
languages, are illustrated in a complete implementation for a particular reflective LISP dialect

called 3-LISP.

This is a slightly revised version of a paper that appeared in the Proceedings of the 1984
ACM Symposium on LISP and Functional Programming. This report was also published as
Report No. CSL/-84-9, Stanford University Center for the Study of Language and Information,

July 1984,

CR Categories and Subject Descriptors:
D.3.2 [Programming Languages]: Language Classifications - Extensible Languages,
Applicative Languages, LISP;
D.3.3 [Programming Languages]: Language Constructs - Control structures;
D.3.4 [Programming Languages]. Processors - Interpreters;

D.2.6 [Software Engineering]: Programming Environments

General Terms: Languages

Additional Key Words and Phrases: Procedural Reflection, Meta-circular Interpreter,
Meta-level Control, Level-shifting Implementation, Self-reference.

1. Introduction

As described in [Smith 82a; Smith 84], a reflective computational system is one in which
otherwise implicit aspects of the system’s structure and behaviour are available for explicit
inspection and manipulation. A procedurally reflective programming language is a particular
architecture for reflection in which all programs are executed not through the agency of a primitive
and inaccessible interpreter, but rather by the explicit running of a program that represents that
interpreter. Since the latter program, which we call the reflective processor program (RPP),! is
written in the same reflective language as the user program, it too must be executed by the explicit
running of a copy of itself. And so on ad infinitum. In the abstract or virtual machine, in other
words, no program is ever run directly, but instead is run indirectly through the explicit action of
the running of the RPP.

In the virtual machine, therefore, there are an infinite number of levels at which programs are
processed, all simultaneously active (in exactly the same way that a traditional program written in
some language L and the program that implements language L are simultaneously active). Each
level has its own local state distinct from the state of neighbouring levels (i.e., there is one “control
stack” per level). The architecture resembles an infinite tower of continuation-passing meta-circular
interpreters [McCarthy 65, Steele & Sussman 78b], except that (again as discussed in [Smith 84])
there are crucial causal connections between the levels. Specifically, a program running at one level
can provide code to be run at the next higher level — ie., at the level of the original program’s
processor — thereby gaining explicit access to the formerly implicit state of the computation. The
situation is analogous to one where a user program is allowed to insert code into the
implementation, except that in the reflective case the implementation is written in the same
language as the original user program. 'This facility enables the user to define new control
contructs, implement debuggers, etc., without requiring special hooks into the actual
implementation. The technique is so powerful that large classes of control structures can be
straightforwardly defined in a reflective language in terms of primitive data-manipulation
procedures.

Reflection is an important tool to add to any language designer’s toolbox. Even if one decides
that reflection is too powerful to make generally available to users, a designer may find that the task
of producing a correct and complete implementation (e..g, including debugging facilities) is
simplified by adopting a reflective architecture as an underlying model. As this paper will show,
the issues that arise in implementing a simple reflective language are remarkably similar to the
issues that arise in implementing complex non-reflective languages containing primitive debugging
facilities and fancy control constructs. Also, reflection has interesting (and unique) properties that
are a direct effect of making it possible to view a computation from more than one vantage point at
the same time. For example, a purely functional procedurally reflective language, entirely lacking
side effects in its primitive functions or special constructs, can nevertheless use reflection to define
an assignment statement.> In general, reflection is a technique whereby a theory of a language
embedded within a language can convey otherwise unavailable power.

XEROX PARC, ISL-4, JULY 1984

2 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

Given a virtual machine consisting of an infinite number. of levels of processing, it is clear that
one of the most important questions to-ask -about a-reflective language is whether, and why, it is
computationally tractable, This paper addresses that problem by considering the general question of
producing an efficient actual implementation of a procedurally reflective language. We show, in
other words, how to construct a finite program to simulate an infinite tower of reflective levels.
After presenting general principles and techniques that should apply to reflective variants of any
standard applicative or imperative programming languages, we present an efficient implementation
of a particular reflective LISP dialect called 3-LISP [Smith 84, Smith & des Riviéres 84].

2. Towers of Processing

We start by numbering each reflective level: 0 for the level at which the user’s program is
processed, 1 for the level at which the program that runs the user’s program is processed, and so on.
In general, the structures (programs and data and so forth) at any given level represent the state of
the computation one level below; thus level n+1 is one level “meta” to level n3 This arrangement,
which we call a fower, is depicted in FIGURE 1. Finite heterogeneous towers of processing (i.e., a
finite number of different languages) are commonplace — a LISP program running at level 0, run
by the LISP processor (interpreter) which is a machine language program running at level 1, which,
in turn might be run by an emulator, a microcode program running at level 2. What distinguishes
procedurally reflective architectures is that the processing tower is infinite and homogeneous. The
user’s program (at level 0) is run by the RPP (running at level 1), which is in turn run by another
incarnation of that same RPP (at level 2). And so on”

Reflective processor program running at level 3.

Reflective processor program running at level 2.

Reflective processor program running at level 1.

User program running at level 0.

FIGURE 1. The numbering of processing levels in a reflective tower.

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 3

The claim that a user’s program-runs at level 0 is in fact a lie: the whole point of procedurally
reflective languages is also to- allow- user code at level 1 or higher, thereby giving user programs
explicit access to the data structures encoding their own state, and therefore power to direct the
course of their own computation, What we are calling the actual implementation (that process that
mimics the virtual infinite tower) must therefore be able to provide explicit structures encoding the
otherwise implicit state of the user’s program. It is this crucial fact that makes procedurally reflective
systems more difficult to implement than systems without such “introspective” capabilities.

The first step in providing such an implementation is to discharge the threat of the infinite,
The key observation is that the activity at most levels — in fact at all but a finite number of the
lowest levels — will be monotonous: the RPP will primarily be used to process the same old
expressions, namely those that make up the RPP itself. From some finite level k all the way to the
“top”, in other words, the tower will just consist of the processor processing the processor. Identify
as kernel those expressions in the RPP that are used in the course of processing the RPP which is
running one level below.® Call a processing level boring if the only expressions that are processed
at that level (in the course of a computation) are kernel expressions. Define the degree of
introspection (A) of a program to be the least m such that when the program is run at level 0, all
levels numbered higher than m are boring. All programs consisting entirely of kernel expressions
have A=0. Normal programs (i.e., standard user programs that don’t use any reflective capabilities)
will have A=1, meaning that no out-of-the-ordinary processing is required at level 1. The
processing of the level 0 program, in other words, will not entail running non-kernel code at level 1.
A=2 would be assigned to programs that involve running non-kernel user code at levels 0 and 1,
but not at the second reflective level. And so on. Just as a correct implementation of recursion is
not required to terminate when a procedure recurses indefinitely, a correct implementation of a
procedurally reflective system need terminate only on computations having a finite degree of
introspection. Tractable reflective programs, in other words, are those with a finite degree of
introspection.

We can now formulate a general plan for implementing a procedurally reflective system.
Suppose that one has an implementation processor G (a real, active, processor, not just a program
for a processor) that engenders the behaviour of the processor for the language provided that the
program it is given to run has A=1. The existence of such a G is a reasonable presumption, since G
is essentially just a processor for the language stripped of its reflective capabilities. A procedurally
reflective language minus the ability for the user to use reflection is likely to be conventional. 3-
LISP minus reflection, for example, is a simple SCHEME-like language that will succumb to standard
implementation techniques [Allen 78, Steele 77a, Henderson 80].

Given G, we can show why any reflective program is tractable by induction. The crucial
observation is that the overall degree of introspection of an RPP that is running some A=n program
is itself A=n-1 (this follows directly from the definition of A). So, if instead of having the user
program run directly by G, it is run indirectly by the RPP which itself is run directly by G, then any
A<2 user program will be processed correctly. In general, any A<n program can be run correctly

XEROX PARC, ISL-4, JULY 1984

4 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

by G provided that n-1 levels of genuine RPP are placed in between. This result is depicted in
FIGURE 2. (Note that we have talked previously only about a program’s running at a given level;
when we introduced G we have described it — an active process, not a program — as running at
some level as well. The relationship is this: if G is running at level k, we mean that the program at
level k is run by G directly, without any higher levels of RPP.)

Implementation processor G running at level n.

Reflective processor program with A=1 running at level n-1.

Reflective processor program with A=n-3 running at level 3.

Reflective processor program with A=n-2 running at level 2.

Reflective processor program with A=n-1 running at level 1.

User program with A=n running at level 0.

FIGURE 2. How to run a A=n program with a black-box
processor that can only handle A=1 programs.

Since it is unlikely that a program’s A can be determined without processing it, the tractability
argument just given doesn’t lead directly to a very useful implementation strategy. But based on its
insight, we can design a series of implementations, the final version of which is actually reasonably
efficient. The first approach is simply to start out with G running at some level, and then to restart
the computation at the beginning with G at a higher level if the previous try didn’t work. More
formally, assume initially that A=1, and give the program to G to run directly. If G detects that
the program that it is running has A>1, start the whole computation over again, but this time run it
indirectly with one more level of intervening RPP. Repeat this last step until G does not protest.
This procedure is guaranteed to terminate for any computation with a finite degree of introspection;
it requires only that G be able to recognize, at some point during its processing, that a computation
has a A>1, and that the computation be re-startable.” Both of these assumptions are theoretically

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 5

reasonable, even though the second isn’t practically recommended.

It would be far better, of course, if there were-some computationally tractable way of inferring
the instantaneous state of the level n+1 RPP from the instantaneous state of the level n one. This
suggestion, which would mean that computations would not need to be restarted, is not as unlikely
as it might first seem. The processing that goes on at adjacent levels is always strongly correlated
(since, after all, level n+1 essentially “implements” level n). Adjacent levels are related by “meta”-
ness; it is not as if different levels had “minds of their own”. If it were possible to make such a
step, one could refine the implementation strategy so as not to restart the computation when an
impasse was reached, but rather to “manufacture” the state that would have existed one level up
had the implementation been explicitly running there right from the beginning. In other words, the
actual implementation processor would be able to make an instantaneous shift up to where it would
have been had an extra level of explicit RPP been in effect since the start. Call such a modified
implementation processor G’. Thus a A=n program would be run directly by G’ until it was
discovered that n>1, at which time the internal state of G* would be used to create the explicit state
that would be passed to the explicit RPP that would take over running the user program. After
modifying its own internal state to reflect what would have been the state one level up, G’ could
devote its attention to running the RPP. This means that the original program will now be run
indirectly. It will continue to be run that way until such time as it is revealed that n>2, at which
time it will start being run double-indirectly. And so on.8 Over the course of the computation, in
other words, G’ will gradually climb to higher and higher reflective levels. Although its strategy for
shifting levels isn’t very sophisticated, G’ exemplifies the important idea of a [level-shifting
implementation. All of the implementation processors we will discuss in the rest of the paper are
level-shifting as well; they merely have more complex shifting strategies.

Invariably, each additional level of indirection will degrade the system’s performance with
respect to the bottom level of the user program. This is not a minor concern, given that processor
overhead is typically measured in orders of magnitude. What we would really like is an
implementation processor that will never run at any higher level than necessary. Not only should the
implementation be able to shift up easily, in other words; it should to be able to shift back down
whenever it discovers that things are getting boring — i.e., when it starts processing kernel
expressions again. To make this formal, we have to define local, rather than global, notions of
boredom and introspective degree, but those are relatively straightforward extensions. That is, when
it appears that the program that the implementation processor is running directly has a local A=0,
that implementation processor should compensate by absorbing the explicit state of the RPP it was
previously running directly, and proceed to take direct responsibility for running of the computation
formerly one level below. This ensures maximum utilization of the capability of the implementation
processor to directly run arbitrary A=1 computations. An actual implementation will be called
optimal if it never processes a kernel expression indirectly.

There are two subtleties here. First, it is not necessarily reasonable to expect that every RPP
will permit the appropriate determination of local boredom. Once the user has been able to run

XEROX PARC, ISL-4, JULY 1984

6 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

code at a meta level, there would seem to be no telling what might have been done there. Some
sort_of “time bomb” might have been planted that will detonate at some- later-point in time. If]
however, the local notion of boredom just cited can be used to say that a portion of a program is
boring, even if some of its embedding context is not, then the implementation can depend on the
fact that it is safe to turn its back on an arbitrary number of boring levels of processing, just so long
as it can turn around and shift back up the moment any of them becomes interesting again. In
other words, it would seem in general to be very difficult to determine whether it is safe to shift
down. On the other hand, as the 3-LISP example will show in some detail, there are some
reasonable assumptions and techniques that enable optimality at least to be approached.

Second, we said above that, when shifting down, the implementation should absorb the explicit
state of the RPP it was previously running directly; just what it is to absorb this state in a way so
that it can later be rendered explicit, should the need arise, requires some care, as the discussion of
3-LISP will show.

In broad terms, these considerations lead to an adequate implementation strategy. A correct
implementation is one that engenders the same computation as that specified by the limit, as n—»oo,
of a tower of n reflective processor levels run at the top (nth) level by an actual processor. The
base case for an efficient but correct processor requires an independent specification of the
capabilities of an implementation processor capable only of running A=1 programs. The induction
step shows that adding an extra level of processing engenders exactly the same computation while
increasing by one the maximum degree of introspection that can be handled. In order to produce a
level-shifting implementation we also need computationally effective rules for determining when and

how to shift up and back down.

3. 3-LISPis a Reflective Dialect of LISP

Before we can make this all more precise, we need a specific reflective language to use as an
example. 3-LISP [Smith 82a] is a reduction-based, higher-order, lexically scoped dialect of LISP
whose closest ancestor is SCHEME. Other than its reflective capabilities (described below), the most
significant way in which 3-LISP differs from its ancestors is that the notion of evaluation is rejected
in favour of a rationalized semantics based on the orthogonal notions of reference (what an
expression designates, stands for, refers to, names) and simplification (how an expression is handled
by the 3-LISP processor; what is returned). Specifically, all 3-LISP expressions are taken as
designating something; the 3-LISP processor then embodies a particular form of simplification called
normalisation, in which each expression is reduced to a normal-form codesignator. The motivation
for and semantics of such a language are discussed in [Smith 84].

In 3-LISP, $T designates truth and $F designates falsity. Expressions of the form [x; X, ... X,]
designate the abstract sequence of length n consisting of the objects designated by the x; in the
specified order. Expressions of the form (f . a) designate the value that results from applying the

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 7

function designated by f to the argument designated by a. The common case of applying a function
to a sequence of m (>0) arguments (f . [x; Xy . X,1) is abbreviated (f x; x, ... x;). The
standard sequence operations are named EMPTY, 1ST, REST, PREP, and Scons (corresponding to LISP
1.5°S NULL, CAR, CDR, CconS, and LIST, respectively).

As is clearly indicated for any reflective language, 3-LISP contains numerous facilities for
quotation and general reference to other program structures. In general, if x is any expression, the
quoted expression 'x is used to designate x ('x is a primitive notation; it is not an abbreviation for
(QUOTE x)). When one deals with quotation, one needs names for expressions of various types. We
say that '100 designates the numeral 100 (which designates in turn the number one hundred); '$71
designates the boolean $T; '[1 2] designates the rail [1 273; 'F00 designates the afom FOO; '(X . Y)
designates the pair (x . Y). There are also normal form function designators called closures, which
have no adequate printed representation. The expressions ''f00, ''[1], and ''''$F designate the
handles 'Fo0, '[1], and '''$F, respectively. The standard functions NUMERAL, BOOLEAN, RAIL, ATOM,
PAIR, CLOSURE, and HANDLE are characteristic functions for the seven kinds of expressions just listed.
The standard operations on sequences are polymorphic, applying equally well to rails. The
additional standard operation RcONS can be used to construct new rails: (RCONS) designates the
empty rail []. The standard operations on pairs are named PCONS, CAR, and CDR; (PCONS 'A 'B)
designates the pair (A . B); (CAR '(A . B)) designates the atom A; and (CDR '(A . B)) designates
the atom B. The standard operations on closures are named CCONS, ENVIRONMENT, REFLECTIVE, BODY,
and PATTERN.

The standard composite expression used to designate functions is of the form
(LAMBDA type pattern body), where type is usually one of the two terms siMPLE (for non-reflective
procedures) or ReFLECT (for reflective procedures). Thus (LAMBDA SIMPLE [N] (+ N 1)) designates
the successor function.

Despite the many minor differences between the languages, readers familiar with SCHEME
should have little difficulty understanding 3-LISP programs. The reader is referred to [Smith 84] for
a more complete introduction to both the language and to the intuitions that guided its
development. Very much like the meta-circular interpreters discussed in the “T.ambda papers”
[Sussman & Steele 75; Steele & Sussman 76, 78a, 78b, 80; Steele 76, 77a, 77b], we present in
FIGURE 3 the continuation-passing 3-LISP RPP (note: variable names ending in ‘1’ are used, by
convention, to indicate that they will always designate normal-form structures).

As mentioned above, 3-LISP is based on a notion of expression reduction, rather than
evaluation: the processor (NORMALISE, in place of the more standard EvAL) returns a co-designating
normal-form expression for each expression it is given; see [Smith 84]. We write X = Y to mean
that X normalises to Y. For example, (+ 12) = 3; (PCONS 'A 'B) = '(A . B);
((LAMBDA SIMPLE [X] (* X X)) 4) = 16.

The code for the 3-LISP RPP is given in FIGURE 3. All the procedures in the RPP code, other
than those explicitly defined, are straightforward, side-effect-free, data manipulation functions.
None have any special control responsibilities (except COND, DEFINE, and BLOCK, which have been

XEROX PARC, ISL-4, JULY 1984

8 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

1 .. (define READ~NORMALISE~PRINT

2 e (1ambda simple [level env]

3 s (normalise (prompt&read level) env

4 s (lambda simple [result] : REPLY continuation
5 . . (block (prompt&reply result level)

6 e (read-normalise-print level env))))))

T (define NORMALISE

8 (Tambda simple [exp env cont]

9 s (cond [(normal exp) (cont exp)]

[(atom exp) (cont (binding exp env))]

[(rail exp) (normalise-rail exp env cont)]

[(pair exp) (reduce (car exp) (cdr exp) env cont)])))

13 .. (define REDUCE

14 ... (1ambda simple [proc args env cont]

15 e (normalise proc env

16 s (lambda simple [proc!] ; PROC continuation
17 e (if (reflective proc!)

18 e (Y(de-reflect proc!) args env cont})

19 s (normalise args env

20 (lambda simple [args!] : ARGS continuation
21 .. (if (primitive proc!)

22 bbb (cont t(¥proct . dargs!))

23 e (normalise (body proc!)

24 e s e {bind (pattern proc!) args! (environment proc!))
2 e et s s cont)))))N))

26 .. (define NORMALISE-RAIL

27T v (1ambda simple [rail env cont]

28 i (if (empty rail)

29 s (cont (rcons))

30 (normalise (1st rail) env

31 .. (lambda simple [first!] ; FIRST continuation
32 e (normalise-rail (rest rail) env

33 s (1ambda simple [rest!] ; REST continuation
4 e (cont (prep first! rest!)))))))))

35 ... (define LAMBDA

36 e (lambda reflect [[kind pattern body] env cont]

37 (cont (ccons kind tenv pattern body))))

38 .. (define IF

39 (1ambda reflect [[premise cl1 c2] env cont]

40 e (normalise premise env

41 i (1ambda simple [premise!] ; IF continuation

42 e (normalise (ef {premise! cl c2) env cont)))))

FIGURE 3: The 3-LISP Reflective Processor Program (RPP)

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 9

omitted only to shorten the presentation). PROMPT&READ and PROMPT&REPLY issue the system’s
‘level>’ and ‘tevel=’ prompts, and perform input and output, respectively, but are otherwise
innocuous; + and ¢ mediate between a structure and what it designates: (examples: +(+ 2 2) => '4,
tr(+ 2 2) => "4, 44 = '4, {''(+ 2 2) = '(+ 2 2)). There are no hidden procedures; user
programs may use CCOns (the closure constructor), BODY, NORMALISE, etc. — even + and ¢ — with
impunity.

By defining special reflective procedures (using (LAMBDA REFLECT..)), the user may augment the
processor just shown. These reflective procedures are handled by line 18 of REDUCE: (4(de-
reflect proc!) args env cont). When the level 1 processor encounters (foo e; .. e,) in the
program it is running, the reflective procedure associated with the name foo is called at the same
level as the processor with exactly three arguments: a designator of the unnormalised argument
structure (from the original level 0 pair) '[e; .. e,], the variable binding environment, and the
continuation. In this way, the user’s program may gain access to all of the state information
maintained by the processor that is running his program. From this unique vantage point, it is easy
to realize new control constructs, such as cATCH and THROW, or to implement a resident debugger.

The infinite tower appears to the user exactly as if the system had been initialized in the

following manner:

4> (read-normalise-print 3 global)
3> (read-normalise-print 2 global)
2> (read-normalise-print 1 global)
1>

The user can verify this by defining a QuiT procedure that returns a result instead of calling the
continuation, thereby causing one level of processing to cease to exist:

1> (define QUIT (lambda reflect [args env cont] 'DONE))

1= 'QUIT

1> (quit) ; QUIT is run as part of the level 1 processor,

2= 'DONE ; which it kills.

2> (+ 2 (quit)) ; Thistime QUIT terminates the level 2 processor

3= 'DONE

3> (read-normalise-print 1 global) ; Levels can be re-created
1> (read-normalise-print 2001 global) ; atwill; level numbers
2001> (quit) ; are arbirtary.

1= 'DONE

1> (quit)

3= 'DONE

The following code defines (as a user procedure) the SCHEME escape operator CATCH:

(define SCHEME-CATCH
(lambda reflect [[tag body] catch-env catch-cont]
(normalise

body

(bind tag
t+(lambda reflect [[answer] throw-env throw-cont]

(normalise answer throw-env catch-cont))

catch-env)

catch-cont)))

XEROXPARC, ISL-4, JULY 1984

10 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

For example, the following expression would return 17;

(Tet [[x 11]
(+ 2 (scheme-catch punt
(* 3 (/ 4 (if (= x 1)
(punt 15)
(- x 1))

To some extent, a meta-circular processor or RPP can be viewed as an account of a language
(or at least of how it is processed) that is expressed within that language. As such, it “explains”
various things about how the language is processed, but depending on the account, it can account
for more or less of what is the case. In particular, it is important to realize what the above 3-LISP
RPP does and does not explain. This reflective processor was designed to be similar to standard
Scott-Strachey continuation-based semantic accounts of A-calculus based languages (e.g., [Stoy 77,
Muchnick 80]). Its primary purpose is to explain the variable binding mechanisms and the flow of
control in the course of error-free computations. The account intentionally does not say anything
about how errors are processed, nor does it shed any light on how the field of data structures are
implemented, nor on how I/0 is carried out. These details are buried in the primitive procedures,
and the reflective processor carefully avoids accounting for what they actually do. A different
theory that did explain these aspects of the language could be written, yielding a different RPP, and
a different reflective dialect — all of which would require a different implementation. But the basic
architecture and strategies we employ would generalize to such other circumstances,

One of the many things that SCHEME demonstrated was that lexical scoping and the treatment
of functions as first class citizens resulted in a cleaner LISP that no longer needed to quote its
LAMBDA expressions. 3-LISP goes a step further by showing how to incorporate, in a semantically
principled way, some of the other hallmarks of real systems, including: constructing programs on-
the-fly; making explicit use of EVAL and APPLY; FEXPRs and NLAMBDAs; and implementing a debugger

within a system.

4. Levels and Level-Shifting Processors

We explained in section 2 how an implementation of reflection might work; in this section we
present the architecture for such an implementation in much more detail. Although we will use 3-
LISP as a motivating example, our dependence on its idiosyncracies will not be crucial; the actual
code for a 3-LISP implementation is deferred until section 5.

4.1 Level Shifting in Conventional Implementations

Although procedurally reflective architectures are new, the idea of level shifting processors isn’t.
Consider for example an implementation of LISP that supports both interpreted and compiled
procedures definitions. In such a system, the non-compiled procedures will be defined by LISP
source code (typically, LAMBDA expressions represented as list structure) while the compiled ones will

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 11

be represented by blocks of instructions acceptable to the machine on which the LISP system is
implemented. Both kinds of procedures-are-represented as code, but in different languages: the
uncompiled source code, which will be run by the implementation, is in LISP, whereas the compiled
code, which will be run by the same processor that runs the implementation (probably the cpu of
the underlying machine), is in machine language.

Given procedures in these two different languages, there are complexities in having them
interact properly — complexities that the whole system usually smoothes over so well that the user
may never be aware of them. Consider in particular the procedure-call mechanism, where some
procedure A calls another procedure B. In the simplest case, where both A and B are represented
by compiled code, the linkage is usually achieved directly using a machine language branch
instruction to transfer control from A to the first instruction of B (after arguments and the return
address are loaded into registers or pushed on a stack). On the other hand, when a compiled
procedure A calls a B that has no compiled code associated with it, a machine-language transfer of
control must be made not from A to B, but from A to the block of machine language code that
implements the explicit LISP processor (EVAL) that in turn can examine the list-encoded LAMBDA
expression representation of B.

Once the LISP processor is in control, the situation is reversed. As long as neither A nor B is
compiled, everything is straightforward; the locus of control at the machine language level remains
within the LISP processor’s code, and that processor implements an appropriate connection between
the LISP code for A and the LISP code for B. When a non-compiled A calls a compiled B, however,
there will have to be a machine-language level transfer of control from the code for the LISP
processor to the code representing B.

As depicted in FIGURE 4, this can be described as simple level shifting between a level of
direct processing (at the lower level, where user code is run) and one of indirect processing (at the
upper level, where processors for user code are run). Shifting up and down both occur at times
corresponding to procedure-to-procedure calls (and returns). What controls the level-shifting in this
particular case is not the occurrence of reflective procedures, but rather changes in language.

Code for processing user code
|

-

User code L procedure call boundary

Figure 4: Simple level shifting caused by calls
between compiled and non-compiled procedures.

XEROX PARC, ISL-4, JULY 1984

12 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

In particular, we are assuming that all user code is at the lower level — i.e., that all user code
is run at level 0. Some of that code is in LISP; some is in machine language. At level 1 there is a
program, written in machine language, that is a processor program for LISP; call this program ML.
In this simple model, this is only one of four possible processor programs one could have; the other
three being a LISP program to process machine language (LM); a machine language program to
process machine language (MM), and a LISP program to process LISP (LL) (i.e., a metacircular
‘interpreter for LISP in LISP). The level shifting strategy adopted by the implementation is one that
enables the implementation to get away with just a) the one processor program ML, and b) a simple
underlying processor G that only knows how to run machine language programs. If it adopted a
different level-shifting strategy, it might need some of those other processor programs. For
example, if the implementation were not to shift down when it encountered a non-compiled A to
compiled B procedure call, it would need MM — a machine language program to interpret machine
language. Similarly, if it were to try to shift up on a non-compiled to non-compiled procedure call,
it would need LI.

The analogy between standard implementations and implementations of reflection can be
pushed even further by considering how matters are complicated when explicit calls to EVAL are
supported. Suppose that the expression (EVAL '(F00 10)) is found within the body of a (non-
compiled) procedure named ree. When the implementation (specifically, the cpu running the
program ML) encounters this expression while processing a call to Fee, control within the user’s
program must pass to the evaL procedure, which, we will assume for the moment, will be defined
via LISP source code (i..e., we will assume that evaL is bound to LL, the meta-circular processor
program for LISP). The net effect will be that ML will process the code for Foo indirectly —
specifically, ML will process LL (the code for EvaL), which in turn will process F00. So G (the cpu)
will be two levels away from the code for Foo.

It is a relatively simple change to the LISP processor program ML to have it recognize calls to
evat and treat them in a special way that avoids this extra level of indirect processing — in fact that
is what most implementations of LISP do (see FIGURE 5). This change also means that the code LL
need not be kept in the system. Notice, however, that this change is another form of level shift, not
between compiled code and the LISP processor this time, but between the two different LISP

expressions (EVAL '(Foo 10)) and (Fo0 10).

(EVAL '(F00 10))

(FOO 10)

Figure 5: Level shifting caused by calls to EVAL

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 13

It is no coincidence that there are strong similarities between these two forms of level shifting
— compiled vs. interpreted, on the one hand, and ordinary expressions vs, arguments to EVAL, on
the other. The machine code for the LISP processor and the compiled code for evaL are exactly the
same thing: they are both ML — a program, written in machine language, that is a processor for
LISP. The downward shift to avoid an extra level of explicit processing on calls to EVAL is also the
downward shift to run the compiled code for evaL. In both cases, the relationship between adjacent
levels is the same: the computation that happens implicitly at one level is being carried out

explicitly one level above it.

4.2 Analysing a Processing Activity

While the simple level shifting techniques described above might suffice to handle a non-
reflective language with explicit access to its processor, the task of implementing 3-LISP has an
additional complexity; viz., reflective procedures give the user a way of running arbitrary procedures
at the level of the program’s processor, including programs that are themselves reflective. In effect,
the user can get access into the middle of NORMALISE (3-LISP’s EVAL), making the job of “compiling”
NORMALISE much more difficult than it would otherwise be. Moreover, if you look carefully at the
definition of 3-LISP and at its RPP, several of the standard control constructs, such as LAMBDA and IF,
look dangerously circular, since they are both defined as reflective procedures and also used in the
account of how the processor works. In order to implement a generalised level-shifting processor of
the sort suggested in the last section, therefore, we have first to analyse the processing activities that
must go on with an eye to implementing some of them directly, while allowing others to be carried
out in virtue of one or more levels of explicit processing.

In particular, we need to name various relationships between the code in a processor program
and the code that such a program processes. First, if an expression or procedure to be applied is
primitive, or, more generally, if within the processor there is code that corresponds exactly to the
expression or procedure in question, then that expression or procedure can be dealt with directly in
what amounts to a single processing step. We will call such expressions and procedures directly
implemented. Small integer arithmetic, for example, is typically directly implemented in LISP
implementations by the arithmetic capabilities of the underlying machine language; primitive data
structure operations (like CAR and CONS), at least in simple implementations, are also directly
implemented by special procedures.

Second, if an expression is not directly implemented, it can usually be broken down into a
series of constituent steps that are either themselves directly implemented, or can be broken down
in turn, leading in the end to a long series of directly implemented expressions. Suppose for
example we have the following definition of the 3-LISP procedure 2ND:

(define 2ND
(lambda simple [x]
(1st (rest x))))

XEROX PARC, ISL-4, JULY 1984

14 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

Then the processing of (2ND [10 20]) can be broken down into roughly the series of simpler
processing activities corresponding to the processing of (REST [10 20]) and (1ST [20]). We will
call this kind of processing decomposition engendered by the standard compositional and recursive
nature of programs a horizontal decomposition, to correspond to the way we have been depicting
levels of processing. In procedure-based languages, procedure call boundaries usually serve as the
most convenient dividing lines or “click points” separating these processing units. In general, a
lengthy computation is carried out in virtue of its horizontal decomposition into a series of simple
steps, each of which is directly implemented. (Horizontal decomposition corresponds to the
standard notion of a computation tree, based on a compositional expression, with the directly
implemented steps as the leaves.)

As we have seen, the existence of a meta-circular processor program provides a third possible
way of processing an expression. In particular, for any expression X, instead of processing X we can
do an upwards vertical conversion, and process instead an expression that explicitly represents the
processing of X. For example, we can convert (2ND [10 20]) into (NORMALISE '(2ND [10 207]) ..).
This upwards vertical conversion can then in turn be horizontally decomposed, typically into more
steps than the original expression would have been decomposed into. For example, the horizontal

decomposition of

(NORMALISE '(2ND [10 20]))
through NORMALISE and REDUCE, begins (roughly):

(COND [(NORMAL '(2ND [10 201)) ...]

o)
(NORMAL '(2ND [10 20]))
ce ; various internal steps within NORMAL
(ATOM '(2ND [10 207]))
(RAIL '(2ND [10 207]))
(PAIR '(2ND [10 207]))
(REDUCE (CAR '(2ND [10 20]))
(CDR '(2ND [10 207))
ENV
CONT)
(CAR '(2ND [10 20]))
(CDR '(2ND [10 201))
(NORMALISE '2ND ...
(NORMAL '2ND)
. ; various internal steps within NORMAL
(ATOM '2ND)
(BINDING '2ND ...)

Some expressions, like (NORMALISE '3 ..), can be converted down (to 3, in this case), although

downwards conversion is not always possible.

- XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LLANGUAGES 15

In sum, there are three ways in which an.implementing processor can attempt to perform any
given processing activity:

1. it can implement it directly;

2, it can perform a horizontal decomposition, and process the smaller steps; or

3. it can perform an upwards or downwards vertical conversion, and then process the result at

a different level.
Given this flexibility, we can make the following observations concerning 3-LISP’s various kinds

of procedures.

» Primitive procedures, such as 1ST and up, cannot be decomposed horizontally. Moreover, as
the (CONT +(¢PROC! . JARGS!)) line of the meta-circular processor shows, and as common
sense would suggest, every primitive is used in the horizontal decomposition of every
(upwards) vertical conversion of it. Hence the primitives must be performed directly, or
else be a part of some larger activity that is performed directly.

b Other simple (non-reflective) procedures can be decomposed horizontally using the closure
associated with the procedure. However, simple procedures that are part of the standard
system and whose processing can be completely decomposed a priori (this certainly includes
but is not limited to the kernel procedures) are also candidates for being implemented
directly; e.g., 3-LISP’s BINDING and BIND.

» Reflective procedure require one level of vertical conversion (in some sense that is what
reflective procedures are), after which the (corresponding “de-reflected”) procedure can be
decomposed horizontally using the corresponding simple closure.

4.3 Tiling Diagrams

The notions of horizontal decomposition and vertical conversion suggest an analogy. Imagine a
simple tiling game where the objective is to find a continuous path from left to right across an
infinitely tall board consisting of rows of non-overlapping numbered tiles. You are only allowed to
step on tiles with certain numbers, and you are never allowed to “retreat” (i.e., to move to the left).
As illustrated by the simple example in FIGURE 6, each row will typically consist of more tiles than
the row below. The best score is achieved by using the fewest steps, so the general strategy is to
stay as low as possible on the board. On the other hand, there are two pitfalls that must be
avoided: you do not want to end in a dead-end (no further steps possible), and you don’t want to
encounter a situation where you are climbing a spike without a top.

The board shown in FIGURE 6 was constructed according to the following rules: above every
tile numbered x is a sequence of tiles y:

x:y 1: 1,2 2: 3,4 3: 1,6 4: 3,5 5: 1,4
In constructing a path across the board, only odd-numbered tiles may be stepped on. The best
successful path is illustrated by tiles outlined with heavy lines.

XEROX PARC, ISL-4, JULY 1984

16 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

In this example, given the particular way each tile is related to the tiles above it, it is always
possible to find a path, no matter what the bottom layer of tiles is chosen to be.- Moreover, it can
be shown that no path ever need go higher than three rows from the bottom (in order to get over a
2-tile), and that the local strategy of choosing the lowest possible path will always be optimal and
will never lead to a dead end. If the rules were made more restrictive by forbidding you to step on
3-tiles, the game would still be winnable; however, the same can’t be said of either the 1-tile or the
5-tile, both of which are unavoidable (notice the insurmountable “spike” of 1-tiles).

.1,‘2.3|.4'1i5‘3|.5'1i2. ‘1|'4‘.1|.2‘3i5l

1(2]13]1411

Figure 6: Tiling Game

To implement a reflective language is basically to play a tiling game, where tiles correspond
roughly to procedure calls, tiles above another tile are approximately (the horizontal decomposition
of) an upwards vertical conversion of the lower tile, and horizontal tiles represent horizontal
decompositions. The tiles that can be stepped on are the procedures that have a direct
implementation. Like the designer of a tiling game that admits a winning strategy, there is a two-
fold challenge: you must carefully select a collection of processing activities that will be
implemented directly (corresponding to tiles that can be stepped on), and, for efficiency, you must
play the game well, which means coming up with a near-optimal strategy for achieving any A=n (n
finite) computation that, by shifting either up or down, avoids spikes and dead ends and crosses the

board in a minimum number of steps.

4.4 Direct Implementation of Kernel Procedures

We said earlier that the kernel of a reflective language consists of those parts of the RPP that
are used in the course of processing the RPP one level below. For 3-LISP, call the six procedures
NORMALISE, REDUCE, NORMALISE-RAIL, LAMBDA, IF, and READ-NORMALISE-PRINT the primary processor
procedures (ppps), and call their embedded continuations (the REPLY, PROC, ARGS, FIRST, REST,

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 17

and IF continuations identified on lines 4, 16, 20, 31, 33, and 41 of the RPP) the primary processor

_continuations (ppcs). The 3-LISP kernel then- consists of the ppps, the ppcs, the utilities like
BINDING, BIND, and NORMAL, and the primitives such as caARr, Cbr, +, ¢, and Rrcons. If the
implementation directly implemented (i.e., had “compiled” versions of) all the kernel procedures, it
would be guaranteed that any A=n (n finite) expression could be normalised (the analogous
situation in the tiling game would be one where any tile on rows n and above could be stepped on).
The tiling analogy makes it clear why it is the kernel procedures, not the primitive procedures, for
which we need direct implementations: since all primitives are used in the horizontal decomposition
of every vertical conversion of them, primitives will form spikes in the tiling diagram, over which no
shifting strategy will be able to climb.

As we will discuss later, an implementation can be slightly more minimal (directly implement
fewer procedures), but directly implementing the whole kernel makes for the simplest processor
code, and the simplest shifting strategies. As with the tiling game, the choice of a basis set cannot
be made independently of the strategy for shifting up and down.

4.5 When and How to Shift Up

The next important problem is to determine the criteria by which the implementation processor
will decide that it is necessary to shift up and the mechanisms for achieving this transition. We
begin by observing that the state explicitly maintained at each level of processing by the reflective
processor consists of the expressions, environments, and continuations that are passed as arguments
among the ppp’s. Not captured at any particular level are the global state of 1/0 streams and the
structural field itself: fortunately, however, the RPP does not use side effects to remember state
information (except when the program that it is running forces it to process a side effect).? As a
result, when a shift up occurs, only an expression, an environment, and a continuation will have to
be “pulled out of thin air”.

Shifting up will have to occur when control would leave the implementation code that
represents the directly implemented kernel. This can happen at only a handful of places in the
RPP: at one of the continuation calls, (cont ...), and on line 18, where reflective procedures are
called using the expression (J(de-reflect proc!) ..). 'The real question is where in the
implementation processor should the shift up take us? In other words, it is one thing to know
where one needs to leave the level below and shift up; it is much less clear where, in the level
above, one should arrive. It would seem that the implementation processor could shift from
processing (cont exp) to processing the following upwards vertical conversions of (cont exp):

(normaiise '(cont exp) e? c?)
On the other hand, inspection of the RPP shows that this is equivalent to:

(reduce 'cont '[exp] e? c?)

XEROX PARC, ISL-4, JULY 1984

18 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

And if we assume that exp and cont normalise to exp and the simple (non-reflective) closure cont,

respectively, both of these are equivalent to:

(reduce tcont '[exp] e? c?)
(reduce tcont t[exp] e? c?)

Since the higher level will in general be finer-grained (go through more identifiable steps) than the
level below it, there isn’t a definitive answer. Given our particular choice of ppp’s, all four of the
above possibilities are acceptable. Pure efficiency would suggest the last, since it is the furthest
along in the processing. This in turn suggests an even more efficient answer, and a more natural
seam, at line 23 in the ARGS continuation at the instant NORMALISE is about to be called on the

body of the (simple) cont closure:

(normalise (body tcont)
(bind (pattern tcont)

t[exp]
(environment tcont))

c?)

Since exp and cont are part of the state of the implementation, and since this expression doesn’t use
an environment, only the continuation ¢? needs to be “pulled out of thin air”. What should this
continuation be? The (somewhat surprising) answer is that the appropriate continuation is nof a
function of the current level of processing; rather, it is a function only of the last processing done at
the next higher level!

Why is this the case? The real answer is that it is because 3-LISP’s RPP can be processed
directly by a finite state machine, but it is important to see why this is so. There are two critical
things to realise. First, the RPP implements a “tail-recursive” dialect of LISP (e.g.,, SCHEME; see
[Steele & Sussman 76a]); it is not procedure calls per se that cause the processor to accumulate state,
but rather only embedded procedure calls. For example, with respect to a call to the procedure
represented by (1ambda simple [x] (f (g x))), the call (g x) is embedded in the first argument
position of (f (g x)), and therefore requires the processor to save state until (g x) returns, just as
in a conventional implementation of procedure calls. The call to f, on the other hand, is not
embedded with respect to the initial call (rather, it substitutes for it), and can be implemented much
like a GO TO statement, except that arguments must be passed as well. The fact that 3-LISP has a
tail-recursive processor can be seen by inspecting the RPP and observing that a) the number of
bindings in an environment is a (more-or-less) linear function of the static nesting depth of
programs, and b) when a call to a simple procedure is reduced, the continuation in effect upon
entry to REDUCE is the one passed to NORMALISE for the body of the called procedure’s closure. The
key implication is that when one procedure calls another from a non-embedded context, the
continuation carried by the processor upon entry to the called procedure is the same as what it was

upon entry to the calling procedure.

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 19

The second crucial property is that the ppp’s always call one another in non-embedded ways.
Together with the first observation, it implies the following property of the reflective processor
processing the RPP itself: the continuation carried by the processor upon entry to any ppp is always
the same. This assertion can be phrased more precisely: the (level 2) reflective processor processing
the (level 1) RPP processing a (level 0) A<1 structure always carries the same level 2 continuation at
every trip through level 2 REDUCE when the level 2 ProC is bound to 'NORMALISE. In other words, if
one were to “watch” the level 2 state upon entry to REDUCE, one would find that CONT was always
bound to the same closure whenever PROC iS bound to the atom 'NORMALISE (or 'REDUCE, OT 'CONT,
etc.).

Since the points in the RPP where the shift up will happen correspond to non-embedded calls
within it (specifically, either to ({¢(de-reflect proc!) ..) or to one of the six (cont ..)
expressions), the continuation that must be reified is nosr a function of the current level of
processing. Instead, it is the last continuation that was explicitly used at that level, which will be
the original REPLY continuation at the next higher level, if user-defined code has never been run at

that level before.

4.6 When and How to Shift Down

Deciding when to shift down is similarly straightforward. The implementation processor should
shift down whenever it is asked to process something that is directly implemented. In practice, it is
not necessary to shift down as soon as possible (i.e., full optimality need not be achieved); it suffices
to recognize only the situation where the implementation processor is processing calls to ppps and
ppcs, since all paths through the RPP will pass through these procedures. The situation can be
detected in the code corresponding to the ARGS continuation (i.e., is PROC! bound to the closure for
a ppp or ppc?). It is also essential that the arguments passed to the ppps be scrutinized, to ensure
that they are “reasonable” (of proper type and so forth). If they are, the implementation processor

can perform a downwards conversion from (for example)

(normalise (body tnormalise)
(bind (pattern tnormalise)
args!
(environment tnormalise))
cont)

to

(normalise (1st targs!)
(2nd targs!)
(3rd targs!))

The continuation in effect prior to shifting down must be recorded in the absorbed state. Typically,
it will be a REPLY continuation — the original one for that level of processing, born within the call
to READ-NORMALISE-PRINT that created that level at the time of system genesis. However, since it is

XEROX PARC, ISL-4, JULY 1984

20 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

possible for the user to write code that calls NoRMALISE from an embedded context, it is essential to
save the continuation each time a downward shift occurs so that it may be brought back into play
the next time the processor shifts up to this level.

How is it that we can store away a user-supplied continuation and shift down, without knowing
what behaviour that continuation will engender? The answer is simply that that continuation will
not be called — cannot come into play — until such time as the computation at the lower level
returns a result. Since each ppp ends in a tail-recursive call, this chain can break down only if
some non-ppp is called which returns a result instead of calling the continuation passed to it. But it
is precisely these calls that always cause a shift up (see the definition of a&catt in the next section);
hence, the implementation processor will automatically find its way back to the appropriate level
whenever a non-primary processor continuation would be called at a higher level.

5. A 3-LISP Implementation Processor Program

The principle reason that the 3-LISP RPP cannot serve as a model for a real implementation
(ie., cannot be translated directly into an appropriate implementation language like machine
language or C) is that it is not a closed program. As indicated in line 18 of the RPP, the processing
of reflective procedures causes the locus of control to leave the ppps and venture off into code
supplied by the user. In the last section we gave a general description of how to write a real
implementation that avoided this problem; in this section we use those strategies and present a full
closed program for a real implementation of 3-LISP. This program will be expressed in a
conservative subset of 3-LISP; no crucial use will be made of 3-LISP’s meta-structural, reflective, or
higher-order function capabilities. We have chosen to write this real implemention of 3-LISP in 3-
LISP (i.e., to write a true meta-circular processor for 3-LISP) because it allows us to suppress many
implementation details that would necessarily surface if a different language were chosen. The most
important omissions are the memory representation of the elements of the structural field, garbage
collection, error detection and handling, and all I7/0. While important, these concerns, which 3-LISP
shares with other LISP dialects, are not germane to our particular topic of how to implement
procedural reflection. What this program will do is to discharge all of the salient issues having to
do with reflection; translating from the code presented here to an implementation in a more
reasonable implementation language would be straightforward.

XEROX PARC. ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 21

5.1 The Basic Implementation Processor

As noted in earlier sections, the structure of the 3-LISP implementation processor program will
be based on the structure of the RPP itself. Specifically, for each ppp there is a corresponding
implementation processor procedure bearing its source’s name prefixed by “a&”; e.g., &&NORMALISE
implements NORMALISE. As will be discussed later, each takes an additional parameter named STATE
that represents the absorbed state, which is used only when shifting up or down (such shifts will be
indicated with underlined code). The following is the code for the implementations of NORMALISE
and REDUCE (&&NORMALISE-RAIL and &&READ-NORMALISE-PRINT, derived in an analogous manner, are

given in the appendix):

(define &&NORMALISE
lambda simpie [state exp env cont]
P
(cond [(normal exp) (&&call state cont exp)]
[(atom exp) (&&call state cont (binding exp env))]
[(rail exp) (&&normatlise-rail state exp env cont)]

[(pair exp)
(&&reduce state (car exp) (cdr exp) env cont)])))

(define &&REDUCE
(lambda simple [state proc args env cont]
(&&normalise state proc env
(make-proc-continuation proc args env cont))))

Similarly, for each type of ppc there is a corresponding implementation processor procedure with
names of the form &&xxx-CONTINUATION. E.g., &&PROC-CONTINUATION implements the “PROC” type
continuations (see lines 16—25 of the RPP), which field the result of normalising the procedure part
of a pair. While the RPP continuations are closed in an environment in which a handful of non-
global variables are bound, their implementation equivalents are passed these data as explicit
arguments (e.g., &&PROC-CONTINUATION is passed as arguments the bindings of PROC, ARGS, ENvV, and
CONT from the incarnation of &REDUCE that spawned it). &&EXPAND-CLOSURE (presented below)
implements the last clause of the “ARGS” continuation, although it does not correspond to a
continuation on its own. Again, two examples (the others are given in the appendix):

(define &&PROC-CONTINUATION
(1ambda simple [state proc! proc args env cont]
(if (reflective proc!)
(&&call state t(de-reflect proc!) args env cont)
(& &normalise state args env
(make-args-continuation proc! proc args env cont)))))

(define &&ARGS-CONTINUATION
(1ambda simple [state args! proc! proc args env cont]
(if (directly-implemented proc!)
(&&call state cont *(tproc! . targs!))
(&8&expand-closure state proc! args! cont))))

XEROX PARC, ISL-4, JULY 1984

22 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

Note that &&ARGS-CONTINUATION simply executes any procedures which are implemented directly,
using the same technique that is used in the RPP for primitives. ' If this code were to be translated
into a different implementation language, the +(dproc! . dargs!) expression would be turned into
appropriate calls, for each directly implemented procedure, to the procedure that performs the
direct implementation.

As well as defining these implementation procedures to do the work of the ppcs, the
implementation must also contain code to create instances of the processor continuations exactly as
specified by the RPP — i.e., it must create the exact ppc closures that would have been created had
the RPP been used explicitly. Such continuations will never be used by the implementation as such,
but since they are visible from user code they must be perfectly simulated. There are four
procedures in the implementation to construct closures of each of the four types. For example, the
(make-proc-continuation proc args env cont) expression in &&REDUCE will produce the same
closure that lines 16—25 in Repuce would, given identical bindings for the four variables. An

example (the others are given in the appendix):

(define MAKE-PROC-CONTINUATION
(lambda simple [proc args env cont]
t(ccons 'simple t(bind '[proc args env cont reduce]
+[proc args env cont reduce]

gtobal)

'"[proc!]
"(if (reflective proc!)
(t(de-reflect proc!) args env cont)
(normalise args env
(lambda [args!]
(if (primitive proc!)
(cont t(tproc! . targs!))
(normalise (body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont))))))))

In many cases the implementation procedures call one another, in exactly those places where the
ppps in the RPP call other ppps. For example, &&NORMALISE calls &&REDUCE in just the place (line
12) where NorMALISE would call rRepuce. However, in those cases where it is not possible to
determine exactly which procedure to call, the implementation procedures defer this task to &&CALL.
E.g., whereas in lines 9" and 10 of the RPP NORMALISE calls the procedure designated by the local
variable conT, the corresponding lines in &&NORMALISE pass the buck to &a&caLL, which inspects the
closure designating the function to be called. If the closure is a ppp or a ppc, the corresponding
implementation procedure (83...) is invoked. In the case of ppcs, the non-global bindings captured
within them must be extracted and passed as extra arguments to the implementation versions, as
discussed earlier. (The two shift-up cases will be discussed below.)

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 23

(define &&CALL
(lambda simple x
(let [[state (1st x)] [f (2nd x)] [a (rest (rest x))]]
(cond [(ppp *f) (&&call-ppp state f a)]
[(ppc *f) (&&call-ppc state T (1st a))]
[(directly-implemented tf)
(&&call (shift-up state)

(reify-continuation state)
t(f . a))]

[$t (&&expand-closure (shift-up state)

+f ta (reify-continuation state))]))))

(define &XCALL-PPP
(lambda simple [state T a]

((select (ppp-type tf)
['normalise &&normalise]
['normalise-rail &&normalise-rail]
['reduce &&reduce]
['read-normalise-print &&read-normalise-print]
['if 8&if]
['1ambda &&lambda]l)
(prep state a))))

(define &&CALL-PPC
(lambda simple [state f arg]
(select (ppc-type *f)

['proc (8&&proc-continuation state arg (ex 'proc f)
(ex 'args f) (ex 'env f) (ex 'cont f))]

['args (&&args-continuation state arg (ex 'proc! f)
(ex 'proc f) (ex 'args f) (ex 'env f)
(ex 'cont f))]

['first (&&first-continuation state arg (ex 'rail f)
(ex 'env) (ex 'cont T))]

['rest (&&rest-continuation state arg (ex 'first! f)
(ex 'rail f) (ex 'env f) (ex 'cont f))]

['reply (& &reply-continuation state arg (ex 'level f)
(ex 'env f))]

['if (&&if-continuation state arg (ex 'premise f)
(ex 'cl f) (ex 'c2 T) (ex 'env f)
(ex 'cont f))1)))

5.2 Shifting Up, Shifiing Down, and Level Management

The implementation presented so far will correctly process code at a given level; we need next
to examine shifting back and forth between levels. This will enable us to explain the underlined
clauses in &&CALL, above.

If an expression with A>1 is given to &8NORMALISE, then at some point a pair involving a user-
defined reflective procedure will be given to &&Repuce. This in turn will go to &&PROC-
CONTINUATION, will pass the test for reflective closures, and will generate a call to &&CALL with a
(corresponding de-reflected) closure that &&CALL fails to recognise as one for which there is an
implementation equivalent. The last (underlined) conp clause in &&CALL handles this case, while
ensuring that the locus of control remains within the code of the implementation processor program,

XEROX PARC, ISL-4, JULY 1984

24 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

As discussed earlier, the implementation processor must shift up, altering its internal state to
accurately reflect what would have been happening at the next higher processing level in the tower.

In order to understand this clause, imagine that instead it was replaced with the single clause
[$t (f . a)]. In some sense this would “work” (since we are writing the implementation processor
in 3-LISP), but it would violate our goal of making the implementation be a closed program. The
procedure f is intended to be called at this level, but we cannot afford to use it in the
implementation, because we didn’t write it and therefore don’t know that it stays within the
restricted subset of 3-LISP that the implementation is allowed to use. If, for example, it contained
reflective code, that would cause the implementation processor to reflect, whereas what we want is
for the implementation processor to model that reflection. So instead of using the (f . a) clause,
the implementation processor must instead shift up, effectively converting (f . a) into
(REDUCE +f ta ~ ~)., By assumption, we know that f iS bound to a non-reflective, non-primitive
closure, which means we will want to decompose it horizontally, so this call to REDUCE is equivalent
to (&&EXPAND-CLOSURE ~ +f ta ~). To make this work we need to supply two missing arguments:
a continuation for the next higher level of processing (the second ‘~), and a new STATE argument
for all levels above that (the first ‘~’). As discussed in section 4, the continuation can simply be
taken from the top of the absorbed state stack, which is done by REIFY-CONTINUATION. SHIFT-UP
then returns the (saved) states for all levels above that.

If, on the other hand, f is primitive, kernel, or some other procedure that we have directly
implemented, we can simply use (f . a). This is the case handled by the third (first underlined)
clause in 8&caLL. Performing the procedure application is not difficult; the question to be asked is
what to do with the result that is immediately returned. The answer is that it needs to be sent to
that continuation that is waiting for a result from this level of processing. We can find that
continuation at the top of the absorbed state stack, which might make us think we could simply do
((shift-up state) +(f . a)). But that would be to assume that we also have a direct
implementation for that continuation, which will not necessarily be true. So we first do the (f . a),
and then immediately shift up and recursively ask &s&caLL to figure out how to give the result to the
appropriate saved continuation.

Note that this last case is one where the processor is asked to use a primitive or kernel
procedure, not one where it is asked to process a primitive or kernel procedure, a situation which is
dealt with straightforwardly in the fourth line of the definition of &&ARGS-CONTINUATION.

The corresponding shift down operation can occur whenever the implementation processor
finds itself processing a structure that it knows how to process directly, which will include directly-
implemented procedures, ppps, and ppcs. Since the locus of control must stay within the “&&”
procedures, &&EXPAND-CLOSURE, when it detects that the closure it is about to expand is of such a
type, can shift down and call the corresponding implementation processor procedure directly. This

would suggest the following code:

XEROX PARC; ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 25

i1 (define &XEXPAND-CLOSURE ; We don't use this definition!
HR (1ambda simple [state proc! args! cont]
N (if (or (directly-implemented proc!)
N (ppp proct)
i3 (ppc procl))
(&&call (shift-down cont state) tproc! targs!)
(&&normalise state
(body proc!)
(bind (pattern proc!)
args!
(environment proc!))
cont))))

However there are two problems with this definition. First, a&ExPAND-CLOSURE will never be called
with a directly implemented procedure, since &&ARGS-CONTINUATION and &&cALL check for that case
before calling &&EXPAND-CLOSURE. This is reasonable, because even though in some sense we could
shift down, we would have (as explained above) to shift back up again immediately, in order to
figure out what to do with the result. So only the ppps and ppcs are relevant. We cannot blindly
shift down upon encountering them, because our implementation versions make rather strong
assumptions about the arguments they are given, and we therefore need to check that the arguments
we are given explicitly conform to these assumptions. For example, although reflective
continuations are well-formed (i.e., (NORMALISE 'x global (lambda reflect [a e c] (c ta)))
normalises to '[(binding exp env)]), our implementation versions assume that continuations are
simple closures that normalise their arguments. Since there is no conceptual problem with not
shifting down — all it means is that processing will be one level more indirect than may be strictly
necessary — we adopt a version of 8&EXPAND-CLOSURE that checks these integrity conditions, and
shifts down only if they are met. Furthermore, we shift down only on NORMALISE and the ppcs; the
other ppps could be checked, but that would only add complexity (idiosyncratic argument integrity
checks), and, as an inspection of the RPP shows, there will only be one extra horizontal processing
step before a call to NORMALISE is encountered, so this will not be a very serious inefficiency.

All of these considerations lead us to the following definition. SHIFT-DOwN is used to absorb the

continuation into the absorbed states of the higher levels,
(define &XEXPAND-CLOSURE
(1ambda simple [state proc! args! cont]
(cond [(and (= (ppp-type proc!) 'normalise)
(plausible-arguments-to-normalise args!))
(& &normalise (shift-down cont state)
t(1st args!) t(2nd args!) t(3rd args!))]
[(and (ppc proc!)
(plausible-arguments-to-a-continuation args!))
(&&call-ppc (shift-down cont state)
tproc!
t(1st args!))]
[$t (&&normalise state
(body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont)])))

s

XEROX PARC. ISL-4, JULY 1984

26 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

The only further issue having to do with level shifting is determining the structure of the
-continuations saved for each level of the infinite tower. The initialization process described in
section 3 would result in one REPLY continuation per level as the initial conditions. Since we
naturally defer the creation of the level n initial continuation until such time as the implementation
processor needs to reify it, the absorbed state of the whole tower can in fact be represented as a
(finite) sequence of continuations for the intervening levels from the current level of the
implementation processor up to the highest level reached to date. There is one subtlety: since each
CREPLY continuation is closed in an environment in which 1eve1l is bound to the integer level
number, we store as the last element of this continuation sequence the level number for the next
level not yet reached. The implementation processor is started off at level 1 in the code
corresponding to READ-NORMALISE-PRINT; hence the initial absorbed state, which represents a
(virtual) tower of initial continuations for levels 2 to oo, consists of the singleton sequence [2].

(define 3-LISP
(lambda simple []
(&&read-normalise-print (initial-tower 2) 1 global)))

(define INITIAL-TOWER
(lambda simple [level] (scons level)))

(define SHIFT-DOWN
(lambda simple [continuation state]
(prep continuation state)))

(define REIFY-CONTINUATION
(lambda simple [state]
(if (= (length state) 1)
(make-reply-continuation (1st state) global)
(1st state))))

(define SHIFT-UP
(1ambda simple [state]
(if (= (Tength state) 1)
(scons (1+ (1st state)))
(rest state))))

5.3 Summary

As was discussed in section 4, as long as the set of implemented procedures is broad enough to
ensure that every call to a kernel procedure will “top out” at some finite level, there is no need for
the implementation processor to handle every kernel utility procedure (e.g., NORMAL and 8IND). In
the code just presented we have included the appropriate code to handle these kernel utilities as if
they were primitive procedures, but some of them need not have been so included. Though there is
probably no unique solution, there are no doubt more “minimal” implementations, in the sense of
implementations that directly implement fewer 3-LISP procedures; it is a bit of an exercise to figure
out exactly how few are minimally necessary. In a real implementation, however, efficiency presses
the other direction, towards implementations that implement more utilities — a requirement that

<%
XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 27

can usually be met, provided they do not involve non-standard control constructs, and are not
“open” in the sense of calling user-supplied arguments as procedures (i.e., are not higher-order).

Given the code we have presented, it is easy to verify by inspection that all “88” procedures are
used in the following restrictive ways: 1) they are always called from other “&8” procedure, with the
exception of 3-L1SP which is the root procedure; 2) they are always called from non-embedded
contexts; 3) they never use, either directly or indirectly, any reflective procedure other that those for
the standard control structures; 4) they are never passed as an argument, or returned as a result; 5)
they are never remembered in a user data structure; and 6) barring an error, the chain of processing
initiated by the call to 3-L1sP is never broken (i.e., it will never return). It is a relatively
straightforward final step to translate such a program into one’s favourite imperative language.

6. Conclusions

It is widely known that complex issues arise in the implementation of more traditional
languages: we have already mentioned a system’s treatment of calls between compiled and
interpreted code; micro-code routines that call macro-code routines as subroutines are a similar
example of implicit level-shifting. The general question of mediating between implementation
structures and user structures, and the attendant complexities when they are in different languages,
arises in other contexts as well, as for example in SMALLTALK-80’s explicit use of a compiled code
interpreter for debugging purposes. It is also common experience that providing users with access
to implementation structures, although powerful for certain purposes, tends to make an
implementation unmodular and difficult to transport onto other architectures,

In [Smith 82a] it was claimed that the reflective capabilities of 3-LISP provide programmers
with the power that is normally provided only by giving them access to the underlying
implementation. We claimed, in other words, that the full power of implementation access was
compatible with a fully abstract, implementation-independent language. In this paper, in showing
how to implement such a reflective language, such notions as level-shifting, reifying implicit
continuation structures, and so forth, make clear what it is that standard implementations do when
they provide those sorts of facilities. In this sense, a level-shifting implementation processor for a
procedurally reflective language can be viewed as a rational reconstruction of implementation more
generally, just as reflection itself can be viewed as a rational reconstruction of the complex

programming techniques that use such implementations.

XEROX PARC. ISL-4, JULY 1984

28 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LLANGUAGES

Epilogue and Acknowledgements

Although our first implementation of 3-LISP was based very closely on the techniques described
in this paper, we have since shifted to a run-time incremental compiler, that translates 3-LISP code
into byte codes for an underlying SECD machine. The resulting system, implemented in
INTERLISP-D, yields a performance almost exactly the same as that provided by the INTERLISP-D
interpreter (i.e., 3-LISP programs run about as fast as interpreted INTERLISP-D programs). The
arguments presented in this paper, coupled with this experience, lead us to believe that reflection,
although tricky, is not an inherently inefficient construct to add to a programming language.

We would like to thank Austin Henderson, Mike Dixon, Dan Friedman, Hector Levesque, and
Greg Nuyens for their helpful comments on an early draft. This research was conducted in the
Intelligent Systems Laboratory at Xerox PARC, as part of the Situated Language Program of
Stanford’s Center for the Study of Language and Information.

Notes

1. We use ‘processor’ in place of ‘interpreter’ in order to avoid confusion with the semantic
(model-theoretic) notion of interpretation. See [Smith 82a and Smith 84].

2. Exactly the same principle is employed when giving a denotational semantic account of a
programming language that has assignment statements: the state of the computation that was
implicit at the level of the program is made explicit at the level of the mathematical
metalanguage in which the account of the language is formulated.

3. Though it is not quite required by the underlying notion, it is natural to have structures at one
level designate (name) structures at the level below. Again, see [Smith 82a and Smith 84].

4, In a finite tower, there is one level which is run "by the hardware", at which point there is no
further program, and therefore no question of who runs it. See [Smith 8§2b].

5. Throughout, we assume that a level implements the level below it, so the sense of direction is
opposite from common practice, where one normally thinks of an implementation of a language
as being below the language implemented. Our usage, however, is in line with the customary
view that a name or designator is above the referent or designation (see note 3).

6. There are three classes of expressions that one might think of as the relevant base for the
induction: those that are primitive, those that are simple (i.e., do not involve reflection), and
those that are kernel. In 3-LISP the three classes overlap but are distinct; as discussed in
section 4.4, it is the kernel ones that are key to a correct implementation.

7. The re-startability of a computation does not imply that external world side effects (e.g., [/O)
are out of the question for a procedurally reflective system. All that would be required is for
all interactions with the external world to be remembered by G. Since the restarted
computation will merely retrace the steps up to the point that G detected the problem, the
computation up to that point could be replayed without having to interact with the external

world.

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 29

8. We are assuming (not unreasonably) that the point at which it is determined that D>1 is a
point at which all upper levels would have been boring so far, even if they had been run
explicitly. A more formal treatment would make this explicit.

9. Although 3-LISP has primitive procedures that "smash" structures, in this paper we will
pretend that there aren’t any. Without this simplifying assumption, bothersome technicalities
would tend to obscure the otherwise straightforward solution. The interested reader is referred
to the Interim 3-LISP Reference Manual [Smith & des Riviéres 84] which contains a correct

implementation for the unabridged language.

References

[Allen, 1978]
John R. Allen, Anatomy of LISP, McGraw-Hill, 1978.

[Henderson, 1980]
Peter Henderson, Functional Programming, Application and Implementation, Prentice-Hall, 1980.

[McCarthy et al, 1965]
John McCarthy, et al., LISP 1.5 Programmer’s Manual, MIT Press, 1965.

[Muchnick & Pleban, 1980]
Steven S. Muchnick and Uwe F. Pleban, “A Semantic Comparison of LISP and SCHEME”,

1980 LISP Conference, Stanford, 1980,

[Smith, 1982a]
Brian C. Smith, "Reflection and Semantics in a Procedural Language”, M.L.T. Laboratory for
Computer Science Report MIT-TR-272, 1982.

[Smith, 1982b]
Brian C. Smith, "The Computational Metaphor”, available from the author, 1982.

[Smith, 1984]
Brian C. Smith, “Reflection and Semantics in Lisp”, 1984 ACM POPL Conference, Salt Lake
City, Utah, January 1984,

[Smith & des Riviéres, 1984]
Brian C. Smith and Jim des Riviéres, Interim 3-LISP Reference Manual, Xerox Palo Alto
Research Center, Intelligent Systems Laboratory Report ISL-1, June 1984.

[Steele, 1976]
Guy L. Steele, Jr, “LAMBDA: The Ultimate Declarative”, M.LT. Artificial Intelligence
Laboratory Memo AIM-379, 1976.

[Steele, 1977a]
Guy L. Steele, Jr., “RABBIT: A Compiler for SCHEME (A Study in Compiler Optimization)”,
M.IT. Artificial Intelligence Laboratory Technical Report AI-TR-474, 1977.

[Steele, 1977b]
Guy L. Steele, Jr., “Debunking the “Expensive Procedure Call” Myth”, M.ILT. Artificial
Intelligence Laboratory Memo AIM-443, 1977,

XEROX PARC, ISL-4, JULY 1984

30 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

[Steele & Sussman, 1976]
Guy L. Steele, Jr. and Gerald J. Sussman, “LAMBDA: The Ultimate Imperative”, M.L.T
Artificial Intelligence Laboratory Memo AIM-353, 1976.

[Steele & Sussman, 1978a]
Guy L. Steele, Jr. and Gerald J. Sussman, “The Revised Report on SCHEME, A Dialect of
LISP”, M.ILT Artificial Intelligence Laboratory Memo AIM-452, 1978.

[Steele & Sussman, 1978b]
Guy L. Steele, Jr. and Gerald J. Sussman, “The Art of the Interpreter, or, The Modularity
Complex (Parts Zero, One, and Two)”, M.I.T Artificial Intelligence Laboratory Memo AIM-453,
1978.

[Steele & Sussman, 1980]
Guy L. Steele, Jr. and Gerald J. Sussman, “Design of a LISP-Based Microprocessor”,

Communications of the ACM, vol. 23, no. 11, November 1980.

[Stoy, 1977]
Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory, MIT Press, 1977.

[Sussman, Holloway, Steele & Bell, 1981]
Gerald J. Sussman, Jack Holloway, Guy L. Steele, Jr., and Alan Bell, “SCHEME-79 — LISP

on a Chip”, IEEE Computer, July 1981.

[Sussman & Steele, 1975]
Gerald J. Sussman and Guy L. Steele, Jr.,, “SCHEME: An Interpreter for Extended Lambda
Calculus”, M.LT. Artificial Intelligence Laboratory Memo AIM-349, 1975,

Appendix: 3-LISP Implementation Processor

This appendix lists the code for all the procedures required in the 3-LISP implementation
processor described in section 5. With very minor exceptions, this program is compatible with the

dialect of 3-LISP used in the Interim 3-LISP Reference Manual [Smith & des Riviéres 84].

(define 3-LISP
(1ambda simple []
(&&read-normalise-print (initial-tower 2) 1 global)))

; ;3 The implementation of READ-NORMALISE-PRINT is similar to the RPP version, except that an explicit
;+; procedure implements the REPLY continuation:

(define &&READ-NORMALISE-PRINT
(lambda simple [state level env]
(&&normalise state (prompt&read level) env
(make-reply-continuation level env))))

(define &XREPLY-CONTINUATION
(lambda simple [state result level env]
(block (prompt&reply result level)
(&&read-normalise-print state Tevel env))))

:+; The implementation of NORMALISE is virtually identical to NORMALISE, except that it must &&CALL
;3 ; continuations, and use implementation version of other ppps. Similarly, the implementation of REDUCE is

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 31

;;; similar to REDUCE itself, except that explicit procedures are used to implement both the PROC and
;33 ARGS continuations.

(define &&NORMALISE
(lambda simple [state exp env cont]
(cond [(normal exp) (&&call state cont exp)]
[(atom exp) (&&call state cont (binding exp env))]
[(rail exp) (& &normalise-rail state exp env cont)]

[(pair exp)
(&&reduce state (car exp) (cdr exp) env cont)])))

(define &&REDUCE
(1ambda simple [state proc args env cont]
(&&normalise state proc env
(make-proc-continuation proc args env cont))))

(define &&PROC~CONTINUATION
(lambda simple [state proc! proc args env cont]
(if (reflective proc!)
(&&call state t(de-reflect proc!) args env cont)

(&&normalise state args env
(make-args-continuation proc! proc args env cont)))))

(define &ZARGS-CONTINUATION
(lambda simple [state args! proc! proc args env cont]
(if (directly-implemented proc!)
(&&call state cont t(tproc! . targs!))
(&&expand-closure state proc! args! cont))))

; ;; The implementation of EXPAND-CLOSURE is like the regular EXPAND-CLOSURE code, except we can absorb
;3 ; (shift-down) on ppps and ppcs (see discussion in section 5.2). The following checks for NORMALISE
;;; and the ppcs:
(define &XEXPAND-CLOSURE
(lambda simple [state proc! args! cont]
(cond [(and (= (ppp-type proc!) 'normalise)
(plausible-arguments-to-normalise args!))
(& &normalise (shift-down cont state)
t(1st args!) +(2nd args!) *(3rd args!))]
[(and (ppc proc!)
(plausible-arguments-to-a-continuation args!))
(&&call-ppc (shift-down cont state)
tproc!
t(1st args!))]
[$t (&&normalise state
(body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont)])))

;;; The implementation of NORMALISE-RAIL is similar to NORMALISE-RAIL itself, except that explicit
;1 procedures are used to implement both the FIRST and REST continuations.

(define &&NORMALISE-RAIL
(1ambda simple [state rail env cont]
(if (empty rail)
(&&call state cont (rcons))
(&&normalise state (1lst rail) env
(make-first-continuation rail env cont)))))

XEROX PARC.ISL-4, JULY 1984

32 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

(define &&FIRST-COMTINUATION
(lambda simple [state first! rail env cont]
(&&normalise-rail state (rest rail) env
(make-rest-continuation first! rail env cont))))

(define &&REST-CONTINUATION
(lambda simple [state rest! first! rail env cont]
(&&call state cont (prep first! rest!))))

:+: LAMBDA and IF have to be implemented as primary processor procedures, IF with an explicit procedure
:;; in place of its normal continuation:

(define &&LAMBDA
(lambda simple [state [kind pattern body] env cont]
(&&call state cont (ccons kind tenv pattern body))))

(define &&IF
(1ambda simple [state [premise cl c2] env cont]
(&&normalise state premise env
(make-if-continuation premise cl c2 env cont))))

(define &&IF-CONTINUATION
(lambda simple [state premise! premise cl c2 env cont]
(&&normalise state (ef Vpremise! cl c2) env cont)))

i3 (8&CALL f a1l .. ak) would be like (f al .. ak), except that if f is a ppp or ppc, the corresponding
;13 implementation version is used instead; if f is directly implemented, we use the implementation directly
:;; and then shift up; otherwise we shift up and do an explicit expand closure one level higher.

(define &&CALL
(lambda simple x
(let [[state (1st x)] [f (2nd x)] [a (rest (rest x))]1]
(cond [(ppp *f) (&&call-ppp state f a)]
[(ppc tf) (&&call-ppc state f (1st a))]
[(directly-implemented *f)
(&&call (shift-up state)

(reify-continuation state)
t(f . a))]

[$t (&&%expand-closure (shift-up state)

+f ta (reify-continuation state))]))))

(define &&CALL-PPP
(lambda simple [state f a]
((select (ppp-type tf)
['normalise &&normalise]
['normalise-rail &&normalise-rail]
['reduce &&reduce]
['read-normalise-print &&read-normalise-print]
['if &&if]
['1ambda &&Tambda])
(prep state a))))

(define &&CALL-PPC
(lambda simple [state f arg]
(select (ppc-type =f)

['proc (&&proc-continuation state arg (ex 'proc f)
(ex 'args f) (ex 'env f) (ex 'cont f))]

['args (&&args-continuation state arg (ex 'proc! f)
(ex 'proc f) (ex 'args f) (ex 'env f)
(ex 'cont f))]

['first (&&first-continuation state arg (ex 'rail f)
(ex 'env f) (ex 'cont f))]

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES 33

['rest (&&rest-continuation state arg (ex 'first! f)
(ex 'rail f) (ex 'env f) (ex 'cont f))]

['reply (&&reply-continuation state arg (ex 'level f)
(ex 'env f))]

['if (&&if-continuation state arg (ex 'premise f)
(ex 'cl f) (ex 'c2 f) (ex 'env T)
(ex 'cont £))1)))

++; The next 6 MAKE-XxX-CONTINUATION procedures look very messy, but they are really trivial: all they do
;3 is to conmstruct a closure that is identical to the type of closure that would have been constructed by the
; ;3 RPP, had it been running instead of this implementation. These continuations are only used to fake the

i1; RPP; their only use here is as templates for later recognition.
++3 EX(TRACT) is used to extract bindings for variables that were enclosed in these faked continuations.

(define MAKE-~PROC-CONTINUATION
(lambda simple [proc args env cont]
+(ccons 'simple t(bind '[proc args env cont reduce]
+[proc args env cont reduce]
global)
"[proc!]
"(if (reflective proc!)
(t(de-reflect proc!) args env cont)
(normalise args env
(lambda [args!]
(if (primitive proc!)
(cont t(tproc! ., targs!))
(normalise (body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont))))))))

(define MAKE-ARGS-CONTINUATION
(lambda simple [proc! proc args env cont]
Y(ccons 'simple
t(bind '[proc! proc args env cont reduce]
t[proc! proc args env cont reduce]
global)
'[args!]
"(if (primitive proc!)
(cont t(Iproc! . dargs!))
(normalise (body proc!)
(bind (pattern proc!)
args!
(environment proc!))

cont)))))

(define MAKE-FIRST-CONTINUATION
(lambda simple [rail env cont]
Y(ccons 'simple
t(bind '[rail env cont normalise-rail]
t[rail env cont normalise-rail]
global)
"[first!]
"(normalise-rail (rest rail) env
(lambda [rest!]
(cont (prep first! rest!)))))))

XEROX PARC, ISL-4, JULY 1984

34 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

(define MAKE-REST-CONTINUATION
(lambda simple [first! rail env cont]
Y(ccons 'simple

t+(bind '[first! rail env cont normalise-rail]
+[first! rail env cont normalise-rail]
global)

"[rest!]

"(cont (prep first! rest!})))))

(define MAKE~-REPLY~CONTINUATION
(lambda simple [level env]
{(ccons 'simple

t(bind '[level env read-normalise-print]
+[Tevel env read-normalise-print]
global)

"[result]

'(block (prompt&reply result level)

(read-normalise-print level env)))))

(define MAKE-IF-CONTINUATION
(lambda simple [premise cl1 c2 env cont]
{(ccons 'simple

+(bind '[premise ¢l c2 env cont if]
t[premise ¢l c2 env cont if]
global)

"[premisel]

'(normalise (ef I{premise! cl c2) env cont))))

(define EX
(1ambda simple [variable function]
{(binding variable (environment tfunction))))

;+; Various utilities dealing with state management and continuations for each level.

(define INITIAL-TOWER
(lambda simple [level] (scons level)))

(define SHIFT-DOWN
(lambda simple [continuation state]
(prep continuation state)))

(define REIFY-CONTINUATION
(lambda simple [state]
(if (= (length state) 1)
(make-reply-continuation (1st state) global)
(1st state))))

(define SHIFT-UP
(lambda simpie [state]
(if (= (Yength state) 1)
(scons (1+ (1st state)))
(rest state))))

s ;; Predicates to check the plausibility of arguments, closures, and environments, to be used preparatory to
i ;; shifting down and using implementation versions;

(define PLAUSIBLE-ARGUMENTS-TO-A-CONTINUATION
(lambda simple [args!]
(and (rail args!)
(= (length args!) 1)
(bandle (1st args!)))))

XEROX PARC, ISL-4, JULY 1984

THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

(define PLAUSIBLE~ARGUMENTS-TO-~NORMALISE
(tambda simple [args!]
(and (rail args!)
(= (length args!) 3)
(handle (1st args!))
(plausible-environment-designator (2nd args!))
(plausible-continuation-designator (3rd args!)))))

(define PLAUSIBLE-ENVIRONMENT-DESIGNATOR
(lambda simple [env!]
(and (rail env!)
(or (= env! tglobal)
(empty env!)
(and (plausible-binding-designator (1st env!))
(plausible-environment-designator

(rest env!)))))))

(define PLAUSIBLE-BINDING~DESIGNATOR
(tambda simple [b!]
(and (rail b!)
(= (length b!) 2)
(handle (1st b!))
(atom Y (1st b!))
(handle (2nd bt)))))

(define PLAUSIBLE-CONTINUATION-DESIGNATOR
(lambda simple [c!]
(and (closure c!)
(not (reflective c!))
(or (atom (pattern c!))
(and (rail (pattern c!))
(= 1 (Tength (pattern c!})))))))

35

; +; Predicates defined over closures, sorting them into the various types that the implementation needs to
;+; know about: ppps, ppcs, etc. Also, there are utilities for recognizing closures of these various types.

(define DIRECTLY-IMPLEMENTED
(1ambda [closure]
(or (primitive closure)
(kernel-utility closure))))

(define PPP
(1ambda simple [closure]
(not (= 'unknown (ppp-type closure)))))

(define PPP-TYPE
(lambda simple [closure]
(identify-closure closure *ppp-table*)))

(set *PPP-TABLE*
[['normalise tnormalise]
['reduce treduce]
['normalise-rail tnormalise-rail]
['read-normalise-print tread-normalise-print]
['1ambda (de-refliect tlambda)]
['if (de-reflect tif)]])

(define PPC
(Tambda simple [closure]
(not (= 'unknown (ppc-type closure)))))

XEROX PARC, ISL-4, JULY 1984

36 THE IMPLEMENTATION OF PROCEDURALLY REFLECTIVE LANGUAGES

(define PPC-TYPE
(1ambda simple [closure]
(identify-closure closure *ppc-table*)))

(set *PPC-TABLE®
[['proc t(make-proc-continuation '? '? '? '?)]
['args *(make-args-continuation '? '? '? '? '?)]
['first t(make-first-continuation '? '? '?)]
['rest +t(make-rest-continuation '? '? '? '?)]
['reply t(make-reply-continuation '? '?)]
['if t(make-if-continuation T O)1

(define KERNEL-UTILITY
(lambda simple [cTosure]
(member closure *kernel-utility-table*)))

(set *KERNEL-UTILITY-TABLE®
[tbinding tbind trebind tde-reflect tprimitive treflective
tnormal tlength tunit tmember tenvironment tdouble t1st
t2nd trest tvector-constructor tatom tpair trail
thandle texternal tnormal-rail tprompt&read tprompt&reply])

(define IDENTIFY-CLOSURE
(lambda simple [closure table]
(cond [(empty table) 'unknown]
[(similar-closure closure (2nd (1st table)))
(1st (1st table))]
[$T (identify-closure closure (rest table))])))

(define SIMILAR-CLOSURE
(lambda simple [closure template]
(or (= closure template)
(and (isomorphic (pattern closure) (pattern template))
(isomorphic (body closure) (body template))
(= (reflective closure) (reflective template))
(similar-environment (environment closure)
(environment template))))))

(define SIMILAR-ENVIRONMENT
(1lambda simple [environment template]
(or (= tenvironment ttemplate)
(and (empty environment) (empty template))
(and (not (empty template))
(not (empty environment))
(= (1st (1st environment)) (1st (1st template)))
(or (= ''? (2nd (1st template)))
(= (2nd (1st environment})
(2nd (1st template))))
(similar-environment (rest environment)
(rest template))))))

XEROX PARC, ISL-4, JULY 1984

